LLVM 22.0.0git
AArch64RegisterBankInfo.cpp
Go to the documentation of this file.
1//===- AArch64RegisterBankInfo.cpp ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the targeting of the RegisterBankInfo class for
10/// AArch64.
11/// \todo This should be generated by TableGen.
12//===----------------------------------------------------------------------===//
13
15#include "AArch64RegisterInfo.h"
16#include "AArch64Subtarget.h"
18#include "llvm/ADT/STLExtras.h"
33#include "llvm/IR/IntrinsicsAArch64.h"
36#include <cassert>
37
38#define GET_TARGET_REGBANK_IMPL
39#include "AArch64GenRegisterBank.inc"
40
41// This file will be TableGen'ed at some point.
42#include "AArch64GenRegisterBankInfo.def"
43
44using namespace llvm;
45static const unsigned CustomMappingID = 1;
46
48 const TargetRegisterInfo &TRI) {
49 static llvm::once_flag InitializeRegisterBankFlag;
50
51 static auto InitializeRegisterBankOnce = [&]() {
52 // We have only one set of register banks, whatever the subtarget
53 // is. Therefore, the initialization of the RegBanks table should be
54 // done only once. Indeed the table of all register banks
55 // (AArch64::RegBanks) is unique in the compiler. At some point, it
56 // will get tablegen'ed and the whole constructor becomes empty.
57
58 const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID);
59 (void)RBGPR;
60 assert(&AArch64::GPRRegBank == &RBGPR &&
61 "The order in RegBanks is messed up");
62
63 const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID);
64 (void)RBFPR;
65 assert(&AArch64::FPRRegBank == &RBFPR &&
66 "The order in RegBanks is messed up");
67
68 const RegisterBank &RBCCR = getRegBank(AArch64::CCRegBankID);
69 (void)RBCCR;
70 assert(&AArch64::CCRegBank == &RBCCR &&
71 "The order in RegBanks is messed up");
72
73 // The GPR register bank is fully defined by all the registers in
74 // GR64all + its subclasses.
75 assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) &&
76 "Subclass not added?");
77 assert(getMaximumSize(RBGPR.getID()) == 128 &&
78 "GPRs should hold up to 128-bit");
79
80 // The FPR register bank is fully defined by all the registers in
81 // GR64all + its subclasses.
82 assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) &&
83 "Subclass not added?");
84 assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) &&
85 "Subclass not added?");
86 assert(getMaximumSize(RBFPR.getID()) == 512 &&
87 "FPRs should hold up to 512-bit via QQQQ sequence");
88
89 assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) &&
90 "Class not added?");
91 assert(getMaximumSize(RBCCR.getID()) == 32 &&
92 "CCR should hold up to 32-bit");
93
94 // Check that the TableGen'ed like file is in sync we our expectations.
95 // First, the Idx.
98 "PartialMappingIdx's are incorrectly ordered");
102 "PartialMappingIdx's are incorrectly ordered");
103// Now, the content.
104// Check partial mapping.
105#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB) \
106 do { \
107 assert( \
108 checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \
109 #Idx " is incorrectly initialized"); \
110 } while (false)
111
112 CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR);
113 CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR);
114 CHECK_PARTIALMAP(PMI_GPR128, 0, 128, RBGPR);
115 CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR);
116 CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR);
117 CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR);
118 CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR);
119 CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR);
120 CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR);
121
122// Check value mapping.
123#define CHECK_VALUEMAP_IMPL(RBName, Size, Offset) \
124 do { \
125 assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size, \
126 PartialMappingIdx::PMI_First##RBName, Size, \
127 Offset) && \
128 #RBName #Size " " #Offset " is incorrectly initialized"); \
129 } while (false)
130
131#define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0)
132
133 CHECK_VALUEMAP(GPR, 32);
134 CHECK_VALUEMAP(GPR, 64);
135 CHECK_VALUEMAP(GPR, 128);
136 CHECK_VALUEMAP(FPR, 16);
137 CHECK_VALUEMAP(FPR, 32);
138 CHECK_VALUEMAP(FPR, 64);
139 CHECK_VALUEMAP(FPR, 128);
140 CHECK_VALUEMAP(FPR, 256);
141 CHECK_VALUEMAP(FPR, 512);
142
143// Check the value mapping for 3-operands instructions where all the operands
144// map to the same value mapping.
145#define CHECK_VALUEMAP_3OPS(RBName, Size) \
146 do { \
147 CHECK_VALUEMAP_IMPL(RBName, Size, 0); \
148 CHECK_VALUEMAP_IMPL(RBName, Size, 1); \
149 CHECK_VALUEMAP_IMPL(RBName, Size, 2); \
150 } while (false)
151
152 CHECK_VALUEMAP_3OPS(GPR, 32);
153 CHECK_VALUEMAP_3OPS(GPR, 64);
154 CHECK_VALUEMAP_3OPS(GPR, 128);
160
161#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size) \
162 do { \
163 unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min; \
164 unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min; \
165 (void)PartialMapDstIdx; \
166 (void)PartialMapSrcIdx; \
167 const ValueMapping *Map = getCopyMapping(AArch64::RBNameDst##RegBankID, \
168 AArch64::RBNameSrc##RegBankID, \
169 TypeSize::getFixed(Size)); \
170 (void)Map; \
171 assert(Map[0].BreakDown == \
172 &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
173 Map[0].NumBreakDowns == 1 && \
174 #RBNameDst #Size " Dst is incorrectly initialized"); \
175 assert(Map[1].BreakDown == \
176 &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
177 Map[1].NumBreakDowns == 1 && \
178 #RBNameSrc #Size " Src is incorrectly initialized"); \
179 \
180 } while (false)
181
182 CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32);
184 CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64);
190
191#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize) \
192 do { \
193 unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min; \
194 unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min; \
195 (void)PartialMapDstIdx; \
196 (void)PartialMapSrcIdx; \
197 const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize); \
198 (void)Map; \
199 assert(Map[0].BreakDown == \
200 &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
201 Map[0].NumBreakDowns == 1 && "FPR" #DstSize \
202 " Dst is incorrectly initialized"); \
203 assert(Map[1].BreakDown == \
204 &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
205 Map[1].NumBreakDowns == 1 && "FPR" #SrcSize \
206 " Src is incorrectly initialized"); \
207 \
208 } while (false)
209
210 CHECK_VALUEMAP_FPEXT(32, 16);
211 CHECK_VALUEMAP_FPEXT(64, 16);
212 CHECK_VALUEMAP_FPEXT(64, 32);
213 CHECK_VALUEMAP_FPEXT(128, 64);
214
215 assert(verify(TRI) && "Invalid register bank information");
216 };
217
218 llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
219}
220
222 const RegisterBank &B,
223 const TypeSize Size) const {
224 // What do we do with different size?
225 // copy are same size.
226 // Will introduce other hooks for different size:
227 // * extract cost.
228 // * build_sequence cost.
229
230 // Copy from (resp. to) GPR to (resp. from) FPR involves FMOV.
231 // FIXME: This should be deduced from the scheduling model.
232 if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank)
233 // FMOVXDr or FMOVWSr.
234 return 5;
235 if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank)
236 // FMOVDXr or FMOVSWr.
237 return 4;
238
240}
241
242const RegisterBank &
244 LLT Ty) const {
245 switch (RC.getID()) {
246 case AArch64::GPR64sponlyRegClassID:
247 return getRegBank(AArch64::GPRRegBankID);
248 default:
250 }
251}
252
255 const MachineInstr &MI) const {
256 const MachineFunction &MF = *MI.getParent()->getParent();
257 const TargetSubtargetInfo &STI = MF.getSubtarget();
258 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
259 const MachineRegisterInfo &MRI = MF.getRegInfo();
260
261 switch (MI.getOpcode()) {
262 case TargetOpcode::G_OR: {
263 // 32 and 64-bit or can be mapped on either FPR or
264 // GPR for the same cost.
265 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
266 if (Size != 32 && Size != 64)
267 break;
268
269 // If the instruction has any implicit-defs or uses,
270 // do not mess with it.
271 if (MI.getNumOperands() != 3)
272 break;
273 InstructionMappings AltMappings;
274 const InstructionMapping &GPRMapping = getInstructionMapping(
275 /*ID*/ 1, /*Cost*/ 1, getValueMapping(PMI_FirstGPR, Size),
276 /*NumOperands*/ 3);
277 const InstructionMapping &FPRMapping = getInstructionMapping(
278 /*ID*/ 2, /*Cost*/ 1, getValueMapping(PMI_FirstFPR, Size),
279 /*NumOperands*/ 3);
280
281 AltMappings.push_back(&GPRMapping);
282 AltMappings.push_back(&FPRMapping);
283 return AltMappings;
284 }
285 case TargetOpcode::G_BITCAST: {
286 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
287 if (Size != 32 && Size != 64)
288 break;
289
290 // If the instruction has any implicit-defs or uses,
291 // do not mess with it.
292 if (MI.getNumOperands() != 2)
293 break;
294
295 InstructionMappings AltMappings;
296 const InstructionMapping &GPRMapping = getInstructionMapping(
297 /*ID*/ 1, /*Cost*/ 1,
298 getCopyMapping(AArch64::GPRRegBankID, AArch64::GPRRegBankID, Size),
299 /*NumOperands*/ 2);
300 const InstructionMapping &FPRMapping = getInstructionMapping(
301 /*ID*/ 2, /*Cost*/ 1,
302 getCopyMapping(AArch64::FPRRegBankID, AArch64::FPRRegBankID, Size),
303 /*NumOperands*/ 2);
304 const InstructionMapping &GPRToFPRMapping = getInstructionMapping(
305 /*ID*/ 3,
306 /*Cost*/
307 copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank,
309 getCopyMapping(AArch64::FPRRegBankID, AArch64::GPRRegBankID, Size),
310 /*NumOperands*/ 2);
311 const InstructionMapping &FPRToGPRMapping = getInstructionMapping(
312 /*ID*/ 3,
313 /*Cost*/
314 copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank,
316 getCopyMapping(AArch64::GPRRegBankID, AArch64::FPRRegBankID, Size),
317 /*NumOperands*/ 2);
318
319 AltMappings.push_back(&GPRMapping);
320 AltMappings.push_back(&FPRMapping);
321 AltMappings.push_back(&GPRToFPRMapping);
322 AltMappings.push_back(&FPRToGPRMapping);
323 return AltMappings;
324 }
325 case TargetOpcode::G_LOAD: {
326 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
327 if (Size != 64)
328 break;
329
330 // If the instruction has any implicit-defs or uses,
331 // do not mess with it.
332 if (MI.getNumOperands() != 2)
333 break;
334
335 InstructionMappings AltMappings;
336 const InstructionMapping &GPRMapping = getInstructionMapping(
337 /*ID*/ 1, /*Cost*/ 1,
340 // Addresses are GPR 64-bit.
342 /*NumOperands*/ 2);
343 const InstructionMapping &FPRMapping = getInstructionMapping(
344 /*ID*/ 2, /*Cost*/ 1,
347 // Addresses are GPR 64-bit.
349 /*NumOperands*/ 2);
350
351 AltMappings.push_back(&GPRMapping);
352 AltMappings.push_back(&FPRMapping);
353 return AltMappings;
354 }
355 default:
356 break;
357 }
359}
360
361void AArch64RegisterBankInfo::applyMappingImpl(
362 MachineIRBuilder &Builder, const OperandsMapper &OpdMapper) const {
363 MachineInstr &MI = OpdMapper.getMI();
364 MachineRegisterInfo &MRI = OpdMapper.getMRI();
365
366 switch (MI.getOpcode()) {
367 case TargetOpcode::G_OR:
368 case TargetOpcode::G_BITCAST:
369 case TargetOpcode::G_LOAD:
370 // Those ID must match getInstrAlternativeMappings.
371 assert((OpdMapper.getInstrMapping().getID() >= 1 &&
372 OpdMapper.getInstrMapping().getID() <= 4) &&
373 "Don't know how to handle that ID");
374 return applyDefaultMapping(OpdMapper);
375 case TargetOpcode::G_INSERT_VECTOR_ELT: {
376 // Extend smaller gpr operands to 32 bit.
377 Builder.setInsertPt(*MI.getParent(), MI.getIterator());
378 auto Ext = Builder.buildAnyExt(LLT::scalar(32), MI.getOperand(2).getReg());
379 MRI.setRegBank(Ext.getReg(0), getRegBank(AArch64::GPRRegBankID));
380 MI.getOperand(2).setReg(Ext.getReg(0));
381 return applyDefaultMapping(OpdMapper);
382 }
383 case AArch64::G_DUP: {
384 // Extend smaller gpr to 32-bits
385 assert(MRI.getType(MI.getOperand(1).getReg()).getSizeInBits() < 32 &&
386 "Expected sources smaller than 32-bits");
387 Builder.setInsertPt(*MI.getParent(), MI.getIterator());
388
389 Register ConstReg;
390 auto ConstMI = MRI.getVRegDef(MI.getOperand(1).getReg());
391 if (ConstMI->getOpcode() == TargetOpcode::G_CONSTANT) {
392 auto CstVal = ConstMI->getOperand(1).getCImm()->getValue();
393 ConstReg =
394 Builder.buildConstant(LLT::scalar(32), CstVal.sext(32)).getReg(0);
395 } else {
396 ConstReg = Builder.buildAnyExt(LLT::scalar(32), MI.getOperand(1).getReg())
397 .getReg(0);
398 }
399 MRI.setRegBank(ConstReg, getRegBank(AArch64::GPRRegBankID));
400 MI.getOperand(1).setReg(ConstReg);
401 return applyDefaultMapping(OpdMapper);
402 }
403 default:
404 llvm_unreachable("Don't know how to handle that operation");
405 }
406}
407
409AArch64RegisterBankInfo::getSameKindOfOperandsMapping(
410 const MachineInstr &MI) const {
411 const unsigned Opc = MI.getOpcode();
412 const MachineFunction &MF = *MI.getParent()->getParent();
413 const MachineRegisterInfo &MRI = MF.getRegInfo();
414
415 unsigned NumOperands = MI.getNumOperands();
416 assert(NumOperands <= 3 &&
417 "This code is for instructions with 3 or less operands");
418
419 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
420 TypeSize Size = Ty.getSizeInBits();
422
424
425#ifndef NDEBUG
426 // Make sure all the operands are using similar size and type.
427 // Should probably be checked by the machine verifier.
428 // This code won't catch cases where the number of lanes is
429 // different between the operands.
430 // If we want to go to that level of details, it is probably
431 // best to check that the types are the same, period.
432 // Currently, we just check that the register banks are the same
433 // for each types.
434 for (unsigned Idx = 1; Idx != NumOperands; ++Idx) {
435 LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg());
436 assert(
438 RBIdx, OpTy.getSizeInBits()) ==
440 "Operand has incompatible size");
441 bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
442 (void)OpIsFPR;
443 assert(IsFPR == OpIsFPR && "Operand has incompatible type");
444 }
445#endif // End NDEBUG.
446
448 getValueMapping(RBIdx, Size), NumOperands);
449}
450
451/// \returns true if a given intrinsic only uses and defines FPRs.
453 const MachineInstr &MI) {
454 // TODO: Add more intrinsics.
456 default:
457 return false;
458 case Intrinsic::aarch64_neon_uaddlv:
459 case Intrinsic::aarch64_neon_uaddv:
460 case Intrinsic::aarch64_neon_saddv:
461 case Intrinsic::aarch64_neon_umaxv:
462 case Intrinsic::aarch64_neon_smaxv:
463 case Intrinsic::aarch64_neon_uminv:
464 case Intrinsic::aarch64_neon_sminv:
465 case Intrinsic::aarch64_neon_faddv:
466 case Intrinsic::aarch64_neon_fmaxv:
467 case Intrinsic::aarch64_neon_fminv:
468 case Intrinsic::aarch64_neon_fmaxnmv:
469 case Intrinsic::aarch64_neon_fminnmv:
470 case Intrinsic::aarch64_neon_fmulx:
471 case Intrinsic::aarch64_neon_frecpe:
472 case Intrinsic::aarch64_neon_frecps:
473 case Intrinsic::aarch64_neon_frecpx:
474 case Intrinsic::aarch64_neon_frsqrte:
475 case Intrinsic::aarch64_neon_frsqrts:
476 case Intrinsic::aarch64_neon_facge:
477 case Intrinsic::aarch64_neon_facgt:
478 case Intrinsic::aarch64_neon_fabd:
479 case Intrinsic::aarch64_sisd_fabd:
480 case Intrinsic::aarch64_neon_sqrdmlah:
481 case Intrinsic::aarch64_neon_sqrdmlsh:
482 case Intrinsic::aarch64_neon_sqrdmulh:
483 case Intrinsic::aarch64_neon_sqadd:
484 case Intrinsic::aarch64_neon_sqsub:
485 case Intrinsic::aarch64_crypto_sha1h:
486 case Intrinsic::aarch64_crypto_sha1c:
487 case Intrinsic::aarch64_crypto_sha1p:
488 case Intrinsic::aarch64_crypto_sha1m:
489 case Intrinsic::aarch64_sisd_fcvtxn:
490 return true;
491 case Intrinsic::aarch64_neon_saddlv: {
492 const LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
493 return SrcTy.getElementType().getSizeInBits() >= 16 &&
494 SrcTy.getElementCount().getFixedValue() >= 4;
495 }
496 }
497}
498
499bool AArch64RegisterBankInfo::isPHIWithFPConstraints(
500 const MachineInstr &MI, const MachineRegisterInfo &MRI,
501 const AArch64RegisterInfo &TRI, const unsigned Depth) const {
502 if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
503 return false;
504
505 return any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
506 [&](const MachineInstr &UseMI) {
507 if (onlyUsesFP(UseMI, MRI, TRI, Depth + 1))
508 return true;
509 return isPHIWithFPConstraints(UseMI, MRI, TRI, Depth + 1);
510 });
511}
512
513bool AArch64RegisterBankInfo::hasFPConstraints(const MachineInstr &MI,
516 unsigned Depth) const {
517 unsigned Op = MI.getOpcode();
518 if (Op == TargetOpcode::G_INTRINSIC && isFPIntrinsic(MRI, MI))
519 return true;
520
521 // Do we have an explicit floating point instruction?
523 return true;
524
525 // No. Check if we have a copy-like instruction. If we do, then we could
526 // still be fed by floating point instructions.
527 if (Op != TargetOpcode::COPY && !MI.isPHI() &&
529 return false;
530
531 // Check if we already know the register bank.
532 auto *RB = getRegBank(MI.getOperand(0).getReg(), MRI, TRI);
533 if (RB == &AArch64::FPRRegBank)
534 return true;
535 if (RB == &AArch64::GPRRegBank)
536 return false;
537
538 // We don't know anything.
539 //
540 // If we have a phi, we may be able to infer that it will be assigned a FPR
541 // based off of its inputs.
542 if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
543 return false;
544
545 return any_of(MI.explicit_uses(), [&](const MachineOperand &Op) {
546 return Op.isReg() &&
547 onlyDefinesFP(*MRI.getVRegDef(Op.getReg()), MRI, TRI, Depth + 1);
548 });
549}
550
551bool AArch64RegisterBankInfo::onlyUsesFP(const MachineInstr &MI,
554 unsigned Depth) const {
555 switch (MI.getOpcode()) {
556 case TargetOpcode::G_FPTOSI:
557 case TargetOpcode::G_FPTOUI:
558 case TargetOpcode::G_FPTOSI_SAT:
559 case TargetOpcode::G_FPTOUI_SAT:
560 case TargetOpcode::G_FCMP:
561 case TargetOpcode::G_LROUND:
562 case TargetOpcode::G_LLROUND:
563 case AArch64::G_PMULL:
564 return true;
565 case TargetOpcode::G_INTRINSIC:
567 case Intrinsic::aarch64_neon_fcvtas:
568 case Intrinsic::aarch64_neon_fcvtau:
569 case Intrinsic::aarch64_neon_fcvtzs:
570 case Intrinsic::aarch64_neon_fcvtzu:
571 case Intrinsic::aarch64_neon_fcvtms:
572 case Intrinsic::aarch64_neon_fcvtmu:
573 case Intrinsic::aarch64_neon_fcvtns:
574 case Intrinsic::aarch64_neon_fcvtnu:
575 case Intrinsic::aarch64_neon_fcvtps:
576 case Intrinsic::aarch64_neon_fcvtpu:
577 return true;
578 default:
579 break;
580 }
581 break;
582 default:
583 break;
584 }
585 return hasFPConstraints(MI, MRI, TRI, Depth);
586}
587
588bool AArch64RegisterBankInfo::onlyDefinesFP(const MachineInstr &MI,
591 unsigned Depth) const {
592 switch (MI.getOpcode()) {
593 case AArch64::G_DUP:
594 case AArch64::G_SADDLP:
595 case AArch64::G_UADDLP:
596 case TargetOpcode::G_SITOFP:
597 case TargetOpcode::G_UITOFP:
598 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
599 case TargetOpcode::G_INSERT_VECTOR_ELT:
600 case TargetOpcode::G_BUILD_VECTOR:
601 case TargetOpcode::G_BUILD_VECTOR_TRUNC:
602 return true;
603 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
605 case Intrinsic::aarch64_neon_ld1x2:
606 case Intrinsic::aarch64_neon_ld1x3:
607 case Intrinsic::aarch64_neon_ld1x4:
608 case Intrinsic::aarch64_neon_ld2:
609 case Intrinsic::aarch64_neon_ld2lane:
610 case Intrinsic::aarch64_neon_ld2r:
611 case Intrinsic::aarch64_neon_ld3:
612 case Intrinsic::aarch64_neon_ld3lane:
613 case Intrinsic::aarch64_neon_ld3r:
614 case Intrinsic::aarch64_neon_ld4:
615 case Intrinsic::aarch64_neon_ld4lane:
616 case Intrinsic::aarch64_neon_ld4r:
617 return true;
618 default:
619 break;
620 }
621 break;
622 default:
623 break;
624 }
625 return hasFPConstraints(MI, MRI, TRI, Depth);
626}
627
628bool AArch64RegisterBankInfo::prefersFPUse(const MachineInstr &MI,
631 unsigned Depth) const {
632 switch (MI.getOpcode()) {
633 case TargetOpcode::G_SITOFP:
634 case TargetOpcode::G_UITOFP:
635 return MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() ==
636 MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
637 }
638 return onlyDefinesFP(MI, MRI, TRI, Depth);
639}
640
641bool AArch64RegisterBankInfo::isLoadFromFPType(const MachineInstr &MI) const {
642 // GMemOperation because we also want to match indexed loads.
643 auto *MemOp = cast<GMemOperation>(&MI);
644 const Value *LdVal = MemOp->getMMO().getValue();
645 if (!LdVal)
646 return false;
647
648 Type *EltTy = nullptr;
649 if (const GlobalValue *GV = dyn_cast<GlobalValue>(LdVal)) {
650 EltTy = GV->getValueType();
651 // Look at the first element of the struct to determine the type we are
652 // loading
653 while (StructType *StructEltTy = dyn_cast<StructType>(EltTy)) {
654 if (StructEltTy->getNumElements() == 0)
655 break;
656 EltTy = StructEltTy->getTypeAtIndex(0U);
657 }
658 // Look at the first element of the array to determine its type
659 if (isa<ArrayType>(EltTy))
660 EltTy = EltTy->getArrayElementType();
661 } else if (!isa<Constant>(LdVal)) {
662 // FIXME: grubbing around uses is pretty ugly, but with no more
663 // `getPointerElementType` there's not much else we can do.
664 for (const auto *LdUser : LdVal->users()) {
665 if (isa<LoadInst>(LdUser)) {
666 EltTy = LdUser->getType();
667 break;
668 }
669 if (isa<StoreInst>(LdUser) && LdUser->getOperand(1) == LdVal) {
670 EltTy = LdUser->getOperand(0)->getType();
671 break;
672 }
673 }
674 }
675 return EltTy && EltTy->isFPOrFPVectorTy();
676}
677
680 const unsigned Opc = MI.getOpcode();
681
682 // Try the default logic for non-generic instructions that are either copies
683 // or already have some operands assigned to banks.
684 if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opc)) ||
685 Opc == TargetOpcode::G_PHI) {
688 if (Mapping.isValid())
689 return Mapping;
690 }
691
692 const MachineFunction &MF = *MI.getParent()->getParent();
693 const MachineRegisterInfo &MRI = MF.getRegInfo();
696
697 switch (Opc) {
698 // G_{F|S|U}REM are not listed because they are not legal.
699 // Arithmetic ops.
700 case TargetOpcode::G_ADD:
701 case TargetOpcode::G_SUB:
702 case TargetOpcode::G_PTR_ADD:
703 case TargetOpcode::G_MUL:
704 case TargetOpcode::G_SDIV:
705 case TargetOpcode::G_UDIV:
706 // Bitwise ops.
707 case TargetOpcode::G_AND:
708 case TargetOpcode::G_OR:
709 case TargetOpcode::G_XOR:
710 // Floating point ops.
711 case TargetOpcode::G_FADD:
712 case TargetOpcode::G_FSUB:
713 case TargetOpcode::G_FMUL:
714 case TargetOpcode::G_FDIV:
715 case TargetOpcode::G_FMAXIMUM:
716 case TargetOpcode::G_FMINIMUM:
717 return getSameKindOfOperandsMapping(MI);
718 case TargetOpcode::G_FPEXT: {
719 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
720 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
722 DefaultMappingID, /*Cost*/ 1,
723 getFPExtMapping(DstTy.getSizeInBits(), SrcTy.getSizeInBits()),
724 /*NumOperands*/ 2);
725 }
726 // Shifts.
727 case TargetOpcode::G_SHL:
728 case TargetOpcode::G_LSHR:
729 case TargetOpcode::G_ASHR: {
730 LLT ShiftAmtTy = MRI.getType(MI.getOperand(2).getReg());
731 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
732 if (ShiftAmtTy.getSizeInBits() == 64 && SrcTy.getSizeInBits() == 32)
735 return getSameKindOfOperandsMapping(MI);
736 }
737 case TargetOpcode::COPY: {
738 Register DstReg = MI.getOperand(0).getReg();
739 Register SrcReg = MI.getOperand(1).getReg();
740 // Check if one of the register is not a generic register.
741 if ((DstReg.isPhysical() || !MRI.getType(DstReg).isValid()) ||
742 (SrcReg.isPhysical() || !MRI.getType(SrcReg).isValid())) {
743 const RegisterBank *DstRB = getRegBank(DstReg, MRI, TRI);
744 const RegisterBank *SrcRB = getRegBank(SrcReg, MRI, TRI);
745 if (!DstRB)
746 DstRB = SrcRB;
747 else if (!SrcRB)
748 SrcRB = DstRB;
749 // If both RB are null that means both registers are generic.
750 // We shouldn't be here.
751 assert(DstRB && SrcRB && "Both RegBank were nullptr");
752 TypeSize Size = getSizeInBits(DstReg, MRI, TRI);
754 DefaultMappingID, copyCost(*DstRB, *SrcRB, Size),
755 getCopyMapping(DstRB->getID(), SrcRB->getID(), Size),
756 // We only care about the mapping of the destination.
757 /*NumOperands*/ 1);
758 }
759 // Both registers are generic, use G_BITCAST.
760 [[fallthrough]];
761 }
762 case TargetOpcode::G_BITCAST: {
763 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
764 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
765 TypeSize Size = DstTy.getSizeInBits();
766 bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64;
767 bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64;
768 const RegisterBank &DstRB =
769 DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
770 const RegisterBank &SrcRB =
771 SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
773 DefaultMappingID, copyCost(DstRB, SrcRB, Size),
774 getCopyMapping(DstRB.getID(), SrcRB.getID(), Size),
775 // We only care about the mapping of the destination for COPY.
776 /*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1);
777 }
778 default:
779 break;
780 }
781
782 unsigned NumOperands = MI.getNumOperands();
783 unsigned MappingID = DefaultMappingID;
784
785 // Track the size and bank of each register. We don't do partial mappings.
786 SmallVector<unsigned, 4> OpSize(NumOperands);
787 SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
788 for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
789 auto &MO = MI.getOperand(Idx);
790 if (!MO.isReg() || !MO.getReg())
791 continue;
792
793 LLT Ty = MRI.getType(MO.getReg());
794 if (!Ty.isValid())
795 continue;
796 OpSize[Idx] = Ty.getSizeInBits().getKnownMinValue();
797
798 // As a top-level guess, vectors including both scalable and non-scalable
799 // ones go in FPRs, scalars and pointers in GPRs.
800 // For floating-point instructions, scalars go in FPRs.
801 if (Ty.isVector())
802 OpRegBankIdx[Idx] = PMI_FirstFPR;
804 (MO.isDef() && onlyDefinesFP(MI, MRI, TRI)) ||
805 (MO.isUse() && onlyUsesFP(MI, MRI, TRI)) ||
806 Ty.getSizeInBits() > 64)
807 OpRegBankIdx[Idx] = PMI_FirstFPR;
808 else
809 OpRegBankIdx[Idx] = PMI_FirstGPR;
810 }
811
812 unsigned Cost = 1;
813 // Some of the floating-point instructions have mixed GPR and FPR operands:
814 // fine-tune the computed mapping.
815 switch (Opc) {
816 case AArch64::G_DUP: {
817 Register ScalarReg = MI.getOperand(1).getReg();
818 LLT ScalarTy = MRI.getType(ScalarReg);
819 auto ScalarDef = MRI.getVRegDef(ScalarReg);
820 // We want to select dup(load) into LD1R.
821 if (ScalarDef->getOpcode() == TargetOpcode::G_LOAD)
822 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
823 // s8 is an exception for G_DUP, which we always want on gpr.
824 else if (ScalarTy.getSizeInBits() != 8 &&
825 (getRegBank(ScalarReg, MRI, TRI) == &AArch64::FPRRegBank ||
826 onlyDefinesFP(*ScalarDef, MRI, TRI)))
827 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
828 else {
829 if (ScalarTy.getSizeInBits() < 32 &&
830 getRegBank(ScalarReg, MRI, TRI) == &AArch64::GPRRegBank) {
831 // Calls applyMappingImpl()
832 MappingID = CustomMappingID;
833 }
834 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
835 }
836 break;
837 }
838 case TargetOpcode::G_TRUNC: {
839 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
840 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128)
841 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
842 break;
843 }
844 case TargetOpcode::G_SITOFP:
845 case TargetOpcode::G_UITOFP: {
846 if (MRI.getType(MI.getOperand(0).getReg()).isVector())
847 break;
848 // Integer to FP conversions don't necessarily happen between GPR -> FPR
849 // regbanks. They can also be done within an FPR register.
850 Register SrcReg = MI.getOperand(1).getReg();
851 if (getRegBank(SrcReg, MRI, TRI) == &AArch64::FPRRegBank &&
852 MRI.getType(SrcReg).getSizeInBits() ==
853 MRI.getType(MI.getOperand(0).getReg()).getSizeInBits())
854 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
855 else
856 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
857 break;
858 }
859 case TargetOpcode::G_FPTOSI_SAT:
860 case TargetOpcode::G_FPTOUI_SAT:
861 case TargetOpcode::G_FPTOSI:
862 case TargetOpcode::G_FPTOUI: {
863 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
864 if (DstType.isVector())
865 break;
866 if (DstType == LLT::scalar(16)) {
867 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
868 break;
869 }
870 TypeSize DstSize = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
871 TypeSize SrcSize = getSizeInBits(MI.getOperand(1).getReg(), MRI, TRI);
872 if (((DstSize == SrcSize) || STI.hasFeature(AArch64::FeatureFPRCVT)) &&
873 all_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
874 [&](const MachineInstr &UseMI) {
875 return onlyUsesFP(UseMI, MRI, TRI) ||
876 prefersFPUse(UseMI, MRI, TRI);
877 }))
878 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
879 else
880 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
881 break;
882 }
883 case TargetOpcode::G_INTRINSIC_LRINT:
884 case TargetOpcode::G_INTRINSIC_LLRINT:
885 if (MRI.getType(MI.getOperand(0).getReg()).isVector())
886 break;
887 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
888 break;
889 case TargetOpcode::G_FCMP: {
890 // If the result is a vector, it must use a FPR.
892 MRI.getType(MI.getOperand(0).getReg()).isVector() ? PMI_FirstFPR
893 : PMI_FirstGPR;
894 OpRegBankIdx = {Idx0,
895 /* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR};
896 break;
897 }
898 case TargetOpcode::G_BITCAST:
899 // This is going to be a cross register bank copy and this is expensive.
900 if (OpRegBankIdx[0] != OpRegBankIdx[1])
901 Cost = copyCost(
902 *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank,
903 *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank,
904 TypeSize::getFixed(OpSize[0]));
905 break;
906 case TargetOpcode::G_LOAD: {
907 // Loading in vector unit is slightly more expensive.
908 // This is actually only true for the LD1R and co instructions,
909 // but anyway for the fast mode this number does not matter and
910 // for the greedy mode the cost of the cross bank copy will
911 // offset this number.
912 // FIXME: Should be derived from the scheduling model.
913 if (OpRegBankIdx[0] != PMI_FirstGPR) {
914 Cost = 2;
915 break;
916 }
917
918 if (cast<GLoad>(MI).isAtomic()) {
919 // Atomics always use GPR destinations. Don't refine any further.
920 OpRegBankIdx[0] = PMI_FirstGPR;
921 break;
922 }
923
924 // Try to guess the type of the load from the MMO.
925 if (isLoadFromFPType(MI)) {
926 OpRegBankIdx[0] = PMI_FirstFPR;
927 break;
928 }
929
930 // Check if that load feeds fp instructions.
931 // In that case, we want the default mapping to be on FPR
932 // instead of blind map every scalar to GPR.
933 if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
934 [&](const MachineInstr &UseMI) {
935 // If we have at least one direct or indirect use
936 // in a FP instruction,
937 // assume this was a floating point load in the IR. If it was
938 // not, we would have had a bitcast before reaching that
939 // instruction.
940 //
941 // Int->FP conversion operations are also captured in
942 // prefersFPUse().
943
944 if (isPHIWithFPConstraints(UseMI, MRI, TRI))
945 return true;
946
947 return onlyUsesFP(UseMI, MRI, TRI) ||
948 prefersFPUse(UseMI, MRI, TRI);
949 }))
950 OpRegBankIdx[0] = PMI_FirstFPR;
951 break;
952 }
953 case TargetOpcode::G_STORE:
954 // Check if that store is fed by fp instructions.
955 if (OpRegBankIdx[0] == PMI_FirstGPR) {
956 Register VReg = MI.getOperand(0).getReg();
957 if (!VReg)
958 break;
959 MachineInstr *DefMI = MRI.getVRegDef(VReg);
960 if (onlyDefinesFP(*DefMI, MRI, TRI))
961 OpRegBankIdx[0] = PMI_FirstFPR;
962 break;
963 }
964 break;
965 case TargetOpcode::G_INDEXED_STORE:
966 if (OpRegBankIdx[1] == PMI_FirstGPR) {
967 Register VReg = MI.getOperand(1).getReg();
968 if (!VReg)
969 break;
970 MachineInstr *DefMI = MRI.getVRegDef(VReg);
971 if (onlyDefinesFP(*DefMI, MRI, TRI))
972 OpRegBankIdx[1] = PMI_FirstFPR;
973 break;
974 }
975 break;
976 case TargetOpcode::G_INDEXED_SEXTLOAD:
977 case TargetOpcode::G_INDEXED_ZEXTLOAD:
978 // These should always be GPR.
979 OpRegBankIdx[0] = PMI_FirstGPR;
980 break;
981 case TargetOpcode::G_INDEXED_LOAD: {
982 if (isLoadFromFPType(MI))
983 OpRegBankIdx[0] = PMI_FirstFPR;
984 break;
985 }
986 case TargetOpcode::G_SELECT: {
987 // If the destination is FPR, preserve that.
988 if (OpRegBankIdx[0] != PMI_FirstGPR)
989 break;
990
991 // If we're taking in vectors, we have no choice but to put everything on
992 // FPRs, except for the condition. The condition must always be on a GPR.
993 LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
994 if (SrcTy.isVector()) {
996 break;
997 }
998
999 // Try to minimize the number of copies. If we have more floating point
1000 // constrained values than not, then we'll put everything on FPR. Otherwise,
1001 // everything has to be on GPR.
1002 unsigned NumFP = 0;
1003
1004 // Check if the uses of the result always produce floating point values.
1005 //
1006 // For example:
1007 //
1008 // %z = G_SELECT %cond %x %y
1009 // fpr = G_FOO %z ...
1010 if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
1011 [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); }))
1012 ++NumFP;
1013
1014 // Check if the defs of the source values always produce floating point
1015 // values.
1016 //
1017 // For example:
1018 //
1019 // %x = G_SOMETHING_ALWAYS_FLOAT %a ...
1020 // %z = G_SELECT %cond %x %y
1021 //
1022 // Also check whether or not the sources have already been decided to be
1023 // FPR. Keep track of this.
1024 //
1025 // This doesn't check the condition, since it's just whatever is in NZCV.
1026 // This isn't passed explicitly in a register to fcsel/csel.
1027 for (unsigned Idx = 2; Idx < 4; ++Idx) {
1028 Register VReg = MI.getOperand(Idx).getReg();
1029 MachineInstr *DefMI = MRI.getVRegDef(VReg);
1030 if (getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank ||
1031 onlyDefinesFP(*DefMI, MRI, TRI))
1032 ++NumFP;
1033 }
1034
1035 // If we have more FP constraints than not, then move everything over to
1036 // FPR.
1037 if (NumFP >= 2)
1039
1040 break;
1041 }
1042 case TargetOpcode::G_UNMERGE_VALUES: {
1043 // If the first operand belongs to a FPR register bank, then make sure that
1044 // we preserve that.
1045 if (OpRegBankIdx[0] != PMI_FirstGPR)
1046 break;
1047
1048 LLT SrcTy = MRI.getType(MI.getOperand(MI.getNumOperands()-1).getReg());
1049 // UNMERGE into scalars from a vector should always use FPR.
1050 // Likewise if any of the uses are FP instructions.
1051 if (SrcTy.isVector() || SrcTy == LLT::scalar(128) ||
1052 any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
1053 [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) {
1054 // Set the register bank of every operand to FPR.
1055 for (unsigned Idx = 0, NumOperands = MI.getNumOperands();
1056 Idx < NumOperands; ++Idx)
1057 OpRegBankIdx[Idx] = PMI_FirstFPR;
1058 }
1059 break;
1060 }
1061 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1062 // Destination and source need to be FPRs.
1063 OpRegBankIdx[0] = PMI_FirstFPR;
1064 OpRegBankIdx[1] = PMI_FirstFPR;
1065
1066 // Index needs to be a GPR.
1067 OpRegBankIdx[2] = PMI_FirstGPR;
1068 break;
1069 case TargetOpcode::G_INSERT_VECTOR_ELT:
1070 OpRegBankIdx[0] = PMI_FirstFPR;
1071 OpRegBankIdx[1] = PMI_FirstFPR;
1072
1073 // The element may be either a GPR or FPR. Preserve that behaviour.
1074 if (getRegBank(MI.getOperand(2).getReg(), MRI, TRI) == &AArch64::FPRRegBank)
1075 OpRegBankIdx[2] = PMI_FirstFPR;
1076 else {
1077 // If the type is i8/i16, and the regank will be GPR, then we change the
1078 // type to i32 in applyMappingImpl.
1079 LLT Ty = MRI.getType(MI.getOperand(2).getReg());
1080 if (Ty.getSizeInBits() == 8 || Ty.getSizeInBits() == 16) {
1081 // Calls applyMappingImpl()
1082 MappingID = CustomMappingID;
1083 }
1084 OpRegBankIdx[2] = PMI_FirstGPR;
1085 }
1086
1087 // Index needs to be a GPR.
1088 OpRegBankIdx[3] = PMI_FirstGPR;
1089 break;
1090 case TargetOpcode::G_EXTRACT: {
1091 // For s128 sources we have to use fpr unless we know otherwise.
1092 auto Src = MI.getOperand(1).getReg();
1093 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
1094 if (SrcTy.getSizeInBits() != 128)
1095 break;
1096 auto Idx = MRI.getRegClassOrNull(Src) == &AArch64::XSeqPairsClassRegClass
1097 ? PMI_FirstGPR
1098 : PMI_FirstFPR;
1099 OpRegBankIdx[0] = Idx;
1100 OpRegBankIdx[1] = Idx;
1101 break;
1102 }
1103 case TargetOpcode::G_BUILD_VECTOR: {
1104 // If the first source operand belongs to a FPR register bank, then make
1105 // sure that we preserve that.
1106 if (OpRegBankIdx[1] != PMI_FirstGPR)
1107 break;
1108 Register VReg = MI.getOperand(1).getReg();
1109 if (!VReg)
1110 break;
1111
1112 // Get the instruction that defined the source operand reg, and check if
1113 // it's a floating point operation. Or, if it's a type like s16 which
1114 // doesn't have a exact size gpr register class. The exception is if the
1115 // build_vector has all constant operands, which may be better to leave as
1116 // gpr without copies, so it can be matched in imported patterns.
1117 MachineInstr *DefMI = MRI.getVRegDef(VReg);
1118 unsigned DefOpc = DefMI->getOpcode();
1119 const LLT SrcTy = MRI.getType(VReg);
1120 if (all_of(MI.operands(), [&](const MachineOperand &Op) {
1121 return Op.isDef() || MRI.getVRegDef(Op.getReg())->getOpcode() ==
1122 TargetOpcode::G_CONSTANT;
1123 }))
1124 break;
1126 SrcTy.getSizeInBits() < 32 ||
1127 getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank) {
1128 // Have a floating point op.
1129 // Make sure every operand gets mapped to a FPR register class.
1130 unsigned NumOperands = MI.getNumOperands();
1131 for (unsigned Idx = 0; Idx < NumOperands; ++Idx)
1132 OpRegBankIdx[Idx] = PMI_FirstFPR;
1133 }
1134 break;
1135 }
1136 case TargetOpcode::G_VECREDUCE_FADD:
1137 case TargetOpcode::G_VECREDUCE_FMUL:
1138 case TargetOpcode::G_VECREDUCE_FMAX:
1139 case TargetOpcode::G_VECREDUCE_FMIN:
1140 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
1141 case TargetOpcode::G_VECREDUCE_FMINIMUM:
1142 case TargetOpcode::G_VECREDUCE_ADD:
1143 case TargetOpcode::G_VECREDUCE_MUL:
1144 case TargetOpcode::G_VECREDUCE_AND:
1145 case TargetOpcode::G_VECREDUCE_OR:
1146 case TargetOpcode::G_VECREDUCE_XOR:
1147 case TargetOpcode::G_VECREDUCE_SMAX:
1148 case TargetOpcode::G_VECREDUCE_SMIN:
1149 case TargetOpcode::G_VECREDUCE_UMAX:
1150 case TargetOpcode::G_VECREDUCE_UMIN:
1151 // Reductions produce a scalar value from a vector, the scalar should be on
1152 // FPR bank.
1153 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
1154 break;
1155 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1156 case TargetOpcode::G_VECREDUCE_SEQ_FMUL:
1157 // These reductions also take a scalar accumulator input.
1158 // Assign them FPR for now.
1159 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR, PMI_FirstFPR};
1160 break;
1161 case TargetOpcode::G_INTRINSIC:
1162 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1163 switch (cast<GIntrinsic>(MI).getIntrinsicID()) {
1164 case Intrinsic::aarch64_neon_fcvtas:
1165 case Intrinsic::aarch64_neon_fcvtau:
1166 case Intrinsic::aarch64_neon_fcvtzs:
1167 case Intrinsic::aarch64_neon_fcvtzu:
1168 case Intrinsic::aarch64_neon_fcvtms:
1169 case Intrinsic::aarch64_neon_fcvtmu:
1170 case Intrinsic::aarch64_neon_fcvtns:
1171 case Intrinsic::aarch64_neon_fcvtnu:
1172 case Intrinsic::aarch64_neon_fcvtps:
1173 case Intrinsic::aarch64_neon_fcvtpu: {
1174 OpRegBankIdx[2] = PMI_FirstFPR;
1175 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) {
1176 OpRegBankIdx[0] = PMI_FirstFPR;
1177 break;
1178 }
1179 TypeSize DstSize = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
1180 TypeSize SrcSize = getSizeInBits(MI.getOperand(2).getReg(), MRI, TRI);
1181 if (((DstSize == SrcSize) || STI.hasFeature(AArch64::FeatureFPRCVT)) &&
1182 all_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
1183 [&](const MachineInstr &UseMI) {
1184 return onlyUsesFP(UseMI, MRI, TRI) ||
1185 prefersFPUse(UseMI, MRI, TRI);
1186 }))
1187 OpRegBankIdx[0] = PMI_FirstFPR;
1188 else
1189 OpRegBankIdx[0] = PMI_FirstGPR;
1190 break;
1191 }
1192 case Intrinsic::aarch64_neon_vcvtfxs2fp:
1193 case Intrinsic::aarch64_neon_vcvtfxu2fp:
1194 case Intrinsic::aarch64_neon_vcvtfp2fxs:
1195 case Intrinsic::aarch64_neon_vcvtfp2fxu:
1196 // Override these intrinsics, because they would have a partial
1197 // mapping. This is needed for 'half' types, which otherwise don't
1198 // get legalised correctly.
1199 OpRegBankIdx[0] = PMI_FirstFPR;
1200 OpRegBankIdx[2] = PMI_FirstFPR;
1201 // OpRegBankIdx[1] is the intrinsic ID.
1202 // OpRegBankIdx[3] is an integer immediate.
1203 break;
1204 default: {
1205 // Check if we know that the intrinsic has any constraints on its register
1206 // banks. If it does, then update the mapping accordingly.
1207 unsigned Idx = 0;
1208 if (onlyDefinesFP(MI, MRI, TRI))
1209 for (const auto &Op : MI.defs()) {
1210 if (Op.isReg())
1211 OpRegBankIdx[Idx] = PMI_FirstFPR;
1212 ++Idx;
1213 }
1214 else
1215 Idx += MI.getNumExplicitDefs();
1216
1217 if (onlyUsesFP(MI, MRI, TRI))
1218 for (const auto &Op : MI.explicit_uses()) {
1219 if (Op.isReg())
1220 OpRegBankIdx[Idx] = PMI_FirstFPR;
1221 ++Idx;
1222 }
1223 break;
1224 }
1225 }
1226 break;
1227 }
1228 case TargetOpcode::G_LROUND:
1229 case TargetOpcode::G_LLROUND: {
1230 // Source is always floating point and destination is always integer.
1231 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
1232 break;
1233 }
1234 }
1235
1236 // Finally construct the computed mapping.
1237 SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
1238 for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
1239 if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
1240 LLT Ty = MRI.getType(MI.getOperand(Idx).getReg());
1241 if (!Ty.isValid())
1242 continue;
1243 auto Mapping =
1244 getValueMapping(OpRegBankIdx[Idx], TypeSize::getFixed(OpSize[Idx]));
1245 if (!Mapping->isValid())
1247
1248 OpdsMapping[Idx] = Mapping;
1249 }
1250 }
1251
1252 return getInstructionMapping(MappingID, Cost, getOperandsMapping(OpdsMapping),
1253 NumOperands);
1254}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
#define CHECK_VALUEMAP(RBName, Size)
static bool isFPIntrinsic(const MachineRegisterInfo &MRI, const MachineInstr &MI)
#define CHECK_VALUEMAP_3OPS(RBName, Size)
static const unsigned CustomMappingID
#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB)
#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size)
#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize)
This file declares the targeting of the RegisterBankInfo class for AArch64.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
IRTranslator LLVM IR MI
Implement a low-level type suitable for MachineInstr level instruction selection.
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
ppc ctr loops verify
static const MCPhysReg FPR[]
FPR - The set of FP registers that should be allocated for arguments on Darwin and AIX.
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static unsigned getRegBankBaseIdxOffset(unsigned RBIdx, TypeSize Size)
static const RegisterBankInfo::ValueMapping * getCopyMapping(unsigned DstBankID, unsigned SrcBankID, TypeSize Size)
Get the pointer to the ValueMapping of the operands of a copy instruction from the SrcBankID register...
static bool checkPartialMappingIdx(PartialMappingIdx FirstAlias, PartialMappingIdx LastAlias, ArrayRef< PartialMappingIdx > Order)
static const RegisterBankInfo::PartialMapping PartMappings[]
static const RegisterBankInfo::ValueMapping * getFPExtMapping(unsigned DstSize, unsigned SrcSize)
Get the instruction mapping for G_FPEXT.
static const RegisterBankInfo::ValueMapping * getValueMapping(PartialMappingIdx RBIdx, TypeSize Size)
Get the pointer to the ValueMapping representing the RegisterBank at RBIdx with a size of Size.
static const RegisterBankInfo::ValueMapping ValMappings[]
InstructionMappings getInstrAlternativeMappings(const MachineInstr &MI) const override
Get the alternative mappings for MI.
unsigned copyCost(const RegisterBank &A, const RegisterBank &B, TypeSize Size) const override
Get the cost of a copy from B to A, or put differently, get the cost of A = COPY B.
const RegisterBank & getRegBankFromRegClass(const TargetRegisterClass &RC, LLT Ty) const override
Get a register bank that covers RC.
AArch64RegisterBankInfo(const TargetRegisterInfo &TRI)
const InstructionMapping & getInstrMapping(const MachineInstr &MI) const override
Get the mapping of the different operands of MI on the register bank.
const AArch64RegisterInfo * getRegisterInfo() const override
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isVector() const
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Helper class to build MachineInstr.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Helper class that represents how the value of an instruction may be mapped and what is the related co...
bool isValid() const
Check whether this object is valid.
virtual InstructionMappings getInstrAlternativeMappings(const MachineInstr &MI) const
Get the alternative mappings for MI.
const InstructionMapping & getInstructionMapping(unsigned ID, unsigned Cost, const ValueMapping *OperandsMapping, unsigned NumOperands) const
Method to get a uniquely generated InstructionMapping.
static void applyDefaultMapping(const OperandsMapper &OpdMapper)
Helper method to apply something that is like the default mapping.
const InstructionMapping & getInvalidInstructionMapping() const
Method to get a uniquely generated invalid InstructionMapping.
const RegisterBank & getRegBank(unsigned ID)
Get the register bank identified by ID.
unsigned getMaximumSize(unsigned RegBankID) const
Get the maximum size in bits that fits in the given register bank.
TypeSize getSizeInBits(Register Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const
Get the size in bits of Reg.
virtual const RegisterBank & getRegBankFromRegClass(const TargetRegisterClass &RC, LLT Ty) const
Get a register bank that covers RC.
const ValueMapping * getOperandsMapping(Iterator Begin, Iterator End) const
Get the uniquely generated array of ValueMapping for the elements of between Begin and End.
static const unsigned DefaultMappingID
Identifier used when the related instruction mapping instance is generated by target independent code...
SmallVector< const InstructionMapping *, 4 > InstructionMappings
Convenient type to represent the alternatives for mapping an instruction.
virtual unsigned copyCost(const RegisterBank &A, const RegisterBank &B, TypeSize Size) const
Get the cost of a copy from B to A, or put differently, get the cost of A = COPY B.
const InstructionMapping & getInstrMappingImpl(const MachineInstr &MI) const
Try to get the mapping of MI.
This class implements the register bank concept.
LLVM_ABI bool covers(const TargetRegisterClass &RC) const
Check whether this register bank covers RC.
unsigned getID() const
Get the identifier of this register bank.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
unsigned getID() const
Return the register class ID number.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
Type * getArrayElementType() const
Definition Type.h:408
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
iterator_range< user_iterator > users()
Definition Value.h:426
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
InstructionCost Cost
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
bool isPreISelGenericOptimizationHint(unsigned Opcode)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
DWARFExpression::Operation Op
void call_once(once_flag &flag, Function &&F, Args &&... ArgList)
Execute the function specified as a parameter once.
Definition Threading.h:86
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool isPreISelGenericFloatingPointOpcode(unsigned Opc)
Returns whether opcode Opc is a pre-isel generic floating-point opcode, having only floating-point op...
Definition Utils.cpp:1743
The llvm::once_flag structure.
Definition Threading.h:67