Compiling Agentic Al Programs for Dataflow

Execution
An MLIR Approach

Miguel Cardenas, Rafael A Herrera Guaitero,
Isaac Bermudez, Jose M. Monsalve Diaz

LLVM Colombia

Tenth LLVM Performance Workshop at CGO 2026

Jan 30 2026

What Is an Agent?

A
s
\‘lg 4?'

9
4
\
J

R

e
¥

An agent is an autonomous,
goal-oriented program that
executes multi-step workflows by
interleaving Large Language
Model (LLM) calls, tool I/O, and
memory operations.

Key components: Core LLM,
Planning, Memory, tools

b
e
“ ?

P
Confirming strategy

N

The Problem - Agentic Al Programs

tool execution]

) o

yes

o

source

tool call
needed?

https://towardsdatascience.com/personal-agentic-assistants-a-practical-blueprint-for-a-secure-multi-user-self-hosted-chatbot/

What are compilers
good at?

Compiler Advantages
for Agents

e Compilers enable
whole-workflow optimization
and analysis.

e They expose data
dependencies for automatic
parallelism.

e Compilers provide static
checks, catching errors before
execution.

e They allow IR-level transforms
like operation fusion.

Solution Overview - MLIR DSL And Dialect for Agentic Al

[AIS Source }—)[Parser J—-} MLIR Dialect
B erations

omain Semantic

AIlS Dialect Architecture

Metadata e | Inference ask, think, reason,
(1 ops) a3e (6 ops) plan, reflect, verify
DRSIOnY mem, umem] fogl inv, exc

(2 ops) Sl (2 ops) :

r

Control Flow
(7 ops)

jump, branch_on_value,
loop_start, loop_end,
return, switch,

| \

' | Synchronization

(3 ops)

merge, fence, wait_all

flow_call | Communication ot
(1 ops)
(Ezrl;);sl-)iandllng try_catch, error 1 :rzltgrpr;?l const_str, yield

Operation Example - AlS MLIR Syntax

~

agent Coordinator {
@entry flow main(topic: str) — str {

// Parallel: no data dependencies
Researcher.research(topic) — res
Critic.prepare(topic) — prep
Analyst.analyze(topic) — analysis

// Barrier: synchronize results
wait_all(res, prep, analysis)

// Synthesize final output
ask("Synthesize...") — report
return report

Operation Example - AIS MLIR Syntax

module attributes {ais.fused_pairs = #ais.fused_pairs<0>, ais.

graph_normalized = #ais.graph_normalized<0>, ais.scheduling_annotations =
#ais.scheduling_annotations<i1>} {

ais.agent "Coordinator" {beliefs = [], capabilities = [], goals = [],
memories = []}

g func.func @Coordinator.main(%arg0: !ais.token<i64> {ais.param_name =
"topic", ais.param_type = "str"}) -> lais.token<if4> attributes {ais.entry}
{
%0 = ais.flow_call "Researcher" "research"(%arg0 : !ais.token<i64>) :

lais.token<i64>

%1 = ais.flow_call "Critic" "prepare"(%arg0 : !ais.token<if4>) : lais.
token<it4>

%2 = ais.flow_call "Analyst" "analyze"(%arg0 : !ais.token<if4>) : lais.
token<i64>

%3 = ais.ask "Synthesize..." {ais.estimated_cost = #ais.

estimated_cost<2>, ais.intent = #ais.intent<reasoning>, ais.latency = "low",
ais.parallel_safe = #ais.parallel_safe, ais.tier = #ais.tier<reasoning>} :
lais.token<ibA>

return %3 : !ais.token<i64>

Dataflow Example:

MLIR Code:
%a = ais.ask "Q1"
bi=rais.askiti02*

oP

%C = ais.merge %a, bd
%d = ais.ask "Combine: {0}" [%c]
Dataflow Graph:

| ask("Ql") —>| merge ——> | ask('Combine’)|

L J
-
Execution:

Parallel starts for ask("Q1") and ask("Q2"),
waits at merge, then executes ask('‘Combine)

Scheduling

CLASSIFICATION by operation type:

io tier: web_search, fetch, http_call

J Estimated cost: base + (10 x context_tokens) |

|
compute tier: math_solve, solve_equation, calc |
J Estimated cost: base + (1 x context_tokens)

reasoning tier: ais.think, ais.reason
J Estimated cost: base + (5 x context_tokens)

memory tier: gmem, umem
J Estimated cost: base + (2 x context_tokens)

ANNOTATE each operation:

e ais.tier = {io, compute, reasoning, memory}
e ais.estimated_cost = integer

e ais.parallel_safe = true (if speculation-safe)

—> Runtime scheduler uses annotations for parallelism

1211

instead of one lim op?

OP Fusible Semantics

ask YES Q&A, low latency
think MAYBE Extended reasoning
reason MAYBE Structured output

Latency classification enables compile-time optimization. Ask is the only fusible operation. Without this
distinction, fusion would merge slow operations incorrectly.

LLM Fusion

Batch sequential LLM calls into single operations

Before: Sequential Calls (2-4 seconds) After: Fused Call (1-2 seconds)
LLM Call 2: Fused LLM Call:
Wl;ul::nisc:jul.?? Explain more: What is MLIR? \n
i {output from 1} Explain more: {0}
// Before (2 LLM calls = 2-4 seconds): // Before (2 LIM calls = 2-4 seconds):
%a = ais.ask "What 1s MLIR?" : !ais.token %a = ais.ask "What is NLIR?" : lais.token
%b = als.ask "Explain more: {8}" [%a : lais.token] : !ais.token Sb = ais.ask "Explain more: {8)" [ka : !ais.token] : !ais.token

// After (1 LLM call = 1-2 seconds):
$b = ais.ask "What is MLIR?\n-—\nExplain more: {6}"
: lais.token

// After (1 LLM call = 1-2 seconds):
%b = ais.ask "what is MLIR?\n-——\nExplain more: {0}"
: lais.token

From MLIR IR to Executable Artifact

MLIR IR example: Lowering Process: ExecutionDag

e 1. Extract SSA dependencies Gt e i
%ctx = ais.qmem "facts" 2. Create DAG nodes per operation ExecutionDag {
:f; = a%s.as:z "Q;“ [://"C:X% 3. Add edges for: n:zs:ziihe, op=qmem, cost-1, tier=memory)
ob = ais. "Q2" [%ctx id= = = ier=
e i) | Ly DTS ve e G T S
%C = ais.merge %a, %b £ Y memory fissourcey Node(id=3, op=nerge, cost-1, tier=general)

- Control flow (regions, branches) Node(id=4,

4. Serialize to ExecutionDag ¥

wire format edges: [
(0->1, data),

(0->2, data),
(1=>3 data),
(2—>3, data),

Wire format (binary): ExecutionDag v3];(3*4' data),

%d = ais.ask "Smmary: {0} [%c] op=ask, cost=100, tier=reasoni

e Serialized to ~15-50 KB per typical program x
e Deserialized at runtime by ExecutionEngine SATTye node(9)
e Multi-DAG support: one DAG per agent flow

Future Work and
Directions

Explore transpilation from
orchestration frameworks to
AlS.

Investigate quality-aware
optimization for LLM
workflows.

Test it with production
datasets

Takeaways for CGO Community

1. Latency-dominated workloads need different optimizations
- Network round-trips >> CPU cycles
- Fusion > instruction scheduling
2. Domain-specific dialects enables aggressive optimizations
- Semantic knowledge -> better decisions
- Custom types/effects -> precise analysis
3. MLIR is powerful for novel compilation targets
- Extensible infrastructure
- SSA + regions natural for dataflow
4. Compilers for Al orchestration are underexplored
- Growing importance as agents become mainstream
- Opportunities for PL/compiler research

