
1LLNL-PRES-2015184

Prepared by LLNL under Contract
DE-AC52-07NA27344.

salapenades1@llnl.gov
Kevin Sala | Postdoctoral Researcher

January 31, 2026
10th LLVM Performance Workshop

Equipping LLVM/OpenMP with
Advanced OpenMP Offloading
GPU Features

Chaitanya Sankisa, Krzysztof Parzyszek, Michael Klemm | AMD Collaborators

2LLNL-PRES-2015184

• The target model allows accelerating regions on devices
• Most constructs are available within target regions
• Broad vendor support
• Broad language support: C, C++, Fortran, Python (prototype)

Accelerating with OpenMP

#pragma omp target teams distribute parallel for \
 num_teams(N/256) thread_limit(256) \
 map(tofrom: Matrix[0:N*N*N]) collapse(3)
for (int z = 0; z < N; z++)
 for (int y = 0; y < N; y++)
 for (int x = 0; x < N; x++)
 Matrix[x + y*N + z*N*N] *= Val; OpenMP

app

3LLNL-PRES-2015184

• The target model has limitations that hinder broad adoption
• Missing essential GPU-specific features
• Noticeable overhead in target regions (depending on features)
• Struggle with hierarchical parallelism

Problems

#pragma omp target teams distribute parallel for \
 num_teams(N/256) thread_limit(256) \
 map(tofrom: Matrix[0:N*N*N]) collapse(3)
for (int z = 0; z < N; z++)
 for (int y = 0; y < N; y++)
 for (int x = 0; x < N; x++)
 Matrix[x + y*N + z*N*N] *= Val; OpenMP

app

4LLNL-PRES-2015184

• Recent and upcoming features
• Static team-local memory
• Dynamic team-local memory
• Multi-dimensional grid programming
• Reducing target region overheads
• Stream-like data dependencies
• Etc.

OpenMP Committee is working on that…

Available OpenMP 6.0

Approved OpenMP 6.1

Under discussion

Under discussion

Under discussion

5LLNL-PRES-2015184

• This talk will cover…
• Static team-local memory
• Dynamic team-local memory
• Multi-dimensional grid programming

• Overview of such features
• Implementation in LLVM/OpenMP
• Early evaluation in two benchmarks

Overview of some recent features

6LLNL-PRES-2015184

• Exposes static shared / local memory
• Each contention group its own copy
• File-scope, namespace-scope or static block-scope

variables

Groupprivate Directive

void func(int *sum, int tid) {
 static int tmp1[1000];
 #pragma omp groupprivate(tmp1)

 #pragma omp for
 for (int i = 0; i < 1000; i++)
 tmp1[i] = tid + i;

 #pragma omp for reduction(+: sum)
 for (int i = 0; i < 1000; i++)
 sum += tmp1[i];
}

int main() {
 int sums[10];

 #pragma omp target teams num_teams(10) thread_limit(256)
 #pragma omp parallel
 func(&sums[omp_get_team_num()], omp_get_thread_num());
}

Available
OpenMP 6.0

… … ……

team 0 team 1 team 9

tmp1 tmp1 tmp1

7LLNL-PRES-2015184

• Similar to CUDA and HIP

Groupprivate Directive

void func(int *sum, int tid) {
 static int tmp1[1000];
 #pragma omp groupprivate(tmp1)

 #pragma omp for
 for (int i = 0; i < 1000; i++)
 tmp1[i] = tid + i;

 #pragma omp for reduction(+: sum)
 for (int i = 0; i < 1000; i++)
 sum += tmp1[i];
}

int main() {
 int sums[10];

 #pragma omp target teams num_teams(10) thread_limit(256)
 #pragma omp parallel
 func(&sums[omp_get_team_num()], omp_get_thread_num());
}

Available
OpenMP 6.0

… … ……

team 0 team 1 team 9

tmp1 tmp1 tmp1

__global__ void func(int *sum, size_t N) {
 __shared__ int tmp1[1000];
 ...
}

func<<<10,256>>>(sum, N);

8LLNL-PRES-2015184

• Exposes dynamic shared / local memory
• Requests a groupprivate buffer with

runtime-determined size
• Each contention group its own buffer copy

Dynamic Groupprivate Clause

… … ……

team 0 team 1 team 9

tmp2 tmp2 tmp2

void func(int *sum, int tid, int N) {
 int *tmp = omp_get_dyn_groupprivate_ptr();

 #pragma omp for
 for (int i = 0; i < N; i++)
 tmp[i] = tid + i;

 #pragma omp for reduction(+: sum)
 for (int i = 0; i < N; i++)
 sum += tmp[i];
}

int main(int argc, char **argv) {
 int N = atoi(argv[1]);
 int sums[10];

 #pragma omp target teams num_teams(10) thread_limit(256) \
 dyn_groupprivate(N*sizeof(int))
 #pragma omp parallel
 func(&sums[omp_get_team_num()], omp_get_thread_num(), N);
}

Approved
OpenMP 6.1

9LLNL-PRES-2015184

• Somewhat similar to CUDA and HIP

Dynamic Groupprivate Clause

… … ……

team 0 team 1 team 9

tmp2 tmp2 tmp2

void func(int *sum, int tid, int N) {
 int *tmp2 = omp_get_dyn_groupprivate_ptr();

 #pragma omp for
 for (int i = 0; i < N; i++)
 tmp2[i] = tid + i;

 #pragma omp for reduction(+: sum)
 for (int i = 0; i < N; i++)
 sum += tmp2[i];
}

int main(int argc, char **argv) {
 int N = atoi(argv[1]);
 int sums[10];

 #pragma omp target teams num_teams(10) thread_limit(256) \
 dyn_groupprivate(N*sizeof(int))
 #pragma omp parallel
 func(&sums[omp_get_team_num()], omp_get_thread_num(), N);
}

Approved
OpenMP 6.1

__global__ void func(int *sum, size_t N) {
 extern __shared__ int tmp2[];
 ...
}

func<<<10,256,N*sizeof(double)>>>(sum, N);

10LLNL-PRES-2015184

• Groupprivate memspace is limited
• The fallback modifier determines what to
do when the limit is reached:

• Abort the execution
• Return null pointer
• Use memory from a default memspace

(e.g., global)

global

Dynamic Groupprivate Clause
Approved

OpenMP 6.1

#pragma omp target dyn_groupprivate(fallback(abort): N)
{
}

#pragma omp target dyn_groupprivate(fallback(null): N)
{
}

#pragma omp target dyn_groupprivate(fallback(default_mem): N)
{
}

#pragma omp target dyn_groupprivate(N)
{
 // default_mem is the default when not specified
}

… … ……

team 0 team 1 team 9

tmp2 tmp2 tmp2

11LLNL-PRES-2015184

• Most accelerated applications use grid programming
• Single Program Multiple Data (SPMD)

Multi-dimensional grid programming

__global__ kernel(double *matrix, size_t N) {
 int x = blockIdx.x * blockDim.x + threadIdx.x;
 int y = blockIdx.y * blockDim.y + threadIdx.y;
 int z = blockIdx.z * blockDim.z + threadIdx.z;

 if (x < N && y < N && z < N)
 matrix[x + y * N + z * N * N] = ...;
}

dim3 nblocks(N/256,N/256,N/256);
dim3 nthreads(256,256,256);
kernel<<<nblocks,nthreads>>>(matrix, N);

#pragma omp target teams distribute parallel for \
 num_teams(N/256) thread_limit(256) collapse(3)
for (int z = 0; z < N; ++z)
 for (int y = 0; y < N; ++y)
 for (int x = 0; x < N; ++x)
 matrix[x + y * N + z * N * N] = ...;
}

CUDA / HIP OpenMP 6.0

12LLNL-PRES-2015184

• Most accelerated applications use grid programming
• Single Program Multiple Data (SPMD)

Multi-dimensional grid programming

__global__ kernel(double *matrix, size_t N) {
 int x = blockIdx.x * blockDim.x + threadIdx.x;
 int y = blockIdx.y * blockDim.y + threadIdx.y;
 int z = blockIdx.z * blockDim.z + threadIdx.z;

 if (x < N && y < N && z < N)
 matrix[x + y * N + z * N * N] = ...;
}

dim3 nblocks(N/256,N/256,N/256);
dim3 nthreads(256,256,256);
kernel<<<nblocks,nthreads>>>(matrix, N);

CUDA / HIP Future OpenMP
#pragma omp target teams num_teams(dims(3): N/256,N/256,N/256) \
 thread_limit(dims(3): 256,256,256)
#pragma omp parallel
{
 int x = omp_get_team_num_dim(1) * omp_get_num_teams_dim(1)
 + omp_get_thread_num_dim(1);
 int y = omp_get_team_num_dim(2) * omp_get_num_teams_dim(2)
 + omp_get_thread_num_dim(2);
 int z = omp_get_team_num_dim(3) * omp_get_num_teams_dim(3)
 + omp_get_thread_num_dim(3);

 matrix[x + y * N + z * N * N] = ...;
} Under

Discussion

13LLNL-PRES-2015184

• Most accelerated applications use grid programming
• Single Program Multiple Data (SPMD)

Multi-dimensional grid programming

Future OpenMP
#pragma omp target teams num_teams(dims(3): N/256,N/256,N/256) \
 thread_limit(dims(3): 256,256,256)
#pragma omp parallel
{
 int x = omp_get_team_num_dim(1) * omp_get_num_teams_dim(1)
 + omp_get_thread_num_dim(1);
 int y = omp_get_team_num_dim(2) * omp_get_num_teams_dim(2)
 + omp_get_thread_num_dim(2);
 int z = omp_get_team_num_dim(3) * omp_get_num_teams_dim(3)
 + omp_get_thread_num_dim(3);

 matrix[x + y * N + z * N * N] = ...;
}

#pragma omp target teams \
 num_teams(dims(3): N/256,N/256,N/256) \
 thread_limit(dims(3): 256,256,256)
#pragma omp parallel
{
 int team = omp_get_team_num();
 int thread = omp_get_thread_num();
 int nthreads = omp_get_num_threads();

 #pragma omp single
 { ... }
}

Compatibility with unidimensional world

Transparent flattening of identifiers/sizes

14LLNL-PRES-2015184

• Multi-dimensional grid
• Support dims modifier in num_teams and thread_limit clauses
• Support in LLVM/OpenMP DeviceRTL
• Linearization implemented in DeviceRTL
• Some cases not supported yet

• Full implementation of Dynamic Groupprivate
• Groupprivate not exposed as #pragma yet, using instead:

• PR #69018 not evaluated yet (author @Ritanya-B-Bharadwaj)

Implementation in LLVM/Clang

static __attribute((address_space(3),aligned(16),loader_uninitialized)) double tmp[1024];

https://github.com/llvm/llvm-project/pull/169018

15LLNL-PRES-2015184

• Two benchmarks
• Matmul (manual implementation)
• Stencil3d (extracted from HeCBench)

• Common characteristics
• Multi-dimensional grid programming
• Heavy use of shared/local memory

• Two platforms in LLNL
• NVIDIA H100
• AMD MI300A

Evaluation

16LLNL-PRES-2015184

Evaluation

17LLNL-PRES-2015184

• Make sure the compiler can
determine the correct address space
in the user code

• addrspace(3) in nvidia and amdgpu

• This is problematic:

Lessons learned from the implementation

void *omp_get_dyn_groupprivate_ptr(...) {
 return (!RT.was_fallback) ? RT.shmem_ptr
 : RT.fallback_glb_ptr;
}

addrspace(3) vs. addrspace(1) at runtime => generic addrspace(0)

Price of generic load/stores

18LLNL-PRES-2015184

• Make sure to forward shared memory pointer alignment to user code
• e.g., 16-byte alignment in nvidia

Lessons learned from the implementation

Loads/stores of 64 bits instead of 128 bits

19LLNL-PRES-2015184

Fortran

• AMD folks are working on the LLVM Flang implementation
• Krishna Chaitanya Sankisa
• Krzysztof Parzyszek
• Michael Klemm

• More results coming soon!

20LLNL-PRES-2015184

• OpenMP target provides
• Standard for acceleration with multi-vendor support
• Language portability: C, C++, Fortran, Python (prototype)
• Abstraction over complex hardware and software

• Recent and upcoming OpenMP features
• Get the same performance with native offloading APIs
• Performance portability
• Reduce porting effort

• Positive results for LLVM/OpenMP in C/C++

• Future work: full evaluation in larger applications

Conclusions

21LLNL-PRES-2015184

Thank you!
salapenades1@llnl.gov
Kevin Sala

Watch the OpenMP tech talk on YouTube!

https://www.youtube.com/watch?v=xOsoajfdIww

https://www.youtube.com/watch?v=xOsoajfdIww

Thank you for participating in LLVM Performance!

● Invite speakers to send copy of their slides
● Feedback to improve the workshop?

