

Compiling Agentic AI Programs for Dataflow Execution

An MLIR Approach

Miguel Cárdenas, **Rafael A Herrera Guaitero**,
Isaac Bermudez, Jose M. Monsalve Diaz

LLVM Colombia

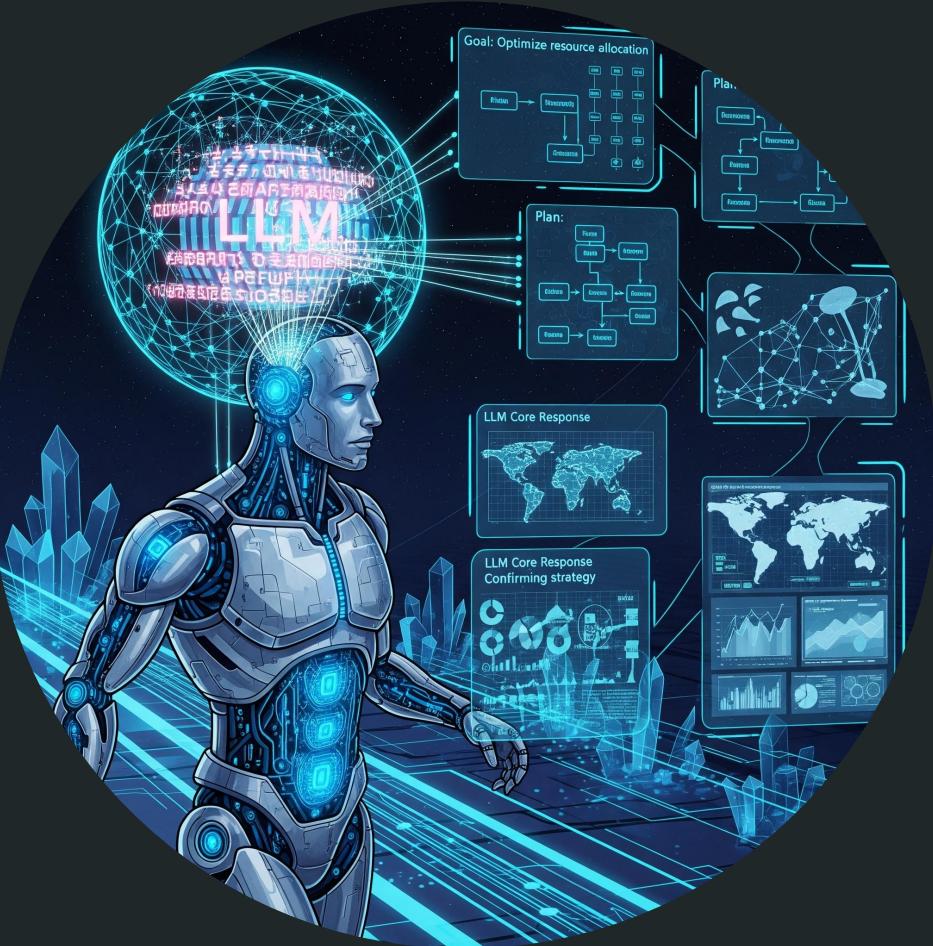
Tenth LLVM Performance Workshop at CGO 2026

Jan 30 2026

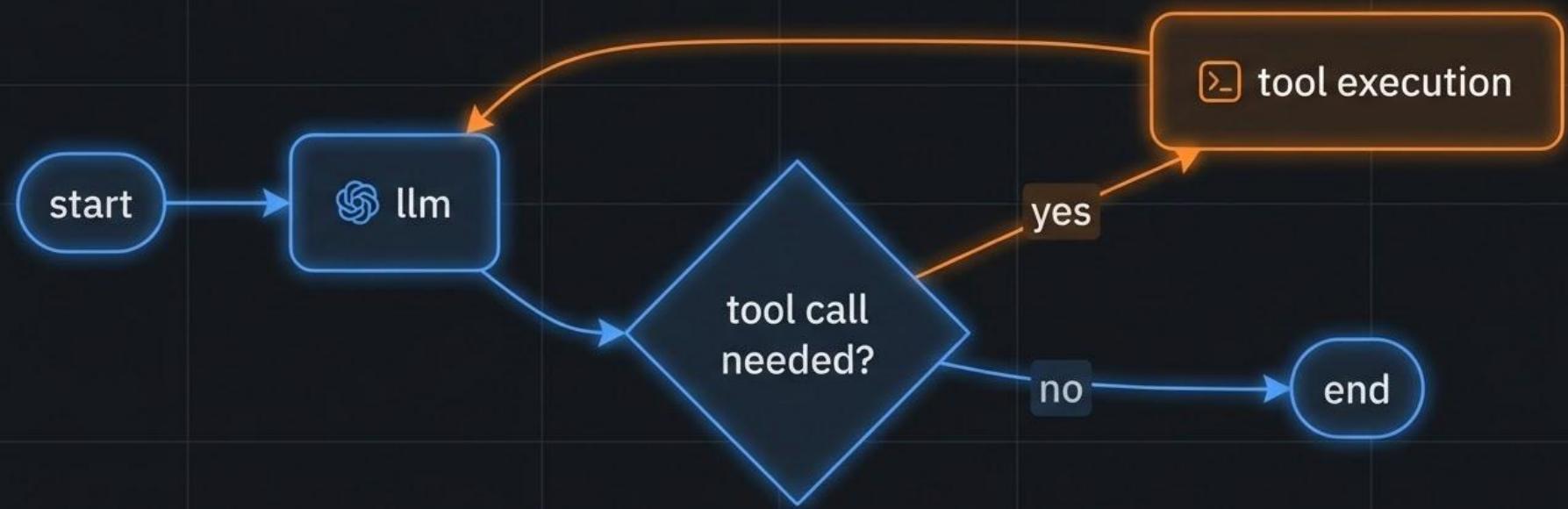
What Is an Agent?

An agent is an autonomous, goal-oriented program that executes multi-step workflows by interleaving Large Language Model (LLM) calls, tool I/O, and memory operations.

Key components: Core LLM, Planning, Memory, tools



The Problem - Agentic AI Programs

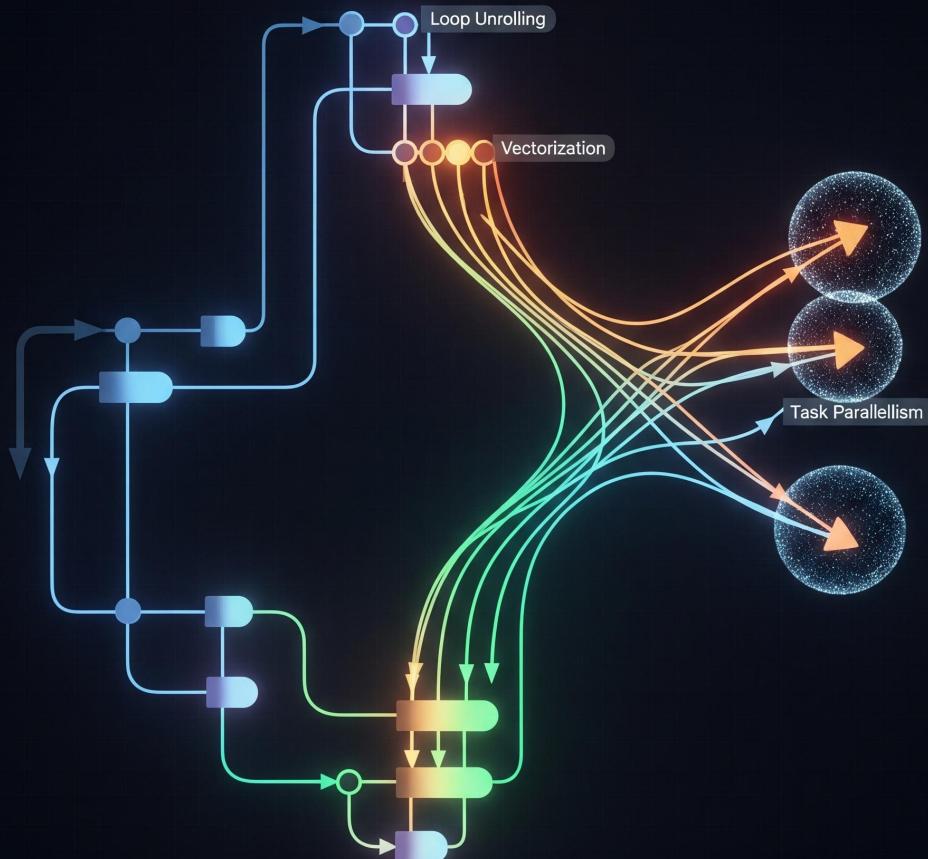


[source](#)

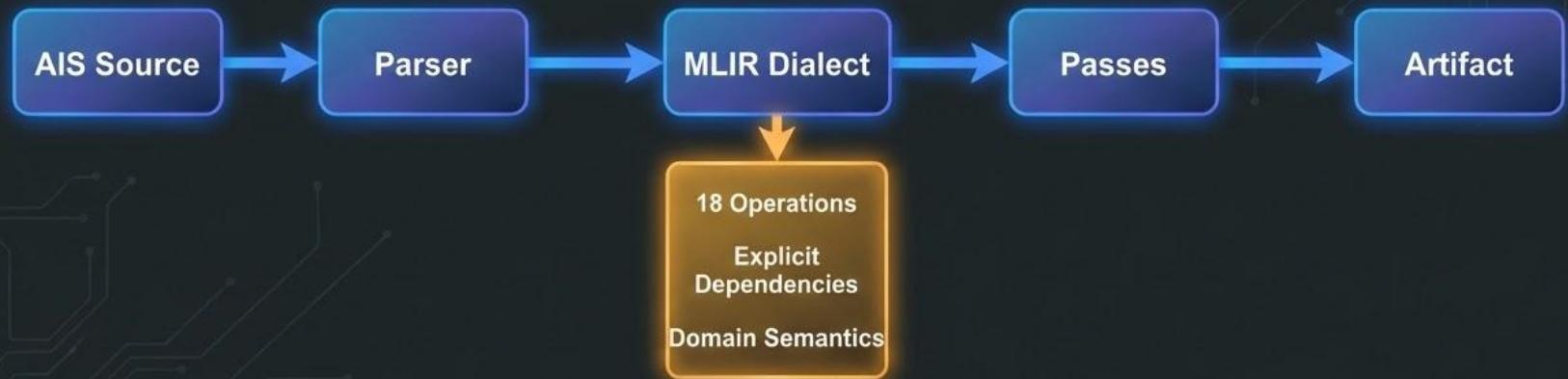
What are compilers good at?

Compiler Advantages for Agents

- Compilers enable whole-workflow optimization and analysis.
- They expose data dependencies for automatic parallelism.
- Compilers provide static checks, catching errors before execution.
- They allow IR-level transforms like operation fusion.



Solution Overview - MLIR DSL And Dialect for Agentic AI



AIS Dialect Architecture

Metadata (1 ops)	agent	Inference (6 ops)	ask, think, reason, plan, reflect, verify
Memory (2 ops)	qmem, umem	Tools (2 ops)	inv, exc
Control Flow (7 ops)	jump, branch_on_value, loop_start, loop_end, return, switch, flow_call	Synchronization (3 ops)	merge, fence, wait_all
Error Handling (2 ops)	try_catch, error	Communication (1 ops)	communicate
		Internal (2 ops)	const_str, yield

Operation Example - AIS MLIR Syntax

```
agent Coordinator {  
    @entry flow main(topic: str) → str {  
        // Parallel: no data dependencies  
        Researcher.research(topic) → res  
        Critic.prepare(topic) → prep  
        Analyst.analyze(topic) → analysis  
  
        // Barrier: synchronize results  
        wait_all(res, prep, analysis)  
  
        // Synthesize final output  
        ask("Synthesize...") → report  
        return report  
    }  
}
```

Operation Example - AIS MLIR Syntax

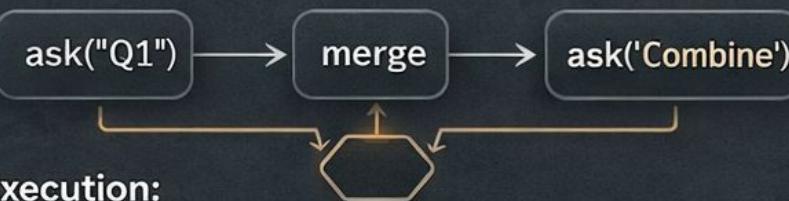
```
module attributes {ais.fused_pairs = #ais.fused_pairs<0>, ais.
graph_normalized = #ais.graph_normalized<0>, ais.scheduling_annotations =
#ais.scheduling_annotations<1>} {
    ais.agent "Coordinator" {beliefs = [], capabilities = [], goals = [],
memories = []}
    func.func @Coordinator.main(%arg0: !ais.token<i64> {ais.param_name =
"topic", ais.param_type = "str"}) -> !ais.token<i64> attributes {ais.entry}
{
    %0 = ais.flow_call "Researcher" "research"(%arg0 : !ais.token<i64>) :
!ais.token<i64>
    %1 = ais.flow_call "Critic" "prepare"(%arg0 : !ais.token<i64>) : !ais.
token<i64>
    %2 = ais.flow_call "Analyst" "analyze"(%arg0 : !ais.token<i64>) : !ais.
token<i64>
    %3 = ais.ask "Synthesize..." {ais.estimated_cost = #ais.
estimated_cost<2>, ais.intent = #ais.intent<reasoning>, ais.latency = "low",
ais.parallel_safe = #ais.parallel_safe, ais.tier = #ais.tier<reasoning>} :
!ais.token<i64>
        return %3 : !ais.token<i64>
    }
}
```

Dataflow Example:

MLIR Code:

```
%a = ais.ask "Q1"  
%b = ais.ask "Q2"  
%c = ais.merge %a, b  
%d = ais.ask "Combine: {0}" [%c]
```

Dataflow Graph:



Execution:

Parallel starts for `ask("Q1")` and `ask("Q2")`,
waits at `merge`, then executes `ask('Combine')`

Scheduling

CLASSIFICATION by operation type:

io tier: web_search, fetch, http_call

↓ Estimated cost: base + $(10 \times \text{context_tokens})$

compute tier: math_solve, solve_equation, calc

↓ Estimated cost: base + $(1 \times \text{context_tokens})$

reasoning tier: ais.think, ais.reason

↓ Estimated cost: base + $(5 \times \text{context_tokens})$

memory tier: qmem, umem

↓ Estimated cost: base + $(2 \times \text{context_tokens})$

ANNOTATE each operation:

- `ais.tier = {io, compute, reasoning, memory}`
- `ais.estimated_cost = integer`
- `ais.parallel_safe = true` (if speculation-safe)

→ Runtime scheduler uses annotations for parallelism

LLM Fusion

Batch sequential LLM calls into single operations

Before: Sequential Calls (2-4 seconds)

LLM Call 1:
What is MLIR?

LLM Call 2:
Explain more:
{output from 1}

```
// Before (2 LLM calls = 2-4 seconds):  
%a = ais.ask "What is MLIR?" : !ais.token  
%b = ais.ask "Explain more: {0}" [%a : !ais.token] : !ais.token
```

```
// After (1 LLM call = 1-2 seconds):  
%b = ais.ask "What is MLIR?\n---\nExplain more: {0}"  
: !ais.token
```

After: Fused Call (1-2 seconds)

Fused LLM Call:
What is MLIR? \n
Explain more: {0}

```
// Before (2 LLM calls = 2-4 seconds):  
%a = ais.ask "What is MLIR?" : !ais.token  
%b = ais.ask "Explain more: {0}" [%a : !ais.token] : !ais.token
```

```
// After (1 LLM call = 1-2 seconds):  
%b = ais.ask "What is MLIR?\n---\nExplain more: {0}"  
: !ais.token
```

From MLIR IR to Executable Artifact

MLIR IR example:

```
%ctx = ais.qmem "facts"
%a = ais.ask "Q1" [%ctx]
%b = ais.ask "Q2" [%ctx]
%b = ais.ask "Q2" [%ctx]
%c = ais.merge %a, %b
%d = ais.ask "Summary: {0}" [%c]
```

Lowering Process:

1. Extract SSA dependencies
2. Create DAG nodes per operation
3. Add edges for:
 - Data flow (SSA value uses)
 - Effect flow (memory/resource)
 - Control flow (regions, branches)
4. Serialize to ExecutionDag wire format

ExecutionDag

```
ExecutionDag {
  nodes: [
    Node(id=0, op=qmem, cost=1, tier=memory),
    Node(id=1, op=ask, cost=100, tier=reason),
    Node(id=2, op=ask, cost=100, tier=reason),
    Node(id=3, op=merge, cost=1, tier=general),
    Node(id=4, op=ask, cost=100, tier=reason)
  ]
  edges: [
    (0->1, data), # %Ctx to ask1
    (0->2, data), # %Ctx to ask2
    (1->3, data), # %a to merge
    (2->3, data), # %b to merge
    (3->4, data), # merged to ask3
  ];
}
entry: node(0)
```

Wire format (binary): ExecutionDag v3

- Serialized to ~15-50 KB per typical program
- Deserialized at runtime by ExecutionEngine
- Multi-DAG support: one DAG per agent flow

Future Work and Directions

- Explore transpilation from orchestration frameworks to AIS.
- Investigate quality-aware optimization for LLM workflows.
- Test it with production datasets

Takeaways for CGO Community

1. **Latency-dominated workloads need different optimizations**
 - Network round-trips >> CPU cycles
 - Fusion > instruction scheduling
2. **Domain-specific dialects enables aggressive optimizations**
 - Semantic knowledge -> better decisions
 - Custom types/effects -> precise analysis
3. **MLIR is powerful for novel compilation targets**
 - Extensible infrastructure
 - SSA + regions natural for dataflow
4. **Compilers for AI orchestration are underexplored**
 - Growing importance as agents become mainstream
 - Opportunities for PL/compiler research