
Practice on Optimizing SPEC CPU 2017
for Sunway Architecture
Compiler Optimizations and Performance
Analysis

January 31, 2026

Authors

Yingchi Long, Jun Jiang, Yanhe Zhai, Yaohui Han

Ying Liu, Zheng Lin, Yuyang Zhang, Zhongcheng Zhang

Jiahao Shan, Zhenchuan Chen, Xiaobing Feng, Huimin Cui

Affiliations

SKLP, ICT, UCAS

Wuxi Institute of Advanced Technology

Beijing & Wuxi, China

Agenda
Overview of today's
presentation on SPEC CPU
2017 optimization for Sunway

Background: SPEC CPU & Sunway
Architecture

Four Key Optimization
Techniques (2 vector + 2 scalar)

Interleaved Case Studies

Results Summary

Lessons Learned &
Q&A

Background: Sunway Architecture

Processor Family

• Sunway SW3231
• WX-H8000 processors

Vector Instruction Set Status

Standard SIMD (Expected)

256-bit Register (8 x float)

f32 f32 f32 f32 f32 f32 f32 f32

Sunway Architecture

256-bit Register (4 x float/double)

64-bit Slot 64-bit Slot 64-bit Slot 64-bit Slot

Effective SIMD Width = 4 (not 8)

Implication

Requires explicit "Vector Factor" correction in LLVM to prevent
over-vectorization errors.

• SIMD Limitation: ISD::{ADD, SUB} are only legal
for v8i32. Sub-word Handling: i8/i16 require
manual extload + truncstore.

• Memory vs. Register: FP32 occupies 64-bit in
registers but 32-bit in memory.

Auto-vectorization on this arch basically does
not exist before our work.

Background: SPEC CPU 2017

Industry Standard: The definitive benchmark suite
for measuring computation-intensive integer and
floating-point performance.

Evaluation Mode: "Speed" mode to measure
execution time, utilizing parallel processing
capabilities.

Experimental Configurations

Base Config
-O2 Optimization
Level

Peak Config
-O3 + LTO (Link Time
Optimization)

Parallel Config
-O3 + LTO + OpenMP (64
Threads)

Technique 1: Vectorized ExtLoad & TruncStore

Solution to SIMD Type Conversion

• Goal: To avoid scalarization
• which means:
 load scalar + insertelement

• CUSTOMized Lowering for LOAD & STORE

For ISD::LOAD

• splat load ISD::LOAD + ISD::SPLAT_VECTOR
• shuffle (special) ISD::VECTOR_SHUFFLE

For ISD::STORE

• shuffle (special) ISD::VECTOR_SHUFFLE
• shift ISD::SRL
• extract ISD::EXTRACT_VECTOR_ELT

Case Study 1: 625.x264 & 638.imagick

The Bottleneck

Mismatch: Kernels operate on byte-oriented memory (i8)
but compute with wider types (i32).

Consequence: LLVM default behavior scalarizes these
loops, preventing SIMD vectorization entirely.

Applied Technique
Technique 1: Customized Vectorized
Load/Store

Load: Splat + Extract (i8 → i32)
Store: Shuffle + Shift + Extract (i32 →
i8)

Performance Results (WX-H8000)

Improvement over baseline

• Still profitable w/ 1/4 register width utilized!
• Must NOT use scalar load & insert/extract

Technique 2: VF
Calculation fixup

Observation

In Sunway architecture, vector registers allocate a full 64-
bit slot for every floating-point element, whether it is
single-precision (float) or double-precision.

The Issue

SLV infers Vectorization Factor (VF) from memory bit-width
(DataLayout). For 32-bit floats, it assumes VF=8 (256/32),
leading to "over-vectorization" incompatible with hardware.

The Fix

Extended TargetTransformInfo (TTI) with a new method
getTypeWidthInReg. For Sunway, this returns 64 bits for all FP
types.

VF Calculation Logic
Comparison

Default LLVM Logic Incorrect

Check DataLayout (Memory Width)

Float size = 32 bits

VF = 256 / 32 = 8 (Too Wide)

Sunway-Optimized
Logic

Correct

Call getTypeWidthInReg()

Register Slot = 64 bits

VF = 256 / 64 = 4 (Hardware Native)

This prevents generation of invalid vector code and fallback to scalar
execution.

Technique 3: Loop-Carried
Partial Redundancy
Elimination

Problem: Invariant Pointers

In benchmarks like 602.gcc, pointer dereferences often remain
invariant along specific execution paths across loop iterations.
Standard optimization passes fail to catch these partial
redundancies.

Transformation Strategy

We hoist the load instruction to the loop header using a PHI
node. This effectively caches the value, removing redundant
memory accesses on the "else" paths of subsequent iterations.

Analysis Methodology

• Canonical loop detection

• Dominance & Post-Dominance checks

• PHI node reconstruction

Optimization Logic

Technique 4: Fortran
Argument Constant
Propagation

The Challenge

Fortran passes arguments by reference. Standard
LLVM SCCP is intraprocedural and cannot track
constants across function boundaries, blocking
optimization.

Our Solution

A custom Interprocedural Pass (inspire from GCC):
1. Identify constant arguments at call sites. 2. Clone
the callee function. 3. Replace memory loads with
constant values in the clone. 4. Iterate deeply along
nested call chains.

Optimization Logic

STEP 1: DETECTION

Call Site main.f

call solve(N=50)

Passed by Ref (Ptr)

New Pass

STEP 2: CLONING & PROPAGATING

Cloned Function solve_const_50

// Inside Clone

// load r1, *N -> Replaced

val = 50 (Constant)

Synergy Effect

Combines with Inlining

Result: Loop bounds become constants

Case Study 2: 621.wrf & 603.bwaves

621.wrf Technique 2: VF Correction

Problem: LLVM incorrectly calculated Vectorization Factor (VF=8
for float) due to memory width.
Solution: Corrected VF to 4 based on register width (64-bit
lanes).

603.bwaves Technique 4: Constant Propagation

Problem: Fortran pass-by-reference blocked constant
propagation across calls.

Solution: Interprocedural constant propagation via cloning.

Impact: Enabled deeper loop unrolling and better
vectorization opportunities.

Performance Gains (WX-H8000)

Improvement over baseline across configurations

Lessons Learned

Architecture-Aware Vectorization is
Essential
Standard LLVM logic often fails on specialized architectures.
Custom instruction patterns (like our customized load/store) are
critical for unlocking SIMD potential.

Accurate TTI Prevents Performance
Regression
Providing the correct register width via TargetTransformInfo (TTI) is vital.
It prevents the vectorizer from generating code that is "mathematically
correct" but hardware-inefficient.

Redundancy Elimination Saves Memory
Bandwidth
Loop-carried Partial Redundancy Elimination (LCPRE) effectively
reduces memory traffic.

Interprocedural Analysis for
Fortran

Since Fortran passes by reference, standard intra-procedural constant
propagation is insufficient.

longyingchi24s@ict.ac.cn SKLP, ICT, UCAS

Questions?
Thank you for your

attention

