W

Equipping LLVM/OpenMP with
Advanced OpenMP Offloading
GPU Features

10th LLVM Performance Workshop
January 31, 2026

Kevin Sala | Postdoctoral Researcher
salapenades1@linl.gov

Chaitanya Sankisa, Krzysztof Parzyszek, Michael Klemm | AMD Collaborators
rrrrrrrrrrrrrrrrrrr
...............

Lawrence Livermore o)
m; National Laboratory =~ LLNL-PRES-2015184 N MA!MSM‘E% 1

ﬁ
Accelerating with OpenMP

* The target model allows accelerating regions on devices
* Most constructs are available within target regions
* Broad vendor support
» Broad language support: C, C++, Fortran, Python (prototype)

#pragma omp target teams distribute parallel for \
num_teams(N/256) thread_limit(256) \
map (tofrom: Matrix[@:N*N*N]) collapse(3)

O enMP for (int z = 0; z < N; z++)
° for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
Matrix[x + y*N + z*N*N] *= Val; OpenMP
app
Lawrence Livermore

National Laboratory =~ LLNL-PRES-2015184 2

.

Problems

* The target model has limitations that hinder broad adoption

* Missing essential GPU-specific features
* Noticeable overhead in target regions (depending on features)
« Struggle with hierarchical parallelism

#pragma omp target teams distribute parallel for \
num_teams(N/256) thread_limit(256) \
map (tofrom: Matrix[@:N*N*N]) collapse(3)

O enMP for (int z = 0; z < N; z++)
. for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
Matrix[x + y*N + z*N*N] *= Val; OpenMP
app

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 3

W

OpenMP Committee is working on that...

* Recent and upcoming features
» Static feam-local memory — Available OpenMP 6.0

* Dynamic team-local memory — Approved OpenMP 6.1
» Multi-dimensional grid programming

* Reducing target region overheads

» Stream-like data dependencies

* Etc.

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 4

e

Overview of some recent features

* This talk will cover...

« Static team-local memory
* Dynamic team-local memory
» Multi-dimensional grid programming

* Overview of such features
* Implementation in LLVM/OpenMP
- Early evaluation in two benchmarks

Il Lawrence Livermore
&E National Laboratory ~ LLNL-PRES-2015184 5

e

Groupprivate Directive

Available
. . . . o MP 6.0
void func(int *sum, int tid) { ot

» Exposes static shared / local memory static int tmp1[1000];
« Each contention group its own copy METEEE) G CICH A A
* File-scope, namespace-scope or static block-scope BplreliE eulp ol

] for (int 1 = 0; 1 < 1000; i++)
variables tmp1[i] = tid + i:

#pragma omp for reduction(+: sum)
for (int 1 = 0; 1 < 1000; i++)
sum += tmp1[i];

}

int main() {
int sums[10];

tmp1 tmp1 tmp1
#pragma omp target teams num_teams(10) thread_limit(256)

#pragma omp parallel
func(&sums[omp_get_team_num()], omp_get_thread_num());
}

team O team 1 team 9

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 6

e

Groupprivate Directive

Available
’Similar tO CUDA and HIP void func(int *sum, int tid) {

static int tmp1[1600];
#pragma omp groupprivate(tmp1)

__global__ void func(int *sum, size_t N) { #pragma omp for . .
__shared__ int tmp1[1000]; for (int i = @; i < 1000; i++)
tmp1[i] = tid + i;

#pragma omp for reduction(+: sum)
func<<<10, >>>(sum, N); for (int i =1?E]i < 1000; i++)
sum += tmp1[i];

}

int main() {
int sums[10];

tmp1 tmp1 tmp1
#pragma omp target teams num_teams(10) thread_limit(256)

#pragma omp parallel
func(&sums[omp_get_team_num()], omp_get_thread_num());

}
team O team 1 team 9

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 7

e

Dynamic Groupprivate Clause

Approved
. (o) MP 6.1
void func(int *sum, int tid, int N) { oy

* Exposes dynamic shared / local memory int *tmp = omp_get_dyn_groupprivate_ptr();
* Requests a groupprivate buffer with #pragma omp for
runtime-determined size e (s 5 = By 5 @ LG)
.) tmp[i] = tid + 1i;
» Each contention group its own buffer copy

#pragma omp for reduction(+: sum)
for (int 1 = 0; 1 < N; i++)
sum += tmp[i];

}

int main(int argc, char **argv) {
int N = atoi(argv([1]);
int sums[10];

tmp2 tmp2 tmp2
#pragma omp target teams num_teams(10) thread_limit(256) \

dyn_groupprivate(N*sizeof(int))
#pragma omp parallel
func(&sums[omp_get_team_num()], omp_get_thread_num(), N);

team O team 1 team 9 b

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 8

e

Dynamic Groupprivate Clause

Approved
. (o) MP 6.1
void func(int *sum, int tid, int N) { oy

» Somewhat similar to CUDA and HIP B L ol N R L

#pragma omp for
for (int 1 = @; i < N; i++)
__global__ void func(int #*sum, size_t N) { tmp2[i] = tid + i;
extern __shared__ int tmp2[];

#pragma omp for reduction(+: sum)
} for (int i = 0; i < N; i++)
sum += tmp2[i];

func<<<10, ,N*sizeof(double)>>>(sum, N);
int main(int argc, char **argv) {
int N = atoi(argv([1]);
int sums[10];
tmp2 tmp2 tmp2

#pragma omp target teams num_teams(10) thread_limit(256) \

dyn_groupprivate(N*sizeof(int))
o . . #pragma omp parallel
func(&sums[omp_get_team_num()], omp_get_thread_num(), N);

team O team 1 team 9 b

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 9

e

Dynamic Groupprivate Clause

Approved
OpenMP 6.1

» Groupprivate memspace is limited
L . #pragma omp target dyn_groupprivate(fallback(abort): N)
* The fallback modifier determines what to {

C e }
do when the limit is reached:
* Abort the execution
e Return null pointer #pragma omp target dyn_groupprivate(fallback(null): N)
{
* Use memory from a default memspace }
(e.g., global)
#pragma omp target dyn_groupprivate(fallback(default_mem): N)
______________________________________ {
global |tmp2 | [tmp2 __ i [tmp2_ /
[%%%% %] [%%%% %] %%%% % #pragma omp target dyn_groupprivate(N)
{
team O team 1 team 9 // default_mem is the default when not specified
}

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 10

e

Multi-dimensional grid programming

* Most accelerated applications use grid programming
« Single Program Multiple Data (SPMD)

CUDA/HIP OpenMP 6.0

__global__ kernel(double *matrix, size_t N) { #pragma omp target teams distribute parallel for \
int x = blockIdx.x * blockDim.x + threadIdx.x; num_teams(N/256) thread_limit(256) collapse(3)
int y = blockIdx.y * blockDim.y + threadIdx.y; for (int z = 8; z < N; ++z)
int z = blockIdx.z * blockDim.z + threadIdx.z; for (int y = 0; y < N; ++y)

for (int x = @; x < N; ++x)
if (x < N& y <N &,& z < N) matrix[x + y * N+ z * N * N] = ...;
matrix[x + y * N+ z * N * N] = : }

}

dim3 nblocks(N/256,N/256,N/256);

dim3 nthreads(256,256,256);

kernel<<<nblocks, nthreads>>>(matrix, N);

Il Lawrence Livermore 1

National Laboratory =~ LLNL-PRES-2015184

e

Multi-dimensional grid programming

* Most accelerated applications use grid programming
« Single Program Multiple Data (SPMD)

CUDA/HIP Future OpenMP

__global__ kernel(double *matrix, size_t N) { #pragma omp target teams num_teams(dims(3): N/256,N/256,N/256) \
int x = blockIdx.x * blockDim.x + threadIdx.x; thread_limit(dims(3): 256,256,256)
int y = blockIdx.y * blockDim.y + threadIdx.y; #pragma omp parallel
int z = blockIdx.z * blockDim.z + threadIdx.z; {
int x = omp_get_team_num_dim(1) * omp_get_num_teams_dim(1)
if (x < N & y < N & z < N) + omp_get_thread_num_dim(1);
matrix[x + y * N+ z * N * N] = ...; int y = omp_get_team_num_dim(2) * omp_get_num_teams_dim(2)
} + omp_get_thread_num_dim(2);
int z = omp_get_team_num_dim(3) * omp_get_num_teams_dim(3)
dim3 nblocks(N/256,N/256,N/256) ; + omp_get_thread_num_dim(3);
dim3 nthreads(256,256,256);
kernel<<<nblocks, nthreads>>>(matrix, N); matrix[x + y * N+ z * N * N] = ...;

}

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 12

T

Multi-dimensional grid programming

* Most accelerated applications use grid programming
« Single Program Multiple Data (SPMD)

Future OpenMP Compatibility with unidimensional world
#pragma omp target teams num_teams(dims(3): N/256,N/256,N/256) \ #pragma omp target teams \
thread_limit(dims(3): 256,256,256) num_teams (dims(3): N/256,N/256,N/256) \
fprag"‘a e thread_limit(dims(3): 256,256,256)
int x = omp_get_team_num_dim(1) * omp_get_num_teams_dim(1) #pragma omp parallel
+ omp_get_thread_num_dim(1); {))
int y = omp_get_team_num_dim(2) * omp_get_num_teams_dim(2) :!.nt team = omp_get_team_num();
+ omp_get_thread_num_dim(2); int thread = omp_get_thread_num();
int z = omp_get_team_num_dim(3) * omp_get_num_teams_dim(3) int nthreads = omp_get_num_threads();
+ omp_get_thread_num_dim(3);

#pragma omp single
matrix[x + y * N+ z * N * N] = ...; { }
)

Transparent flattening of identifiers/sizes

M Lawrence Livermore 13
National Laboratory =~ LLNL-PRES-2015184

ﬁ
Implementation in LLVM/Clang

* Multi-dimensional grid
« Support dims modifier in num_teams and thread limit clauses
e Support in LLVM/OpenMP DeviceRTL
* Linearization implemented in DeviceRTL
« Some cases not supported yet
* Full implementation of Dynamic Groupprivate
« Groupprivate not exposed as #pragma yet, using instead:

static __attribute((address_space(3),aligned(16),loader_uninitialized)) double tmp[1024];

« PR #69018 not evaluated yet (author @Ritanya-B-Bharadwaj)

M Lawrence Livermore 14
National Laboratory =~ LLNL-PRES-2015184

https://github.com/llvm/llvm-project/pull/169018

e

Evaluation

« Two benchmarks
« Matmul (manual implementation)
- Stencil3d (extracted from HeCBench)

« Common characteristics
* Multi-dimensional grid programming
« Heavy use of shared/local memory

« Two platforms in LLNL
 NVIDIAH100
« AMD MI300A

M Lawrence Livermore 15
National Laboratory =~ LLNL-PRES-2015184

e

Evaluation

Integer MatMul Stencil3d
matrix size 16K x 16K, tile size 16x16 grid size 768 x 768 x 768

NVIDIAH100 AMD MI300A NVIDIAH100 AMD MI300A
m Native m Native (clang) mOpenMP gpp ™ OpenMP dyn_gpp ™ OpenMP global m Native ® Native (clang) ®mOpenMPgpp mOpenMP dyn_gpp ™ OpenMP global

1.8
1.6

N
[}

1.4
1.2

Time (s)
Time (ms)
& 8

0.8
0.6

iy
o

0.4

o

0.2

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 16

Lessons learned from the implementation

* Make sure the compiler can
determine the correct address space

in the user code
« addrspace(3) in nvidia and amdgpu

* This is problematic:

void *omp_get_dyn_groupprivate_ptr(...) {
return (!RT.was_fallback) ? RT.shmem_ptr
: RT.fallback_glb_ptr;
: /

7
addrspace(3) vs. addrspace(1) at runtime => generic addrspace(0)

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184

Matmul with 2 tiles on LDS

m HIP/CUDA Static LDS = OMP DynGpp LDS Ptr OMP DynGpp Generic Ptr

2

1.8

1.6

1.4

1.2

1

Time (s)

0.8

0.6

0.4

0.2

0

Price of generic load/stores

/

AMD MI300A NVIDIAH100

17

Lessons learned from the implementation

« Make sure to forward shared memory pointer alignment to user code
* e.g., 16-byte alignment in nvidia

Matmul Loads/stores of 64 bits instead of 128 bits Stencil3d

1.6 / 35

14 30

1.2
25

1

—~ 20
0.8

Time (s)
Time (s

15
0.6

10
0.4

0.2 5

0

0

lﬁaagginacl?_la-{;l;ggrr; T T —— m CUDA m OMP DynGpp 16-byte Align m OMP DynGpp 4-byte Align 18

e

Fortran

« AMD folks are working on the LLVM Flang implementation
« Krishna Chaitanya Sankisa
* Krzysztof Parzyszek
* Michael Klemm

* More results coming soon!

Lawrence Livermore
National Laboratory =~ LLNL-PRES-2015184 19

e

Conclusions

OpenMP target provides
« Standard for acceleration with multi-vendor support
« Language portability: C, C++, Fortran, Python (prototype)
» Abstraction over complex hardware and software

Recent and upcoming OpenMP features
+ Get the same performance with native offloading APIs
 Performance portability
 Reduce porting effort

Positive results for LLVM/OpenMP in C/C++

« Future work: full evaluation in larger applications

M Lawrence Livermore 20
National Laboratory =~ LLNL-PRES-2015184

Lawrence Livermore
National Laboratory

Thank you!

Kevin Sala
salapenades1@linl.gov

Watch the OpenMP tech talk on YouTube'

@ -.h.h. -
H Ope1n MP.

’SC25 OpenMP Tech Talk Serles ‘

Accelerating with OpenMP
D Latest and Upcoming Features

ostdoctoral Re
rmore Natio \Lb ratory (LLNL)

https://www.youtube.com/watch?v=xOsoajfdlww

LLNL-PRES-2015184

21

https://www.youtube.com/watch?v=xOsoajfdIww

Thank you for participating in LLVM Performance!

e Invite speakers to send copy of their slides
e Feedback to improve the workshop?

