ML Optimizations in Production LLVM
The Next Research Challenges

an engineers opinion
Mircea Trofin | Google

The “Trust me!” slide

e we started replacing optimization policies with RL-trained

ones, in LLVM, 1in production, for the last ~5 years
o first for size-constrained users (inline for size)
o then performance (regalloc)

e users at Google:
o Cloud infrastructure
o Largest compute consumers in the fleet (incl. search)
o Android AOSP & Toolchain
o Chrome on Android
o Fuchsia
o Wearables

e common infrastructure in LLVM main tree
o embedding / using ML models

data extraction

training corpus extraction

O
O
o regression testing build bot
O

RL Training

state

reward

—>| agent

action

environment

RL Training for compilers

features

reward

Algo —>| NN

Compiler +

IR

optimization

inference time

features

Y

NN (fixed)

Compiler +
IR

optimization

What this presentation is

my personal, practitioner opinions
..also, a collaboration*! pitch:

"When we started applying ML in our production clang compiler we didn't
really know what the big obstacles will be.
I think we found some interesting problems that, hopefully, will interest the
research community”

[*] direct or 1indirect, as long as it’s in github.com/Llvm/LLvm-project, we can all benefit!

http://github.com/llvm/llvm-project

Plan

® context
e what (wetiiné) we learned
e the next problems

LLVM @ Google

we use LLVM at Google for all critical code

immediately-updated, read-only internal fork
o validated common compiler update every few weeks

one toolchain for all datacenter binaries
trained policies are embedded in this build

Chrome, Android, Fuchsia have similar toolchain
deployments, respectively.

Assume “datacenter” for context in this talk

What's a datacenter application?

e a bunch of thread pools
e each thread executes an infinite loop pulling from message

queues
e working on some memory shared between them.

while (read next message) {

result = process message(); <- this is what LLVM optimizes
enqueue result out;

What do they SpBﬂd their time domg? (...on average...)

e waiting on cache
o either kind

=> IPC s low (~1)

e neither data nor dinstructions fit in any cache
e our profiles are kinda flat
e Tloops aren’t that hot

o 1f they were, you’re doing data processing wrong: you should shard
and parallelize.

But do compilers even matter for datacenter performance?

systems design / architecture has a bigger impact

«.but the compiler has 1its plaie

0.x% is a nice performance improvement!

the fleet size makes

0.5% speed “YOU'RE WRONG! sub-percentage improvements
improvement It adds up to very impactful ($$)
is too little. HUGE GAINS! /

77 o They reduce the operational
cost
o They compound

& 05%
// FASTER

Our main performance optimization tools

e PGO of any kind (e.g.

instrumented or sampled)
o FYI, performance results without some
sort of PGO mean little (to us)

e “IPO” encompasses ThinLTO,
inlining, ICP, etc
e “block layout” == Bolt/Propeller

e most of all other opts fall 1n
percent/sub-percent improvement
ranges (each)

a binary

Size (bytes, log scale)

105 4

104 1

103 A

102 4

101 A

100 4

47K modules
1.4M functions ..but only ~8% of .text

_i

s executed at steady state

Scatter Plot of Size (log scale) with Dot Size (bytes) showing Hotness(self), percentage total cycles

¢ ce

Hotness(self)
e 0.0
0.8
1.6
24
3:2
4.0

some statistics about compiling that binary

Live Range Count (log)
4

Post-thinlink inliner stats

@ log nr functions log nr inlinable calls

Key points about our problem domain

(11 7 2
J

e the scale 1is inseparable from the problem
o 1in fact, 1it’s part of why we are interested in ML

solve a specific, tractable, pertinent (i.e. comparable
scale) customer problem first, then move to additional
problems

e baseline is SoTA (PGO + ThinLTO)

So why are we doing this ML thing?

automated, periodic, repeatable discovery / improvement of
optimization policies for large optimization problems

how generalizable? ~fleet*-lLevel (i.e. not a goal to be “perfect”. just good enough)

“corpspeak for “binaries we care about”

Where we thought the problem(s) were

features

reward

Y

Algo > NN

Compiler +

IR

optimization

Where the problem is

features

reward

Algo = NN

Compiler +

IR

optimization

Why?

e ML techniques are very data hungry (low “sampling
complexity”)

e “run benchmarks” is not the answer
o micro- look nothing like our targets
o macro- take hours to run and handle noise; require hardware isolation

so what then?

The ML/AI folks tell us they can train with very, very
and noisy, data points

fWe can estimate sufficiently well the performance impact ofi
: a policy without running code |

__

..but before we continue - other things we learned

e 1is Neural Network incomprehensibility a problem?
o No

e what about <my favourite optimization>?
o having a solid reward 1is a prerequisite

e but.. AT!

o to be clear - “AI as compiler” 1is nowhere in this (pragmatic) scope
o maybe AI can help solve the reward problem

ok, more about Al

e we do investigate AI as a possible policy generator
o see Hongzheng Chen, @C4ML, tomorrow
o still RL-like
o AI doesn’t appear to meaningfully change the sampling complexity
problem

What do we want?

not a particularly new nor earth-shattering idea, ..but.. that pesky
scale..

want a fast” rank-preserving latency evaluator

*faster than running

A note on reward hacking

evaluator vs. empirical
== evaluator == empirical

15
1.0

05

evaluator

0.0

-0.5

This s
exactly what
RL will find!

bad evaluator vs. empirica!

Gb

aluator == empirical

bad evaluator
dy o

What we tried and what we learned

RegAllocScore.cpp

11lvm/1ib/CodeGen/RegAllocScore.cpp

e for regalloc

e “avoid fills (loads.. refills..) in hot blocks”
o stack -> reg

e spills also.. but maybe to a lesser extent
o reg —-> stack

*
Sum(BBfreq BBf-ill&sp'ill cost)

e TL;DR; didn’t work too well

o for out-of-order CPUs.
o 1like the ones we have and love

2 observations

.well, besides the obvious “maybe the BB latency
model 1is too naive”

1: Lots of problems in PGO

Open challenge: can we accurately estimate the change 1in
#retired instructions per RPC handler when changing
optimization policies

including IPO (inlining, ICP..)

IPO is the elephant in the room

e inlining (for example) confounds/dilutes profile info

e multi-module build and ThinLTO make it even worse (function
entry counts don’t update across distributed compilations)

e the profile of callees differs depending on callers

@)

(@)
(@)
(@)

and caller’s callers..

specifically, all the way to a root

main is not the root, request handler 1s
work handlers called by worker threads are

e instrumented contextual profiling [REC][video][slides]

(@)

(@)
(@)
(@)

plus the Sampling-Based one from Meta

.but sampling-based is a bit loose with back-propagation
instrumentation gives us tight back-propagation control
comes with a “workflow - oriented” ThinLTO feature

https://discourse.llvm.org/t/rfc-contextual-profile-instrumentation-for-event-driven-scenarios/78447
https://www.youtube.com/live/jwkcmS52btI
https://llvm.org/devmtg/2024-04/slides/TechnicalTalks/Trofin-ContextualInstrumented-Based%20ProfilingforDatacenter.pdf
https://llvm.org/devmtg/2024-04/slides/TechnicalTalks/He-Yu-Wang-Oh-RevampingSamplingBasedPGO.pdf

so we done, right?

new problems:

e profile propagation
e 1inter-procedural graph is not fixed

o pretty deep rathole, won’t cover here
o e.g. libc calls (mem*) get synthesized at
various stages (incl. late)

Passes work with profile information of poor quality

e even with instrumented FDO
e even with re-instrumenting after IPO (“CSFDO”)

e 1it’s because we are sloppy
o 1if dit’s not tested it will regress (entropy)
o “but my pass doesn’t use profiles” => yes but if it changes the CFG
you just made it all worse for everybody after
o “but BFI/BPI fixes it” => not unless you believe you can create
information after you lost it (hint: not in this Universe)

e this hurts 2 ways:
o the reward

o optimization: ML will find opportunities across many lukewarm blocks
(so if the profile “lies”, the opportunity disappears.. or flips)

The Profcheck Effort

e RFC - fix profile propagation, treat it like a functional
regression
e we’re on it!

https://discourse.llvm.org/t/rfc-profile-information-propagation-unittesting/73595

so we done, right?

Remaining big profile propagation problems (examples)

e currently just presence of profile

e hard problem: value propagation.
o some directions in research collaboration (w. Prof D’Elia’s group,
Sapienza University, Rome)
o also, Elisa Frolich’s OOPSLA paper)

e handling stuff like this:

sx1 = a && b $x1 = a && b
°%?2 = 2x1 && C br i1 %x1, label %yl, .., !prof?
y1
1 < | |
br 11 %x2, .. !'prof !l 02 = °x1 && C

https://homepages.dcc.ufmg.br/~fernando/publications/papers/FrohlichOOPSLA26.pdf

2: Traces FTW!

Open Challenge: can we closely approximate instruction
traces from profiles, one-off traces, and any static info?

Basic Block thinking isn't sufficient

our model ignored real instruction sequences
CPU pipelines are longer than a basic block
..and we didn’t even worry yet about caches
enter MCAD / MCA Daemon
key insights:
o look at traces instead of CFG
o since we care about differences, absolute latency prediction is less
important (mcad used 1llvm-mca)
m Errors/limitations actually, may cancel out
m E.g. for regalloc - cache misses.
e Trace Synthesis

o the evaluator can’t require re-collecting a trace
o maybe we can synthesize them

https://llvm.org/devmtg/2022-05/slides/2022EuroLLVM-MCA-Deamon.pdf

It works... for regalloc

e Aiden Grossman @EuroLLVM 2025 [video][slides]
o update at LLVM @ ML 2025 [slides]

¢ Instruction trace -> basic block™ trace

o then re-fill the basic block trace with 1instructions after regalloc
changes

“rather, segments of instructions between consecutively-ocurring branches. Including
call/ret

https://youtu.be/skYsIZO2Vyg?si=PY0l9hF9osMoLFfk
https://llvm.org/devmtg/2025-04/slides/quick_talk/grossman_accurate_runtime.pdf
https://docs.google.com/presentation/d/1CxpENxH7-CNrgfrs7vPPKaStp8TXu_aEij6aMsDclqo/edit?usp=drive_link

Pseudo-asm A Trace Derived BB-trace | Post-regalloc Synthesized
asm trace
/7 £1() insl segmentl.1l £1 () insl
fl entry: ins2 fl entry: ins2
insl call £2() insl movel
ins2 ' segmentl.2 ins2 call £2()
IEETIEI() movel '
test test call £2()
cond br b2 cond br b2 test test
b3: - cond br b2 cond br b2
~ insd4 b3:
b2: ~ ins4
- ins5 b2:
f2 entry

£2 ()
f2 entry:

But...

e even for regalloc, subsequent optimizations change the
CFG

o we disabled them for training.. hoping improvements are resilient to
re-enabling them
o “hope” 1is not a long-term solution

Some ways to get past CFG mutation limitations

e can we synthesize plausible traces given profile + asm
(1.e. at AsmPrint stage)

e can we estimate latency at an earlier representation
(1.e. say after some function pass. Or after IPO), given
whatever one-off 1info (baseline traces, diff in codegen)

e (ideally) can we collect full paths?

o the scale 1is the challenge
e can we use inputgen?

https://arxiv.org/abs/2406.08843

In summary

e Main problem: rank-preserving predictor for PGO compiled
large binaries with flat profiles

e translates 1into:

o better profiling
o better profile propagation
o path (or trace) prediction

solutions here are also “good for the compiler”, independent
of ML

and so then we're done, right?

caches? (any and all of them)
some initial work [slides]

.far from done

https://docs.google.com/presentation/d/1LKAYh8WQjXYx24Su75JOgbm4jtW4OF7_Yu3oxrQvwGU/edit?usp=drive_link

But we don’t have datacenter examples!

e fleetbench as an approximation
e clang 1is actually pretty representative
e explicit recommendation against SPEC

e and please remember:
o With (Thin)LTO

https://github.com/google/fleetbench

The case for contributing to LLVM main branch

..aS opposed to some fork

e get engaged in a collaborative community
o create and build foundation for more new research

e Llife at tip-of-tree 1is good for you :)

o LLVM is actively evolving: use the latest tech

o no point in working off what was there 2 years ago
e empirical validation

o on production workloads
o stronger research results
o remember - users keep us honest!

e case and point: IR2Vec [REC] is now part of mainstream
LLVM

https://discourse.llvm.org/t/rfc-enhancing-mlgo-inlining-with-ir2vec-embeddings/86250

Where to find us

https://discourse.llvm.org/tag/mlgo

Monthly (if agenda) meeting (see above)

LLVM @ ML Workshop @LLVM Dev Meeting

https://discourse.llvm.org/tag/mlgo

