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Background: Sunway Architecture

Processor Family

• Sunway SW3231 
• WX-H8000 processors

Vector Instruction Set Status

Standard SIMD (Expected)

256-bit Register (8 x float)

f32 f32 f32 f32 f32 f32 f32 f32

Sunway Architecture

256-bit Register (4 x float/double)

64-bit Slot 64-bit Slot 64-bit Slot 64-bit Slot

Effective SIMD Width = 4 (not 8)

Implication

Requires explicit "Vector Factor" correction in LLVM to prevent 
over-vectorization errors.

• SIMD Limitation: ISD::{ADD, SUB} are only legal 
for v8i32. Sub-word Handling: i8/i16 require 
manual extload + truncstore.

• Memory vs. Register: FP32 occupies 64-bit in 
registers but 32-bit in memory.

Auto-vectorization on this arch basically does 
not exist before our work. 



Background: SPEC CPU 2017

Industry Standard: The definitive benchmark suite 
for measuring computation-intensive integer and 
floating-point performance.

Evaluation Mode: "Speed" mode to measure 
execution time, utilizing parallel processing 
capabilities.

Experimental Configurations

Base Config
-O2 Optimization 
Level

Peak Config
-O3 + LTO (Link Time 
Optimization)

Parallel Config
-O3 + LTO + OpenMP (64 
Threads)



Technique 1: Vectorized ExtLoad & TruncStore

Solution to SIMD Type Conversion

• Goal: To avoid scalarization
• which means: 
    load scalar + insertelement

• CUSTOMized Lowering for LOAD & STORE

For ISD::LOAD

• splat load ISD::LOAD + ISD::SPLAT_VECTOR
• shuffle   (special) ISD::VECTOR_SHUFFLE

For ISD::STORE

• shuffle (special) ISD::VECTOR_SHUFFLE
• shift     ISD::SRL
• extract ISD::EXTRACT_VECTOR_ELT



Case Study 1: 625.x264 & 638.imagick

The Bottleneck

Mismatch: Kernels operate on byte-oriented memory (i8) 
but compute with wider types (i32).

Consequence: LLVM default behavior scalarizes these 
loops, preventing SIMD vectorization entirely.

Applied Technique
Technique 1: Customized Vectorized 
Load/Store

Load: Splat + Extract (i8 → i32)
Store: Shuffle + Shift + Extract (i32 → 
i8)

Performance Results (WX-H8000)

Improvement over baseline

• Still profitable w/ 1/4 register width utilized!
• Must NOT use scalar load & insert/extract



Technique 2: VF 
Calculation fixup

Observation

In Sunway architecture, vector registers allocate a full 64-
bit slot for every floating-point element, whether it is 
single-precision (float) or double-precision.

The Issue

SLV infers Vectorization Factor (VF) from memory bit-width 
(DataLayout). For 32-bit floats, it assumes VF=8 (256/32), 
leading to "over-vectorization" incompatible with hardware.

The Fix

Extended TargetTransformInfo (TTI) with a new method 
getTypeWidthInReg. For Sunway, this returns 64 bits for all FP 
types.

VF Calculation Logic 
Comparison

Default LLVM Logic Incorrect

Check DataLayout (Memory Width)

Float size = 32 bits

VF = 256 / 32 = 8 (Too Wide)

Sunway-Optimized 
Logic

Correct

Call getTypeWidthInReg()

Register Slot = 64 bits

VF = 256 / 64 = 4 (Hardware Native)

This prevents generation of invalid vector code and fallback to scalar 
execution.



Technique 3: Loop-Carried 
Partial Redundancy 
Elimination

Problem: Invariant Pointers

In benchmarks like 602.gcc, pointer dereferences often remain 
invariant along specific execution paths across loop iterations. 
Standard optimization passes fail to catch these partial 
redundancies.

Transformation Strategy

We hoist the load instruction to the loop header using a PHI 
node. This effectively caches the value, removing redundant 
memory accesses on the "else" paths of subsequent iterations.

Analysis Methodology

• Canonical loop detection

• Dominance & Post-Dominance checks

• PHI node reconstruction

Optimization Logic



Technique 4: Fortran 
Argument Constant 
Propagation

The Challenge

Fortran passes arguments by reference. Standard 
LLVM SCCP is intraprocedural and cannot track 
constants across function boundaries, blocking 
optimization.

Our Solution

A custom Interprocedural Pass (inspire from GCC): 
1. Identify constant arguments at call sites. 2. Clone 
the callee function. 3. Replace memory loads with 
constant values in the clone. 4. Iterate deeply along 
nested call chains.

Optimization Logic

STEP 1: DETECTION

Call Site main.f

call solve(N=50)

Passed by Ref (Ptr)

New Pass

STEP 2: CLONING & PROPAGATING

Cloned Function solve_const_50

// Inside Clone

// load r1, *N -> Replaced

val = 50 (Constant)

Synergy Effect

Combines with Inlining

Result: Loop bounds become constants



Case Study 2: 621.wrf & 603.bwaves

621.wrf Technique 2: VF Correction

Problem: LLVM incorrectly calculated Vectorization Factor (VF=8 
for float) due to memory width.
Solution: Corrected VF to 4 based on register width (64-bit 
lanes).

603.bwaves Technique 4: Constant Propagation

Problem: Fortran pass-by-reference blocked constant 
propagation across calls.

Solution: Interprocedural constant propagation via cloning.

Impact: Enabled deeper loop unrolling and better 
vectorization opportunities.

Performance Gains (WX-H8000)

Improvement over baseline across configurations



Lessons Learned

Architecture-Aware Vectorization is 
Essential
Standard LLVM logic often fails on specialized architectures. 
Custom instruction patterns (like our customized load/store) are 
critical for unlocking SIMD potential.

Accurate TTI Prevents Performance 
Regression
Providing the correct register width via TargetTransformInfo (TTI) is vital. 
It prevents the vectorizer from generating code that is "mathematically 
correct" but hardware-inefficient.

Redundancy Elimination Saves Memory 
Bandwidth
Loop-carried Partial Redundancy Elimination (LCPRE) effectively 
reduces memory traffic.

Interprocedural Analysis for 
Fortran

Since Fortran passes by reference, standard intra-procedural constant 
propagation is insufficient.
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