
Compiling Agentic AI Programs for Dataflow 
Execution

An MLIR Approach

Miguel Cárdenas, Rafael A Herrera Guaitero,
 Isaac Bermudez, Jose M. Monsalve Diaz

LLVM Colombia

Tenth LLVM Performance Workshop at CGO 2026

Jan 30 2026



What Is an Agent?

An agent is an autonomous, 
goal-oriented program that 
executes multi-step workflows by 
interleaving Large Language 
Model (LLM) calls, tool I/O, and 
memory operations.

Key components: Core LLM, 
Planning, Memory, tools



The Problem - Agentic AI Programs

source

https://towardsdatascience.com/personal-agentic-assistants-a-practical-blueprint-for-a-secure-multi-user-self-hosted-chatbot/


What are compilers 
good at?



Compiler Advantages 
for Agents

● Compilers enable 
whole-workflow optimization 
and analysis.

● They expose data 
dependencies for automatic 
parallelism.

● Compilers provide static 
checks, catching errors before 
execution.

● They allow IR-level transforms 
like operation fusion.



Solution Overview - MLIR DSL And Dialect for Agentic AI



AIS Dialect Architecture

Metadata (1 ops) agent

Inference (6 ops) ask, think, reason, plan, reflect, verify

Memory (2 ops) qmem, umem

Tools (2 ops) inv, exc

Control Flow (7 ops) jump, branch_on_value, loop_start, 
loop_end, return, switch, flow_call

Synchronization (3 ops) merge, fence, wait_all

Error Handling (2 ops) try_catch, error

Communication (1 ops) communicate

Internal (2 ops) const_str, yield











Why ask, think, reason instead of one llm op?

OP Fusible Semantics

ask YES Q&A, low latency

think MAYBE Extended reasoning

reason MAYBE Structured output

Latency classification enables compile-time optimization. Ask is the only fusible operation. Without this 
distinction, fusion would merge slow operations incorrectly.



LLM Fusion





Future Work and 
Directions

● Explore transpilation from 
orchestration frameworks to 
AIS.

● Investigate quality-aware 
optimization for LLM 
workflows.

● Test it with production 
datasets



Takeaways for CGO Community

1. Latency-dominated workloads need different optimizations
- Network round-trips >> CPU cycles
- Fusion > instruction scheduling

2. Domain-specific dialects enables aggressive optimizations
- Semantic knowledge -> better decisions
- Custom types/effects -> precise analysis

3. MLIR is powerful for novel compilation targets
- Extensible infrastructure
- SSA + regions natural for dataflow

4. Compilers for AI orchestration are underexplored
- Growing importance as agents become mainstream
- Opportunities for PL/compiler research


