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Background: Sunway Architecture

= Processor Family

*  Sunway SW3231
«  WX-HB8000 processors

€ Vector Instruction Set Status

« SIMD Limitation: ISD::{ADD, SUB} are only legal
for v8i32. Sub-word Handling: i8/i16 require
manual extload + truncstore.

« Memory vs. Register: FP32 occupies 64-bit in
registers but 32-bit in memory.

Auto-vectorization on this arch basically does
not exist before our work.

~—— Sunway Architecture

Standard SIMD (Expected)
256-bit Register (8 x float)

32 32 32 32 32 32 32 32

N\

256-bit Register (4 x float/double)

64-bit Slot 64-bit Slot 64-bit Slot 64-bit Slot

Effective SIMD Width = 4 (not 8)

Pa

A mplication

Requires explicit "Vector Factor" correction in LLVM to prevent
over-vectorization errors.




= Background: SPEC CPU 2017

Experimental Configurations

Industry Standard: The definitive benchmark suite ¢,. Base Config
for measuring computation—intensive integer and o (o2 optimization
floating—point performance.

Peak Config
f —-03 + LTO (Link Time

Optimization)

Evaluation Mode: "Speed" mode to measure
execution time, utilizing parallel processing
capabilities.

Parallel Config

-03 + LTO + OpenMP (64
Threads)




Technique 1: Vectorized ExtLoad & TruncStore
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For ISD::LOAD

« splat load ISD::LOAD + ISD::SPLAT_VECTOR
» shuffle (special) ISD::VECTOR_SHUFFLE

VR
[oJoJo [ o]o]o]e][o]o]o[F[o]o]o[e] [o]o]oBloo]ofe][o]o]o[e]00]0]A]

l, shuffle
VR,

For ISD::STORE [o]ofoo]o[ofofo][o]o[o]o ls]F]€] [lc]e]a[o[o]o]o][o]o]o]o]o]o]o]o]

l, shift

» shuffle (special) ISD::VECTOR_SHUFFLE
 shift ISD:SRL
o extract ISD::EXTRACT_VECTOR_ELT

VR,
[o]ofoJoJofofo]o] [&]F[E[BIc]B[A] [o]oJo[o[o]oo]o][o]o]oJo]o]o]o]o]

\l/ extract

Ty
| BEEEEDN

Memo




5 Case Study 1: 625.x264 & 638.imagick

© The Bottleneck

Mismatch: Kernels operate on byte—oriented memory (i8)
but compute with wider types (i32).

Consequence: LLVM default behavior scalarizes these
loops, preventing SIMD vectorization entirely.

© Applied Technique

Technique 1: Customized Vectorized

Load/Store
> Load: Splat + Extract (i8 — i32)
5 Store: Shuffle + Shift + Extract (i32 —

i8)

« Still profitable w/ 1/4 register width utilized!
e Must NOT use scalar load & insert/extract

Performance Results (WX-H8000)

Improvement over baseline

Speedup (%)
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B 525.x264 [ 638.imagick



Technique 2: VF
Calculation fixup

VF Calculation Logic

. Comparison
5 Observation

In Sunway architecture, vector registers allocate a full 64— Default LLVM Logic ©incorrect
bit slot for every floating—point element, whether it is = Check Datalayout (Memory Width)

single—precision (float) or double—precision. L Float size (NN

VF = 256 / 32 = 8 (Too Wide)
©® The Issue

SLV infers Vectorization Factor (VF) from memory bit—width J
(DatalLayout). For 32-bit floats, it assumes VF=8 (256/32),
leading to "over—vectorization" incompatible with hardware. Sunway-Optimized @Correct
Logic
# Call getTypeWidthinReg()
N The le t. Register Slot = 64 bits
Extended TargetTransforminfo (TTI) with a new method VF = 256 / 64 = 4 (Hardware Native)
getTypeWidthinReg. For Sunway, this returns 64 bits for all FP
types.

This prevents generation of invalid vector code and fallback to scalar
execution.



Technique 3: Loop-Carried
Partial Redundancy
Elimination

@ Problem: Invariant Pointers

In benchmarks like 602.gcc, pointer dereferences often remain
invariant along specific execution paths across loop iterations.
Standard optimization passes fail to catch these partial
redundancies.

x¢ Transformation Strategy

We hoist the load instruction to the loop header using a PHI
node. This effectively caches the value, removing redundant

memory accesses on the "else" paths of subsequent iterations.

¥ Analysis Methodology

e Canonical loop detection
e Dominance & Post—-Dominance checks
¢ PHI node reconstruction

Optimization Logic

header:
p = PHI(p1, p2)

J—

if (*p)
(load)

ﬁ{

header:
p = PHI(p1, p2)
pv = PHI(pv1, pv2)

<Toi>

else:
p2=p

pv2 = pv

(not load)




Technique 4: Fortran
Argument Constant Optimization Logic
Propagation

STEP 1: DETECTION

Call Site main.f

call solve (N=50)

© The Challenge © Passed by Ref (Pir)
Fortran passes arguments by reference. Standard

LLVM SCCP is intraprocedural and cannot track @
constants across function boundaries, blocking STEP 2: CLONING & PROPAGATING

Optimization. Cloned Function solve_const_50

// Inside Clone

P OUI' SOIUtion // load rl, *N -> Replaced

val = 50 (Constant)

A custom Interprocedural Pass (inspire from GCC):
1. Identify constant arguments at call sites. 2. Clone
the callee function. 3. Replace memory loads with
constant values in the clone. 4. Iterate deeply along
nested call chains.

Synergy Effect
Combines with Inlining

Result: Loop bounds become constants




v Case Study 2: 621.wrf & 603.bwaves

621.wrf 4 Technique 2: VF Correction

Problem: LLVM incorrectly calculated Vectorization Factor (VF=8

for float) due to memory width.
Solution: Corrected VF to 4 based on register width (64—bit

lanes).

603.bwaves pp Technique 4: Constant Propagation

Problem: Fortran pass—by-reference blocked constant
propagation across calls.

Solution: Interprocedural constant propagation via cloning.

Impact: Enabled deeper loop unrolling and better
vectorization opportunities.

Performance Gains (WX-H8000)

Improvement over baseline across configurations
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B 521.wrf (VF Correction) [} 603.bwaves (Constant Prop)



@ Lessons Learned

Architecture—Aware Vectorization is Accurate TTIl Prevents Performance

B Essential E.u, Regression
Standard LLVM logic often fails on specialized architectures. Providing the correct register width via TargetTransforminfo (TTI) is vital.
Custom instruction patterns (like our customized load/store) are It prevents the vectorizer from generating code that is "mathematically
critical for unlocking SIMD potential. correct" but hardware-inefficient.

Interprocedural Analysis for
Redundancy Elimination Saves Memory S’ Fortran
« Bandwidth

Loop-carried Partial Redundancy Elimination (LCPRE) effectively
reduces memory traffic.

Since Fortran passes by reference, standard intra—procedural constant
propagation is insufficient.
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Questions?

Thank you for your
attention
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