
ML Optimizations in Production LLVM
The Next Research Challenges

an engineer’s opinion
Mircea Trofin | Google

The “Trust me!” slide

● we started replacing optimization policies with RL-trained
ones, in LLVM, in production, for the last ~5 years

○ first for size-constrained users (inline for size)
○ then performance (regalloc)

● users at Google:
○ Cloud infrastructure
○ Largest compute consumers in the fleet (incl. search)
○ Android AOSP & Toolchain
○ Chrome on Android
○ Fuchsia
○ Wearables

● common infrastructure in LLVM main tree
○ embedding / using ML models
○ data extraction
○ training corpus extraction
○ regression testing build bot
○ ...

RL Training

agent

environment

ac
ti

on

re
wa

rd

st
at

e

RL Training for compilers

Algo

Compiler +
IR

op
ti

mi
za

ti
on

re
wa

rd

fe
at

ur
es

NN

inference time

Compiler +
IR

op
ti

mi
za

ti
on

fe
at

ur
es

NN(fixed)

What this presentation is

my personal, practitioner opinions

…also, a collaboration[*] pitch:

“When we started applying ML in our production clang compiler we didn’t
really know what the big obstacles will be.

I think we found some interesting problems that, hopefully, will interest the
research community”

[*] direct or indirect, as long as it’s in github.com/llvm/llvm-project, we can all benefit!

http://github.com/llvm/llvm-project

Plan

● context
● what (we think) we learned
● the next problems

LLVM @ Google

● we use LLVM at Google for all critical code
● immediately-updated, read-only internal fork

○ validated common compiler update every few weeks

● one toolchain for all datacenter binaries
● trained policies are embedded in this build

● Chrome, Android, Fuchsia have similar toolchain
deployments, respectively.

Assume “datacenter” for context in this talk

What’s a datacenter application?

● a bunch of thread pools
● each thread executes an infinite loop pulling from message

queues
● working on some memory shared between them.

while (read next message) {

 result = process_message(); <- this is what LLVM optimizes
 enqueue result out;

}

What do they spend their time doing? (...on average…)

● waiting on cache
○ either kind

=> IPC is low (~1)

● neither data nor instructions fit in any cache
● our profiles are kinda flat
● loops aren’t that hot

○ if they were, you’re doing data processing wrong: you should shard
and parallelize.

But do compilers even matter for datacenter performance?

systems design / architecture has a bigger impact

…but the compiler has its place

0.x% is a nice performance improvement!
the fleet size makes
sub-percentage improvements
very impactful ($$)

○ They reduce the operational
cost

○ They compound

Our main performance optimization tools
● PGO of any kind (e.g.

instrumented or sampled)
○ FYI, performance results without some

sort of PGO mean little (to us)

● “IPO” encompasses ThinLTO,
inlining, ICP, etc

● “block layout” == Bolt/Propeller

● most of all other opts fall in
percent/sub-percent improvement
ranges (each)

a binary
● 47K modules
● 1.4M functions …but only ~8% of .text

is executed at steady state

some statistics about compiling that binary

Key points about our problem domain

“solve something small, then scale”

● the scale is inseparable from the problem
○ in fact, it’s part of why we are interested in ML

solve a specific, tractable, pertinent (i.e. comparable
scale) customer problem first, then move to additional
problems

● baseline is SoTA (PGO + ThinLTO)

So why are we doing this ML thing?

automated, periodic, repeatable discovery / improvement of
optimization policies for large optimization problems

how generalizable? ~fleet*-level (i.e. not a goal to be “perfect”. just good enough)

*corpspeak for “binaries we care about”

Where we thought the problem(s) were

Algo

Compiler +
IR

op
ti

mi
za

ti
on

re
wa

rd

fe
at

ur
es

NN

Where the problem is

Algo

Compiler +
IR

op
ti

mi
za

ti
on

re
wa

rd

fe
at

ur
es

NN

Why?

● ML techniques are very data hungry (low “sampling
complexity”)

● “run benchmarks” is not the answer
○ micro- look nothing like our targets
○ macro- take hours to run and handle noise; require hardware isolation

so what then?

The ML/AI folks tell us they can train with very, very few,
and noisy, data points

-or-

We can estimate sufficiently well the performance impact of
a policy without running code

…but before we continue - other things we learned

● is Neural Network incomprehensibility a problem?
○ No

● what about <my favourite optimization>?
○ having a solid reward is a prerequisite

● but… AI!
○ to be clear - “AI as compiler” is nowhere in this (pragmatic) scope
○ maybe AI can help solve the reward problem

ok, more about AI

● we do investigate AI as a possible policy generator
○ see Hongzheng Chen, @C4ML, tomorrow
○ still RL-like
○ AI doesn’t appear to meaningfully change the sampling complexity

problem

What do we want?
not a particularly new nor earth-shattering idea, …but… that pesky

scale…

want a fast* rank-preserving latency evaluator

*faster than running

A note on reward hacking
This is

exactly what
RL will find!

What we tried and what we learned

RegAllocScore.cpp

llvm/lib/CodeGen/RegAllocScore.cpp

● for regalloc
● “avoid fills (loads… refills…) in hot blocks”

○ stack -> reg
● spills also… but maybe to a lesser extent

○ reg -> stack

sum(BBfreq * BBfill&spill cost)

● TL;DR; didn’t work too well
○ for out-of-order CPUs.
○ like the ones we have and love

2 observations

…well, besides the obvious “maybe the BB latency
model is too naive”

1: Lots of problems in PGO

Open challenge: can we accurately estimate the change in
#retired instructions per RPC handler when changing

optimization policies

including IPO (inlining, ICP…)

IPO is the elephant in the room

● inlining (for example) confounds/dilutes profile info
● multi-module build and ThinLTO make it even worse (function

entry counts don’t update across distributed compilations)
● the profile of callees differs depending on callers

○ and caller’s callers…
○ specifically, all the way to a root
○ main is not the root, request handler is
○ work handlers called by worker threads are

● instrumented contextual profiling [RFC][video][slides]
○ plus the Sampling-Based one from Meta
○ …but sampling-based is a bit loose with back-propagation
○ instrumentation gives us tight back-propagation control
○ comes with a “workflow - oriented” ThinLTO feature

https://discourse.llvm.org/t/rfc-contextual-profile-instrumentation-for-event-driven-scenarios/78447
https://www.youtube.com/live/jwkcmS52btI
https://llvm.org/devmtg/2024-04/slides/TechnicalTalks/Trofin-ContextualInstrumented-Based%20ProfilingforDatacenter.pdf
https://llvm.org/devmtg/2024-04/slides/TechnicalTalks/He-Yu-Wang-Oh-RevampingSamplingBasedPGO.pdf

so we done, right?

new problems:

● profile propagation
● inter-procedural graph is not fixed

○ pretty deep rathole, won’t cover here
○ e.g. libc calls (mem*) get synthesized at

various stages (incl. late)

Passes work with profile information of poor quality

● even with instrumented FDO
● even with re-instrumenting after IPO (“CSFDO”)
● it’s because we are sloppy

○ if it’s not tested it will regress (entropy)
○ “but my pass doesn’t use profiles” => yes but if it changes the CFG

you just made it all worse for everybody after
○ “but BFI/BPI fixes it” => not unless you believe you can create

information after you lost it (hint: not in this Universe)

● this hurts 2 ways:
○ the reward
○ optimization: ML will find opportunities across many lukewarm blocks

(so if the profile “lies”, the opportunity disappears… or flips)

The Profcheck Effort

● RFC - fix profile propagation, treat it like a functional
regression

● we’re on it!

https://discourse.llvm.org/t/rfc-profile-information-propagation-unittesting/73595

so we done, right?

Remaining big profile propagation problems (examples)

● currently just presence of profile
● hard problem: value propagation.

○ some directions in research collaboration (w. Prof D’Elia’s group,
Sapienza University, Rome)

○ also, Elisa Frölich’s OOPSLA paper)

● handling stuff like this:

%x1 = a && b

%x2 = %x1 && c

br i1 %x2, … !prof !1

%x1 = a && b

br i1 %x1, label %y1, .., !prof?
y1:
 %x2 = %x1 && c
 …

https://homepages.dcc.ufmg.br/~fernando/publications/papers/FrohlichOOPSLA26.pdf

2: Traces FTW!

Open Challenge: can we closely approximate instruction
traces from profiles, one-off traces, and any static info?

Basic Block thinking isn’t sufficient

● our model ignored real instruction sequences
● CPU pipelines are longer than a basic block
● …and we didn’t even worry yet about caches
● enter MCAD / MCA Daemon
● key insights:

○ look at traces instead of CFG
○ since we care about differences, absolute latency prediction is less

important (mcad used llvm-mca)
■ Errors/limitations actually, may cancel out
■ E.g. for regalloc - cache misses.

● Trace Synthesis
○ the evaluator can’t require re-collecting a trace
○ maybe we can synthesize them

https://llvm.org/devmtg/2022-05/slides/2022EuroLLVM-MCA-Deamon.pdf

It works… for regalloc

● Aiden Grossman @EuroLLVM 2025 [video][slides]
○ update at LLVM 🩷 ML 2025 [slides]

● Instruction trace -> basic block* trace
○ then re-fill the basic block trace with instructions after regalloc

changes

*rather, segments of instructions between consecutively-ocurring branches. Including
call/ret

https://youtu.be/skYsIZO2Vyg?si=PY0l9hF9osMoLFfk
https://llvm.org/devmtg/2025-04/slides/quick_talk/grossman_accurate_runtime.pdf
https://docs.google.com/presentation/d/1CxpENxH7-CNrgfrs7vPPKaStp8TXu_aEij6aMsDclqo/edit?usp=drive_link

Pseudo-asm A Trace Derived BB-trace Post-regalloc
asm

Synthesized
trace

// f1()
f1_entry:
 ins1
 ins2
 call f2()
 test
 cond br b2
b3:
 ins4
b2:
 ins5

// f2()
f2_entry:
 ins3
 ret

ins1
ins2
call f2()
ins3
ret
test
cond br b2
ins5

segment1.1
segment2
segment1.2
segment3

f1()
f1_entry:
 ins1
 ins2
 move1
 call f2()
 test
 cond br b2
b3:
 ins4
b2:
 ins5
 move2

f2()
f2_entry:
 ins3
 ret

ins1
ins2
move1
call f2()
ins3
ret
test
cond br b2
ins5
move2

But…

● even for regalloc, subsequent optimizations change the
CFG

○ we disabled them for training… hoping improvements are resilient to
re-enabling them

○ “hope” is not a long-term solution

Some ways to get past CFG mutation limitations

● can we synthesize plausible traces given profile + asm
(i.e. at AsmPrint stage)

● can we estimate latency at an earlier representation
(i.e. say after some function pass. Or after IPO), given
whatever one-off info (baseline traces, diff in codegen)

● (ideally) can we collect full paths?
○ the scale is the challenge

● can we use inputgen?

https://arxiv.org/abs/2406.08843

In summary

● Main problem: rank-preserving predictor for PGO compiled
large binaries with flat profiles

● translates into:
○ better profiling
○ better profile propagation
○ path (or trace) prediction

solutions here are also “good for the compiler”, independent
of ML

and so then we’re done, right?

caches? (any and all of them)

some initial work [slides]

…far from done

https://docs.google.com/presentation/d/1LKAYh8WQjXYx24Su75JOgbm4jtW4OF7_Yu3oxrQvwGU/edit?usp=drive_link

But we don’t have datacenter examples!

● fleetbench as an approximation
● clang is actually pretty representative
● explicit recommendation against SPEC

● and please remember:
○ With (Thin)LTO
○ With PGO.

https://github.com/google/fleetbench

The case for contributing to LLVM main branch
…as opposed to some fork

● get engaged in a collaborative community
○ create and build foundation for more new research

● life at tip-of-tree is good for you :)
○ LLVM is actively evolving: use the latest tech
○ no point in working off what was there 2 years ago

● empirical validation
○ on production workloads
○ stronger research results
○ remember - users keep us honest!

● case and point: IR2Vec [RFC] is now part of mainstream
LLVM

https://discourse.llvm.org/t/rfc-enhancing-mlgo-inlining-with-ir2vec-embeddings/86250

Where to find us

https://discourse.llvm.org/tag/mlgo

Monthly (if agenda) meeting (see above)

LLVM 🩷 ML Workshop @LLVM Dev Meeting

https://discourse.llvm.org/tag/mlgo

