LLVM 22.0.0git
ELFYAML.cpp
Go to the documentation of this file.
1//===- ELFYAML.cpp - ELF YAMLIO implementation ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines classes for handling the YAML representation of ELF.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/MapVector.h"
16#include "llvm/ADT/StringRef.h"
24#include <cassert>
25#include <cstdint>
26#include <optional>
27
28namespace llvm {
29
30ELFYAML::Chunk::~Chunk() = default;
31
32namespace ELFYAML {
33ELF_ELFOSABI Object::getOSAbi() const { return Header.OSABI; }
34
35unsigned Object::getMachine() const {
36 if (Header.Machine)
37 return *Header.Machine;
38 return llvm::ELF::EM_NONE;
39}
40} // namespace ELFYAML
41
42namespace yaml {
43
44void ScalarEnumerationTraits<ELFYAML::ELF_ET>::enumeration(
45 IO &IO, ELFYAML::ELF_ET &Value) {
46#define ECase(X) IO.enumCase(Value, #X, ELF::X)
47 ECase(ET_NONE);
48 ECase(ET_REL);
49 ECase(ET_EXEC);
50 ECase(ET_DYN);
51 ECase(ET_CORE);
52#undef ECase
53 IO.enumFallback<Hex16>(Value);
54}
55
56void ScalarEnumerationTraits<ELFYAML::ELF_PT>::enumeration(
57 IO &IO, ELFYAML::ELF_PT &Value) {
58#define ECase(X) IO.enumCase(Value, #X, ELF::X)
59 ECase(PT_NULL);
60 ECase(PT_LOAD);
61 ECase(PT_DYNAMIC);
62 ECase(PT_INTERP);
63 ECase(PT_NOTE);
64 ECase(PT_SHLIB);
65 ECase(PT_PHDR);
66 ECase(PT_TLS);
67 ECase(PT_GNU_EH_FRAME);
68 ECase(PT_GNU_STACK);
69 ECase(PT_GNU_RELRO);
70 ECase(PT_GNU_PROPERTY);
71 ECase(PT_GNU_SFRAME);
72#undef ECase
73 IO.enumFallback<Hex32>(Value);
74}
75
77 IO &IO, ELFYAML::ELF_NT &Value) {
78#define ECase(X) IO.enumCase(Value, #X, ELF::X)
79 // Generic note types.
80 ECase(NT_VERSION);
81 ECase(NT_ARCH);
82 ECase(NT_GNU_BUILD_ATTRIBUTE_OPEN);
83 ECase(NT_GNU_BUILD_ATTRIBUTE_FUNC);
84 // Core note types.
85 ECase(NT_PRSTATUS);
86 ECase(NT_FPREGSET);
87 ECase(NT_PRPSINFO);
88 ECase(NT_TASKSTRUCT);
89 ECase(NT_AUXV);
90 ECase(NT_PSTATUS);
91 ECase(NT_FPREGS);
92 ECase(NT_PSINFO);
93 ECase(NT_LWPSTATUS);
94 ECase(NT_LWPSINFO);
95 ECase(NT_WIN32PSTATUS);
96 ECase(NT_PPC_VMX);
97 ECase(NT_PPC_VSX);
98 ECase(NT_PPC_TAR);
99 ECase(NT_PPC_PPR);
100 ECase(NT_PPC_DSCR);
101 ECase(NT_PPC_EBB);
102 ECase(NT_PPC_PMU);
103 ECase(NT_PPC_TM_CGPR);
104 ECase(NT_PPC_TM_CFPR);
105 ECase(NT_PPC_TM_CVMX);
106 ECase(NT_PPC_TM_CVSX);
107 ECase(NT_PPC_TM_SPR);
108 ECase(NT_PPC_TM_CTAR);
109 ECase(NT_PPC_TM_CPPR);
110 ECase(NT_PPC_TM_CDSCR);
111 ECase(NT_386_TLS);
112 ECase(NT_386_IOPERM);
113 ECase(NT_X86_XSTATE);
114 ECase(NT_S390_HIGH_GPRS);
115 ECase(NT_S390_TIMER);
116 ECase(NT_S390_TODCMP);
117 ECase(NT_S390_TODPREG);
118 ECase(NT_S390_CTRS);
119 ECase(NT_S390_PREFIX);
120 ECase(NT_S390_LAST_BREAK);
121 ECase(NT_S390_SYSTEM_CALL);
122 ECase(NT_S390_TDB);
123 ECase(NT_S390_VXRS_LOW);
124 ECase(NT_S390_VXRS_HIGH);
125 ECase(NT_S390_GS_CB);
126 ECase(NT_S390_GS_BC);
127 ECase(NT_ARM_VFP);
128 ECase(NT_ARM_TLS);
129 ECase(NT_ARM_HW_BREAK);
130 ECase(NT_ARM_HW_WATCH);
131 ECase(NT_ARM_SVE);
132 ECase(NT_ARM_PAC_MASK);
133 ECase(NT_ARM_TAGGED_ADDR_CTRL);
134 ECase(NT_ARM_SSVE);
135 ECase(NT_ARM_ZA);
136 ECase(NT_ARM_ZT);
137 ECase(NT_ARM_FPMR);
138 ECase(NT_ARM_GCS);
139 ECase(NT_FILE);
140 ECase(NT_PRXFPREG);
141 ECase(NT_SIGINFO);
142 // LLVM-specific notes.
143 ECase(NT_LLVM_HWASAN_GLOBALS);
144 // GNU note types
145 ECase(NT_GNU_ABI_TAG);
146 ECase(NT_GNU_HWCAP);
147 ECase(NT_GNU_BUILD_ID);
148 ECase(NT_GNU_GOLD_VERSION);
149 ECase(NT_GNU_PROPERTY_TYPE_0);
150 // FreeBSD note types.
151 ECase(NT_FREEBSD_ABI_TAG);
152 ECase(NT_FREEBSD_NOINIT_TAG);
153 ECase(NT_FREEBSD_ARCH_TAG);
154 ECase(NT_FREEBSD_FEATURE_CTL);
155 // FreeBSD core note types.
156 ECase(NT_FREEBSD_THRMISC);
157 ECase(NT_FREEBSD_PROCSTAT_PROC);
158 ECase(NT_FREEBSD_PROCSTAT_FILES);
159 ECase(NT_FREEBSD_PROCSTAT_VMMAP);
160 ECase(NT_FREEBSD_PROCSTAT_GROUPS);
161 ECase(NT_FREEBSD_PROCSTAT_UMASK);
162 ECase(NT_FREEBSD_PROCSTAT_RLIMIT);
163 ECase(NT_FREEBSD_PROCSTAT_OSREL);
164 ECase(NT_FREEBSD_PROCSTAT_PSSTRINGS);
165 ECase(NT_FREEBSD_PROCSTAT_AUXV);
166 // NetBSD core note types.
167 ECase(NT_NETBSDCORE_PROCINFO);
168 ECase(NT_NETBSDCORE_AUXV);
169 ECase(NT_NETBSDCORE_LWPSTATUS);
170 // OpenBSD core note types.
171 ECase(NT_OPENBSD_PROCINFO);
172 ECase(NT_OPENBSD_AUXV);
173 ECase(NT_OPENBSD_REGS);
174 ECase(NT_OPENBSD_FPREGS);
175 ECase(NT_OPENBSD_XFPREGS);
176 ECase(NT_OPENBSD_WCOOKIE);
177 // AMD specific notes. (Code Object V2)
178 ECase(NT_AMD_HSA_CODE_OBJECT_VERSION);
179 ECase(NT_AMD_HSA_HSAIL);
180 ECase(NT_AMD_HSA_ISA_VERSION);
181 ECase(NT_AMD_HSA_METADATA);
182 ECase(NT_AMD_HSA_ISA_NAME);
183 ECase(NT_AMD_PAL_METADATA);
184 // AMDGPU specific notes. (Code Object V3)
185 ECase(NT_AMDGPU_METADATA);
186 // Android specific notes.
187 ECase(NT_ANDROID_TYPE_IDENT);
188 ECase(NT_ANDROID_TYPE_KUSER);
189 ECase(NT_ANDROID_TYPE_MEMTAG);
190#undef ECase
191 IO.enumFallback<Hex32>(Value);
192}
193
195 IO &IO, ELFYAML::ELF_EM &Value) {
196#define ECase(X) IO.enumCase(Value, #X, ELF::X)
197 ECase(EM_NONE);
198 ECase(EM_M32);
199 ECase(EM_SPARC);
200 ECase(EM_386);
201 ECase(EM_68K);
202 ECase(EM_88K);
203 ECase(EM_IAMCU);
204 ECase(EM_860);
205 ECase(EM_MIPS);
206 ECase(EM_S370);
207 ECase(EM_MIPS_RS3_LE);
208 ECase(EM_PARISC);
209 ECase(EM_VPP500);
210 ECase(EM_SPARC32PLUS);
211 ECase(EM_960);
212 ECase(EM_PPC);
213 ECase(EM_PPC64);
214 ECase(EM_S390);
215 ECase(EM_SPU);
216 ECase(EM_V800);
217 ECase(EM_FR20);
218 ECase(EM_RH32);
219 ECase(EM_RCE);
220 ECase(EM_ARM);
221 ECase(EM_ALPHA);
222 ECase(EM_SH);
223 ECase(EM_SPARCV9);
224 ECase(EM_TRICORE);
225 ECase(EM_ARC);
226 ECase(EM_H8_300);
227 ECase(EM_H8_300H);
228 ECase(EM_H8S);
229 ECase(EM_H8_500);
230 ECase(EM_IA_64);
231 ECase(EM_MIPS_X);
232 ECase(EM_COLDFIRE);
233 ECase(EM_68HC12);
234 ECase(EM_MMA);
235 ECase(EM_PCP);
236 ECase(EM_NCPU);
237 ECase(EM_NDR1);
238 ECase(EM_STARCORE);
239 ECase(EM_ME16);
240 ECase(EM_ST100);
241 ECase(EM_TINYJ);
242 ECase(EM_X86_64);
243 ECase(EM_PDSP);
244 ECase(EM_PDP10);
245 ECase(EM_PDP11);
246 ECase(EM_FX66);
247 ECase(EM_ST9PLUS);
248 ECase(EM_ST7);
249 ECase(EM_68HC16);
250 ECase(EM_68HC11);
251 ECase(EM_68HC08);
252 ECase(EM_68HC05);
253 ECase(EM_SVX);
254 ECase(EM_ST19);
255 ECase(EM_VAX);
256 ECase(EM_CRIS);
257 ECase(EM_JAVELIN);
258 ECase(EM_FIREPATH);
259 ECase(EM_ZSP);
260 ECase(EM_MMIX);
261 ECase(EM_HUANY);
262 ECase(EM_PRISM);
263 ECase(EM_AVR);
264 ECase(EM_FR30);
265 ECase(EM_D10V);
266 ECase(EM_D30V);
267 ECase(EM_V850);
268 ECase(EM_M32R);
269 ECase(EM_MN10300);
270 ECase(EM_MN10200);
271 ECase(EM_PJ);
272 ECase(EM_OPENRISC);
273 ECase(EM_ARC_COMPACT);
274 ECase(EM_XTENSA);
275 ECase(EM_VIDEOCORE);
276 ECase(EM_TMM_GPP);
277 ECase(EM_NS32K);
278 ECase(EM_TPC);
279 ECase(EM_SNP1K);
280 ECase(EM_ST200);
281 ECase(EM_IP2K);
282 ECase(EM_MAX);
283 ECase(EM_CR);
284 ECase(EM_F2MC16);
285 ECase(EM_MSP430);
286 ECase(EM_BLACKFIN);
287 ECase(EM_SE_C33);
288 ECase(EM_SEP);
289 ECase(EM_ARCA);
290 ECase(EM_UNICORE);
291 ECase(EM_EXCESS);
292 ECase(EM_DXP);
293 ECase(EM_ALTERA_NIOS2);
294 ECase(EM_CRX);
295 ECase(EM_XGATE);
296 ECase(EM_C166);
297 ECase(EM_M16C);
298 ECase(EM_DSPIC30F);
299 ECase(EM_CE);
300 ECase(EM_M32C);
301 ECase(EM_TSK3000);
302 ECase(EM_RS08);
303 ECase(EM_SHARC);
304 ECase(EM_ECOG2);
305 ECase(EM_SCORE7);
306 ECase(EM_DSP24);
307 ECase(EM_VIDEOCORE3);
308 ECase(EM_LATTICEMICO32);
309 ECase(EM_SE_C17);
310 ECase(EM_TI_C6000);
311 ECase(EM_TI_C2000);
312 ECase(EM_TI_C5500);
313 ECase(EM_MMDSP_PLUS);
314 ECase(EM_CYPRESS_M8C);
315 ECase(EM_R32C);
316 ECase(EM_TRIMEDIA);
317 ECase(EM_HEXAGON);
318 ECase(EM_8051);
319 ECase(EM_STXP7X);
320 ECase(EM_NDS32);
321 ECase(EM_ECOG1);
322 ECase(EM_ECOG1X);
323 ECase(EM_MAXQ30);
324 ECase(EM_XIMO16);
325 ECase(EM_MANIK);
326 ECase(EM_CRAYNV2);
327 ECase(EM_RX);
328 ECase(EM_METAG);
329 ECase(EM_MCST_ELBRUS);
330 ECase(EM_ECOG16);
331 ECase(EM_CR16);
332 ECase(EM_ETPU);
333 ECase(EM_SLE9X);
334 ECase(EM_L10M);
335 ECase(EM_K10M);
336 ECase(EM_AARCH64);
337 ECase(EM_AVR32);
338 ECase(EM_STM8);
339 ECase(EM_TILE64);
340 ECase(EM_TILEPRO);
341 ECase(EM_MICROBLAZE);
342 ECase(EM_CUDA);
343 ECase(EM_TILEGX);
344 ECase(EM_CLOUDSHIELD);
345 ECase(EM_COREA_1ST);
346 ECase(EM_COREA_2ND);
347 ECase(EM_ARC_COMPACT2);
348 ECase(EM_OPEN8);
349 ECase(EM_RL78);
350 ECase(EM_VIDEOCORE5);
351 ECase(EM_78KOR);
352 ECase(EM_56800EX);
353 ECase(EM_AMDGPU);
354 ECase(EM_RISCV);
355 ECase(EM_LANAI);
356 ECase(EM_BPF);
357 ECase(EM_VE);
358 ECase(EM_CSKY);
359 ECase(EM_LOONGARCH);
360 ECase(EM_INTELGT);
361#undef ECase
362 IO.enumFallback<Hex16>(Value);
363}
364
366 IO &IO, ELFYAML::ELF_ELFCLASS &Value) {
367#define ECase(X) IO.enumCase(Value, #X, ELF::X)
368 // Since the semantics of ELFCLASSNONE is "invalid", just don't accept it
369 // here.
370 ECase(ELFCLASS32);
371 ECase(ELFCLASS64);
372#undef ECase
373}
374
376 IO &IO, ELFYAML::ELF_ELFDATA &Value) {
377#define ECase(X) IO.enumCase(Value, #X, ELF::X)
378 // ELFDATANONE is an invalid data encoding, but we accept it because
379 // we want to be able to produce invalid binaries for the tests.
380 ECase(ELFDATANONE);
381 ECase(ELFDATA2LSB);
382 ECase(ELFDATA2MSB);
383#undef ECase
384}
385
387 IO &IO, ELFYAML::ELF_ELFOSABI &Value) {
388#define ECase(X) IO.enumCase(Value, #X, ELF::X)
389 ECase(ELFOSABI_NONE);
390 ECase(ELFOSABI_HPUX);
391 ECase(ELFOSABI_NETBSD);
392 ECase(ELFOSABI_GNU);
393 ECase(ELFOSABI_LINUX);
394 ECase(ELFOSABI_HURD);
395 ECase(ELFOSABI_SOLARIS);
396 ECase(ELFOSABI_AIX);
397 ECase(ELFOSABI_IRIX);
398 ECase(ELFOSABI_FREEBSD);
399 ECase(ELFOSABI_TRU64);
400 ECase(ELFOSABI_MODESTO);
401 ECase(ELFOSABI_OPENBSD);
402 ECase(ELFOSABI_OPENVMS);
403 ECase(ELFOSABI_NSK);
404 ECase(ELFOSABI_AROS);
405 ECase(ELFOSABI_FENIXOS);
406 ECase(ELFOSABI_CLOUDABI);
407 ECase(ELFOSABI_AMDGPU_HSA);
408 ECase(ELFOSABI_AMDGPU_PAL);
409 ECase(ELFOSABI_AMDGPU_MESA3D);
410 ECase(ELFOSABI_ARM);
411 ECase(ELFOSABI_ARM_FDPIC);
412 ECase(ELFOSABI_C6000_ELFABI);
413 ECase(ELFOSABI_C6000_LINUX);
414 ECase(ELFOSABI_STANDALONE);
415#undef ECase
416 IO.enumFallback<Hex8>(Value);
417}
418
420 ELFYAML::ELF_EF &Value) {
421 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
422 assert(Object && "The IO context is not initialized");
423#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
424#define BCaseMask(X, M) IO.maskedBitSetCase(Value, #X, ELF::X, ELF::M)
425 switch (Object->getMachine()) {
426 case ELF::EM_ARM:
427 BCase(EF_ARM_SOFT_FLOAT);
428 BCase(EF_ARM_VFP_FLOAT);
429 BCaseMask(EF_ARM_EABI_UNKNOWN, EF_ARM_EABIMASK);
430 BCaseMask(EF_ARM_EABI_VER1, EF_ARM_EABIMASK);
431 BCaseMask(EF_ARM_EABI_VER2, EF_ARM_EABIMASK);
432 BCaseMask(EF_ARM_EABI_VER3, EF_ARM_EABIMASK);
433 BCaseMask(EF_ARM_EABI_VER4, EF_ARM_EABIMASK);
434 BCaseMask(EF_ARM_EABI_VER5, EF_ARM_EABIMASK);
435 BCaseMask(EF_ARM_BE8, EF_ARM_BE8);
436 break;
437 case ELF::EM_MIPS:
438 BCase(EF_MIPS_NOREORDER);
439 BCase(EF_MIPS_PIC);
440 BCase(EF_MIPS_CPIC);
441 BCase(EF_MIPS_ABI2);
442 BCase(EF_MIPS_32BITMODE);
443 BCase(EF_MIPS_FP64);
444 BCase(EF_MIPS_NAN2008);
445 BCase(EF_MIPS_MICROMIPS);
446 BCase(EF_MIPS_ARCH_ASE_M16);
447 BCase(EF_MIPS_ARCH_ASE_MDMX);
448 BCaseMask(EF_MIPS_ABI_O32, EF_MIPS_ABI);
449 BCaseMask(EF_MIPS_ABI_O64, EF_MIPS_ABI);
450 BCaseMask(EF_MIPS_ABI_EABI32, EF_MIPS_ABI);
451 BCaseMask(EF_MIPS_ABI_EABI64, EF_MIPS_ABI);
452 BCaseMask(EF_MIPS_MACH_3900, EF_MIPS_MACH);
453 BCaseMask(EF_MIPS_MACH_4010, EF_MIPS_MACH);
454 BCaseMask(EF_MIPS_MACH_4100, EF_MIPS_MACH);
455 BCaseMask(EF_MIPS_MACH_4650, EF_MIPS_MACH);
456 BCaseMask(EF_MIPS_MACH_4120, EF_MIPS_MACH);
457 BCaseMask(EF_MIPS_MACH_4111, EF_MIPS_MACH);
458 BCaseMask(EF_MIPS_MACH_SB1, EF_MIPS_MACH);
459 BCaseMask(EF_MIPS_MACH_OCTEON, EF_MIPS_MACH);
460 BCaseMask(EF_MIPS_MACH_XLR, EF_MIPS_MACH);
461 BCaseMask(EF_MIPS_MACH_OCTEON2, EF_MIPS_MACH);
462 BCaseMask(EF_MIPS_MACH_OCTEON3, EF_MIPS_MACH);
463 BCaseMask(EF_MIPS_MACH_5400, EF_MIPS_MACH);
464 BCaseMask(EF_MIPS_MACH_5900, EF_MIPS_MACH);
465 BCaseMask(EF_MIPS_MACH_5500, EF_MIPS_MACH);
466 BCaseMask(EF_MIPS_MACH_9000, EF_MIPS_MACH);
467 BCaseMask(EF_MIPS_MACH_LS2E, EF_MIPS_MACH);
468 BCaseMask(EF_MIPS_MACH_LS2F, EF_MIPS_MACH);
469 BCaseMask(EF_MIPS_MACH_LS3A, EF_MIPS_MACH);
470 BCaseMask(EF_MIPS_ARCH_1, EF_MIPS_ARCH);
471 BCaseMask(EF_MIPS_ARCH_2, EF_MIPS_ARCH);
472 BCaseMask(EF_MIPS_ARCH_3, EF_MIPS_ARCH);
473 BCaseMask(EF_MIPS_ARCH_4, EF_MIPS_ARCH);
474 BCaseMask(EF_MIPS_ARCH_5, EF_MIPS_ARCH);
475 BCaseMask(EF_MIPS_ARCH_32, EF_MIPS_ARCH);
476 BCaseMask(EF_MIPS_ARCH_64, EF_MIPS_ARCH);
477 BCaseMask(EF_MIPS_ARCH_32R2, EF_MIPS_ARCH);
478 BCaseMask(EF_MIPS_ARCH_64R2, EF_MIPS_ARCH);
479 BCaseMask(EF_MIPS_ARCH_32R6, EF_MIPS_ARCH);
480 BCaseMask(EF_MIPS_ARCH_64R6, EF_MIPS_ARCH);
481 break;
482 case ELF::EM_HEXAGON:
483 BCaseMask(EF_HEXAGON_MACH_V2, EF_HEXAGON_MACH);
484 BCaseMask(EF_HEXAGON_MACH_V3, EF_HEXAGON_MACH);
485 BCaseMask(EF_HEXAGON_MACH_V4, EF_HEXAGON_MACH);
486 BCaseMask(EF_HEXAGON_MACH_V5, EF_HEXAGON_MACH);
487 BCaseMask(EF_HEXAGON_MACH_V55, EF_HEXAGON_MACH);
488 BCaseMask(EF_HEXAGON_MACH_V60, EF_HEXAGON_MACH);
489 BCaseMask(EF_HEXAGON_MACH_V61, EF_HEXAGON_MACH);
490 BCaseMask(EF_HEXAGON_MACH_V62, EF_HEXAGON_MACH);
491 BCaseMask(EF_HEXAGON_MACH_V65, EF_HEXAGON_MACH);
492 BCaseMask(EF_HEXAGON_MACH_V66, EF_HEXAGON_MACH);
493 BCaseMask(EF_HEXAGON_MACH_V67, EF_HEXAGON_MACH);
494 BCaseMask(EF_HEXAGON_MACH_V67T, EF_HEXAGON_MACH);
495 BCaseMask(EF_HEXAGON_MACH_V68, EF_HEXAGON_MACH);
496 BCaseMask(EF_HEXAGON_MACH_V69, EF_HEXAGON_MACH);
497 BCaseMask(EF_HEXAGON_MACH_V71, EF_HEXAGON_MACH);
498 BCaseMask(EF_HEXAGON_MACH_V71T, EF_HEXAGON_MACH);
499 BCaseMask(EF_HEXAGON_MACH_V73, EF_HEXAGON_MACH);
500 BCaseMask(EF_HEXAGON_MACH_V75, EF_HEXAGON_MACH);
501 BCaseMask(EF_HEXAGON_MACH_V77, EF_HEXAGON_MACH);
502 BCaseMask(EF_HEXAGON_MACH_V79, EF_HEXAGON_MACH);
503 BCaseMask(EF_HEXAGON_MACH_V81, EF_HEXAGON_MACH);
504 BCaseMask(EF_HEXAGON_MACH_V83, EF_HEXAGON_MACH);
505 BCaseMask(EF_HEXAGON_MACH_V85, EF_HEXAGON_MACH);
506 BCaseMask(EF_HEXAGON_MACH_V87, EF_HEXAGON_MACH);
507 BCaseMask(EF_HEXAGON_MACH_V89, EF_HEXAGON_MACH);
508 BCaseMask(EF_HEXAGON_MACH_V91, EF_HEXAGON_MACH);
509 BCaseMask(EF_HEXAGON_ISA_V2, EF_HEXAGON_ISA);
510 BCaseMask(EF_HEXAGON_ISA_V3, EF_HEXAGON_ISA);
511 BCaseMask(EF_HEXAGON_ISA_V4, EF_HEXAGON_ISA);
512 BCaseMask(EF_HEXAGON_ISA_V5, EF_HEXAGON_ISA);
513 BCaseMask(EF_HEXAGON_ISA_V55, EF_HEXAGON_ISA);
514 BCaseMask(EF_HEXAGON_ISA_V60, EF_HEXAGON_ISA);
515 BCaseMask(EF_HEXAGON_ISA_V61, EF_HEXAGON_ISA);
516 BCaseMask(EF_HEXAGON_ISA_V62, EF_HEXAGON_ISA);
517 BCaseMask(EF_HEXAGON_ISA_V65, EF_HEXAGON_ISA);
518 BCaseMask(EF_HEXAGON_ISA_V66, EF_HEXAGON_ISA);
519 BCaseMask(EF_HEXAGON_ISA_V67, EF_HEXAGON_ISA);
520 BCaseMask(EF_HEXAGON_ISA_V68, EF_HEXAGON_ISA);
521 BCaseMask(EF_HEXAGON_ISA_V69, EF_HEXAGON_ISA);
522 BCaseMask(EF_HEXAGON_ISA_V71, EF_HEXAGON_ISA);
523 BCaseMask(EF_HEXAGON_ISA_V73, EF_HEXAGON_ISA);
524 BCaseMask(EF_HEXAGON_ISA_V75, EF_HEXAGON_ISA);
525 BCaseMask(EF_HEXAGON_ISA_V77, EF_HEXAGON_ISA);
526 BCaseMask(EF_HEXAGON_ISA_V79, EF_HEXAGON_ISA);
527 BCaseMask(EF_HEXAGON_ISA_V81, EF_HEXAGON_ISA);
528 BCaseMask(EF_HEXAGON_ISA_V83, EF_HEXAGON_ISA);
529 BCaseMask(EF_HEXAGON_ISA_V85, EF_HEXAGON_ISA);
530 BCaseMask(EF_HEXAGON_ISA_V87, EF_HEXAGON_ISA);
531 BCaseMask(EF_HEXAGON_ISA_V89, EF_HEXAGON_ISA);
532 BCaseMask(EF_HEXAGON_ISA_V91, EF_HEXAGON_ISA);
533 break;
534 case ELF::EM_AVR:
535 BCaseMask(EF_AVR_ARCH_AVR1, EF_AVR_ARCH_MASK);
536 BCaseMask(EF_AVR_ARCH_AVR2, EF_AVR_ARCH_MASK);
537 BCaseMask(EF_AVR_ARCH_AVR25, EF_AVR_ARCH_MASK);
538 BCaseMask(EF_AVR_ARCH_AVR3, EF_AVR_ARCH_MASK);
539 BCaseMask(EF_AVR_ARCH_AVR31, EF_AVR_ARCH_MASK);
540 BCaseMask(EF_AVR_ARCH_AVR35, EF_AVR_ARCH_MASK);
541 BCaseMask(EF_AVR_ARCH_AVR4, EF_AVR_ARCH_MASK);
542 BCaseMask(EF_AVR_ARCH_AVR5, EF_AVR_ARCH_MASK);
543 BCaseMask(EF_AVR_ARCH_AVR51, EF_AVR_ARCH_MASK);
544 BCaseMask(EF_AVR_ARCH_AVR6, EF_AVR_ARCH_MASK);
545 BCaseMask(EF_AVR_ARCH_AVRTINY, EF_AVR_ARCH_MASK);
546 BCaseMask(EF_AVR_ARCH_XMEGA1, EF_AVR_ARCH_MASK);
547 BCaseMask(EF_AVR_ARCH_XMEGA2, EF_AVR_ARCH_MASK);
548 BCaseMask(EF_AVR_ARCH_XMEGA3, EF_AVR_ARCH_MASK);
549 BCaseMask(EF_AVR_ARCH_XMEGA4, EF_AVR_ARCH_MASK);
550 BCaseMask(EF_AVR_ARCH_XMEGA5, EF_AVR_ARCH_MASK);
551 BCaseMask(EF_AVR_ARCH_XMEGA6, EF_AVR_ARCH_MASK);
552 BCaseMask(EF_AVR_ARCH_XMEGA7, EF_AVR_ARCH_MASK);
553 BCase(EF_AVR_LINKRELAX_PREPARED);
554 break;
556 BCaseMask(EF_LOONGARCH_ABI_SOFT_FLOAT, EF_LOONGARCH_ABI_MODIFIER_MASK);
557 BCaseMask(EF_LOONGARCH_ABI_SINGLE_FLOAT, EF_LOONGARCH_ABI_MODIFIER_MASK);
558 BCaseMask(EF_LOONGARCH_ABI_DOUBLE_FLOAT, EF_LOONGARCH_ABI_MODIFIER_MASK);
559 BCaseMask(EF_LOONGARCH_OBJABI_V0, EF_LOONGARCH_OBJABI_MASK);
560 BCaseMask(EF_LOONGARCH_OBJABI_V1, EF_LOONGARCH_OBJABI_MASK);
561 break;
562 case ELF::EM_RISCV:
563 BCase(EF_RISCV_RVC);
564 BCaseMask(EF_RISCV_FLOAT_ABI_SOFT, EF_RISCV_FLOAT_ABI);
565 BCaseMask(EF_RISCV_FLOAT_ABI_SINGLE, EF_RISCV_FLOAT_ABI);
566 BCaseMask(EF_RISCV_FLOAT_ABI_DOUBLE, EF_RISCV_FLOAT_ABI);
567 BCaseMask(EF_RISCV_FLOAT_ABI_QUAD, EF_RISCV_FLOAT_ABI);
568 BCase(EF_RISCV_RVE);
569 BCase(EF_RISCV_TSO);
570 break;
572 BCase(EF_SPARC_32PLUS);
573 BCase(EF_SPARC_SUN_US1);
574 BCase(EF_SPARC_SUN_US3);
575 BCase(EF_SPARC_HAL_R1);
576 break;
577 case ELF::EM_SPARCV9:
578 BCase(EF_SPARC_SUN_US1);
579 BCase(EF_SPARC_SUN_US3);
580 BCase(EF_SPARC_HAL_R1);
581 BCaseMask(EF_SPARCV9_RMO, EF_SPARCV9_MM);
582 BCaseMask(EF_SPARCV9_PSO, EF_SPARCV9_MM);
583 BCaseMask(EF_SPARCV9_TSO, EF_SPARCV9_MM);
584 break;
585 case ELF::EM_XTENSA:
586 BCase(EF_XTENSA_XT_INSN);
587 BCaseMask(EF_XTENSA_MACH_NONE, EF_XTENSA_MACH);
588 BCase(EF_XTENSA_XT_LIT);
589 break;
590 case ELF::EM_AMDGPU:
591 BCaseMask(EF_AMDGPU_MACH_NONE, EF_AMDGPU_MACH);
592 BCaseMask(EF_AMDGPU_MACH_R600_R600, EF_AMDGPU_MACH);
593 BCaseMask(EF_AMDGPU_MACH_R600_R630, EF_AMDGPU_MACH);
594 BCaseMask(EF_AMDGPU_MACH_R600_RS880, EF_AMDGPU_MACH);
595 BCaseMask(EF_AMDGPU_MACH_R600_RV670, EF_AMDGPU_MACH);
596 BCaseMask(EF_AMDGPU_MACH_R600_RV710, EF_AMDGPU_MACH);
597 BCaseMask(EF_AMDGPU_MACH_R600_RV730, EF_AMDGPU_MACH);
598 BCaseMask(EF_AMDGPU_MACH_R600_RV770, EF_AMDGPU_MACH);
599 BCaseMask(EF_AMDGPU_MACH_R600_CEDAR, EF_AMDGPU_MACH);
600 BCaseMask(EF_AMDGPU_MACH_R600_CYPRESS, EF_AMDGPU_MACH);
601 BCaseMask(EF_AMDGPU_MACH_R600_JUNIPER, EF_AMDGPU_MACH);
602 BCaseMask(EF_AMDGPU_MACH_R600_REDWOOD, EF_AMDGPU_MACH);
603 BCaseMask(EF_AMDGPU_MACH_R600_SUMO, EF_AMDGPU_MACH);
604 BCaseMask(EF_AMDGPU_MACH_R600_BARTS, EF_AMDGPU_MACH);
605 BCaseMask(EF_AMDGPU_MACH_R600_CAICOS, EF_AMDGPU_MACH);
606 BCaseMask(EF_AMDGPU_MACH_R600_CAYMAN, EF_AMDGPU_MACH);
607 BCaseMask(EF_AMDGPU_MACH_R600_TURKS, EF_AMDGPU_MACH);
608 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX600, EF_AMDGPU_MACH);
609 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX601, EF_AMDGPU_MACH);
610 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX602, EF_AMDGPU_MACH);
611 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX700, EF_AMDGPU_MACH);
612 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX701, EF_AMDGPU_MACH);
613 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX702, EF_AMDGPU_MACH);
614 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX703, EF_AMDGPU_MACH);
615 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX704, EF_AMDGPU_MACH);
616 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX705, EF_AMDGPU_MACH);
617 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX801, EF_AMDGPU_MACH);
618 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX802, EF_AMDGPU_MACH);
619 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX803, EF_AMDGPU_MACH);
620 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX805, EF_AMDGPU_MACH);
621 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX810, EF_AMDGPU_MACH);
622 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX900, EF_AMDGPU_MACH);
623 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX902, EF_AMDGPU_MACH);
624 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX904, EF_AMDGPU_MACH);
625 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX906, EF_AMDGPU_MACH);
626 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX908, EF_AMDGPU_MACH);
627 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX909, EF_AMDGPU_MACH);
628 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX90A, EF_AMDGPU_MACH);
629 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX90C, EF_AMDGPU_MACH);
630 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX942, EF_AMDGPU_MACH);
631 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX950, EF_AMDGPU_MACH);
632 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1010, EF_AMDGPU_MACH);
633 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1011, EF_AMDGPU_MACH);
634 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1012, EF_AMDGPU_MACH);
635 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1013, EF_AMDGPU_MACH);
636 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1030, EF_AMDGPU_MACH);
637 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1031, EF_AMDGPU_MACH);
638 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1032, EF_AMDGPU_MACH);
639 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1033, EF_AMDGPU_MACH);
640 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1034, EF_AMDGPU_MACH);
641 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1035, EF_AMDGPU_MACH);
642 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1036, EF_AMDGPU_MACH);
643 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1100, EF_AMDGPU_MACH);
644 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1101, EF_AMDGPU_MACH);
645 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1102, EF_AMDGPU_MACH);
646 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1103, EF_AMDGPU_MACH);
647 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1150, EF_AMDGPU_MACH);
648 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1151, EF_AMDGPU_MACH);
649 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1152, EF_AMDGPU_MACH);
650 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1153, EF_AMDGPU_MACH);
651 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1200, EF_AMDGPU_MACH);
652 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1201, EF_AMDGPU_MACH);
653 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1250, EF_AMDGPU_MACH);
654 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX1251, EF_AMDGPU_MACH);
655 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC, EF_AMDGPU_MACH);
656 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX9_4_GENERIC, EF_AMDGPU_MACH);
657 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC, EF_AMDGPU_MACH);
658 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC, EF_AMDGPU_MACH);
659 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC, EF_AMDGPU_MACH);
660 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC, EF_AMDGPU_MACH);
661 switch (Object->Header.ABIVersion) {
662 default:
663 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
664 [[fallthrough]];
666 BCase(EF_AMDGPU_FEATURE_XNACK_V3);
667 BCase(EF_AMDGPU_FEATURE_SRAMECC_V3);
668 break;
670 for (unsigned K = ELF::EF_AMDGPU_GENERIC_VERSION_MIN;
672 std::string Key = "EF_AMDGPU_GENERIC_VERSION_V" + std::to_string(K);
673 IO.maskedBitSetCase(Value, Key.c_str(),
676 }
677 [[fallthrough]];
680 BCaseMask(EF_AMDGPU_FEATURE_XNACK_UNSUPPORTED_V4,
681 EF_AMDGPU_FEATURE_XNACK_V4);
682 BCaseMask(EF_AMDGPU_FEATURE_XNACK_ANY_V4,
683 EF_AMDGPU_FEATURE_XNACK_V4);
684 BCaseMask(EF_AMDGPU_FEATURE_XNACK_OFF_V4,
685 EF_AMDGPU_FEATURE_XNACK_V4);
686 BCaseMask(EF_AMDGPU_FEATURE_XNACK_ON_V4,
687 EF_AMDGPU_FEATURE_XNACK_V4);
688 BCaseMask(EF_AMDGPU_FEATURE_SRAMECC_UNSUPPORTED_V4,
689 EF_AMDGPU_FEATURE_SRAMECC_V4);
690 BCaseMask(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4,
691 EF_AMDGPU_FEATURE_SRAMECC_V4);
692 BCaseMask(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4,
693 EF_AMDGPU_FEATURE_SRAMECC_V4);
694 BCaseMask(EF_AMDGPU_FEATURE_SRAMECC_ON_V4,
695 EF_AMDGPU_FEATURE_SRAMECC_V4);
696 break;
697 }
698 break;
699 default:
700 break;
701 }
702#undef BCase
703#undef BCaseMask
704}
705
707 IO &IO, ELFYAML::ELF_SHT &Value) {
708 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
709 assert(Object && "The IO context is not initialized");
710#define ECase(X) IO.enumCase(Value, #X, ELF::X)
711 ECase(SHT_NULL);
712 ECase(SHT_PROGBITS);
713 ECase(SHT_SYMTAB);
714 // FIXME: Issue a diagnostic with this information.
715 ECase(SHT_STRTAB);
716 ECase(SHT_RELA);
717 ECase(SHT_HASH);
718 ECase(SHT_DYNAMIC);
719 ECase(SHT_NOTE);
720 ECase(SHT_NOBITS);
721 ECase(SHT_REL);
722 ECase(SHT_SHLIB);
723 ECase(SHT_DYNSYM);
724 ECase(SHT_INIT_ARRAY);
725 ECase(SHT_FINI_ARRAY);
726 ECase(SHT_PREINIT_ARRAY);
727 ECase(SHT_GROUP);
728 ECase(SHT_SYMTAB_SHNDX);
729 ECase(SHT_RELR);
730 ECase(SHT_CREL);
731 ECase(SHT_ANDROID_REL);
732 ECase(SHT_ANDROID_RELA);
733 ECase(SHT_ANDROID_RELR);
734 ECase(SHT_LLVM_ODRTAB);
735 ECase(SHT_LLVM_LINKER_OPTIONS);
736 ECase(SHT_LLVM_CALL_GRAPH_PROFILE);
737 ECase(SHT_LLVM_ADDRSIG);
738 ECase(SHT_LLVM_DEPENDENT_LIBRARIES);
739 ECase(SHT_LLVM_SYMPART);
740 ECase(SHT_LLVM_PART_EHDR);
741 ECase(SHT_LLVM_PART_PHDR);
742 ECase(SHT_LLVM_BB_ADDR_MAP);
743 ECase(SHT_LLVM_OFFLOADING);
744 ECase(SHT_LLVM_LTO);
745 ECase(SHT_LLVM_CALL_GRAPH);
746 ECase(SHT_GNU_SFRAME);
747 ECase(SHT_GNU_ATTRIBUTES);
748 ECase(SHT_GNU_HASH);
749 ECase(SHT_GNU_verdef);
750 ECase(SHT_GNU_verneed);
751 ECase(SHT_GNU_versym);
752 switch (Object->getMachine()) {
753 case ELF::EM_ARM:
754 ECase(SHT_ARM_EXIDX);
755 ECase(SHT_ARM_PREEMPTMAP);
756 ECase(SHT_ARM_ATTRIBUTES);
757 ECase(SHT_ARM_DEBUGOVERLAY);
758 ECase(SHT_ARM_OVERLAYSECTION);
759 break;
760 case ELF::EM_HEXAGON:
761 ECase(SHT_HEX_ORDERED);
762 ECase(SHT_HEXAGON_ATTRIBUTES);
763 break;
764 case ELF::EM_X86_64:
765 ECase(SHT_X86_64_UNWIND);
766 break;
767 case ELF::EM_MIPS:
768 ECase(SHT_MIPS_REGINFO);
769 ECase(SHT_MIPS_OPTIONS);
770 ECase(SHT_MIPS_DWARF);
771 ECase(SHT_MIPS_ABIFLAGS);
772 break;
773 case ELF::EM_RISCV:
774 ECase(SHT_RISCV_ATTRIBUTES);
775 break;
776 case ELF::EM_MSP430:
777 ECase(SHT_MSP430_ATTRIBUTES);
778 break;
779 case ELF::EM_AARCH64:
780 ECase(SHT_AARCH64_AUTH_RELR);
781 ECase(SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
782 ECase(SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC);
783 break;
784 default:
785 // Nothing to do.
786 break;
787 }
788#undef ECase
789 IO.enumFallback<Hex32>(Value);
790}
791
793 ELFYAML::ELF_PF &Value) {
794#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
795 BCase(PF_X);
796 BCase(PF_W);
797 BCase(PF_R);
798}
799
801 ELFYAML::ELF_SHF &Value) {
802 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
803#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
804 BCase(SHF_WRITE);
805 BCase(SHF_ALLOC);
806 BCase(SHF_EXCLUDE);
807 BCase(SHF_EXECINSTR);
808 BCase(SHF_MERGE);
809 BCase(SHF_STRINGS);
810 BCase(SHF_INFO_LINK);
811 BCase(SHF_LINK_ORDER);
812 BCase(SHF_OS_NONCONFORMING);
813 BCase(SHF_GROUP);
814 BCase(SHF_TLS);
815 BCase(SHF_COMPRESSED);
816 switch (Object->getOSAbi()) {
818 BCase(SHF_SUNW_NODISCARD);
819 break;
820 default:
821 BCase(SHF_GNU_RETAIN);
822 break;
823 }
824 switch (Object->getMachine()) {
825 case ELF::EM_AARCH64:
826 BCase(SHF_AARCH64_PURECODE);
827 break;
828 case ELF::EM_ARM:
829 BCase(SHF_ARM_PURECODE);
830 break;
831 case ELF::EM_HEXAGON:
832 BCase(SHF_HEX_GPREL);
833 break;
834 case ELF::EM_MIPS:
835 BCase(SHF_MIPS_NODUPES);
836 BCase(SHF_MIPS_NAMES);
837 BCase(SHF_MIPS_LOCAL);
838 BCase(SHF_MIPS_NOSTRIP);
839 BCase(SHF_MIPS_GPREL);
840 BCase(SHF_MIPS_MERGE);
841 BCase(SHF_MIPS_ADDR);
842 BCase(SHF_MIPS_STRING);
843 break;
844 case ELF::EM_X86_64:
845 BCase(SHF_X86_64_LARGE);
846 break;
847 default:
848 // Nothing to do.
849 break;
850 }
851#undef BCase
852}
853
855 IO &IO, ELFYAML::ELF_SHN &Value) {
856 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
857 assert(Object && "The IO context is not initialized");
858#define ECase(X) IO.enumCase(Value, #X, ELF::X)
859 ECase(SHN_UNDEF);
860 ECase(SHN_LORESERVE);
861 ECase(SHN_LOPROC);
862 ECase(SHN_HIPROC);
863 ECase(SHN_LOOS);
864 ECase(SHN_HIOS);
865 ECase(SHN_ABS);
866 ECase(SHN_COMMON);
867 ECase(SHN_XINDEX);
868 ECase(SHN_HIRESERVE);
869 ECase(SHN_AMDGPU_LDS);
870
871 if (!IO.outputting() || Object->getMachine() == ELF::EM_MIPS) {
872 ECase(SHN_MIPS_ACOMMON);
873 ECase(SHN_MIPS_TEXT);
874 ECase(SHN_MIPS_DATA);
875 ECase(SHN_MIPS_SCOMMON);
876 ECase(SHN_MIPS_SUNDEFINED);
877 }
878
879 ECase(SHN_HEXAGON_SCOMMON);
880 ECase(SHN_HEXAGON_SCOMMON_1);
881 ECase(SHN_HEXAGON_SCOMMON_2);
882 ECase(SHN_HEXAGON_SCOMMON_4);
883 ECase(SHN_HEXAGON_SCOMMON_8);
884#undef ECase
885 IO.enumFallback<Hex16>(Value);
886}
887
889 IO &IO, ELFYAML::ELF_STB &Value) {
890#define ECase(X) IO.enumCase(Value, #X, ELF::X)
891 ECase(STB_LOCAL);
892 ECase(STB_GLOBAL);
893 ECase(STB_WEAK);
894 ECase(STB_GNU_UNIQUE);
895#undef ECase
896 IO.enumFallback<Hex8>(Value);
897}
898
900 IO &IO, ELFYAML::ELF_STT &Value) {
901#define ECase(X) IO.enumCase(Value, #X, ELF::X)
902 ECase(STT_NOTYPE);
903 ECase(STT_OBJECT);
904 ECase(STT_FUNC);
905 ECase(STT_SECTION);
906 ECase(STT_FILE);
907 ECase(STT_COMMON);
908 ECase(STT_TLS);
909 ECase(STT_GNU_IFUNC);
910#undef ECase
911 IO.enumFallback<Hex8>(Value);
912}
913
914
916 IO &IO, ELFYAML::ELF_RSS &Value) {
917#define ECase(X) IO.enumCase(Value, #X, ELF::X)
918 ECase(RSS_UNDEF);
919 ECase(RSS_GP);
920 ECase(RSS_GP0);
921 ECase(RSS_LOC);
922#undef ECase
923}
924
926 IO &IO, ELFYAML::ELF_REL &Value) {
927 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
928 assert(Object && "The IO context is not initialized");
929#define ELF_RELOC(X, Y) IO.enumCase(Value, #X, ELF::X);
930 switch (Object->getMachine()) {
931 case ELF::EM_X86_64:
932#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
933 break;
934 case ELF::EM_MIPS:
935#include "llvm/BinaryFormat/ELFRelocs/Mips.def"
936 break;
937 case ELF::EM_HEXAGON:
938#include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
939 break;
940 case ELF::EM_386:
941 case ELF::EM_IAMCU:
942#include "llvm/BinaryFormat/ELFRelocs/i386.def"
943 break;
944 case ELF::EM_AARCH64:
945#include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
946 break;
947 case ELF::EM_ARM:
948#include "llvm/BinaryFormat/ELFRelocs/ARM.def"
949 break;
950 case ELF::EM_ARC:
951#include "llvm/BinaryFormat/ELFRelocs/ARC.def"
952 break;
953 case ELF::EM_RISCV:
954#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
955 break;
956 case ELF::EM_LANAI:
957#include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
958 break;
959 case ELF::EM_AMDGPU:
960#include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
961 break;
962 case ELF::EM_BPF:
963#include "llvm/BinaryFormat/ELFRelocs/BPF.def"
964 break;
965 case ELF::EM_VE:
966#include "llvm/BinaryFormat/ELFRelocs/VE.def"
967 break;
968 case ELF::EM_CSKY:
969#include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
970 break;
971 case ELF::EM_PPC:
972#include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
973 break;
974 case ELF::EM_PPC64:
975#include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
976 break;
977 case ELF::EM_SPARCV9:
978#include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
979 break;
980 case ELF::EM_68K:
981#include "llvm/BinaryFormat/ELFRelocs/M68k.def"
982 break;
984#include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
985 break;
986 case ELF::EM_XTENSA:
987#include "llvm/BinaryFormat/ELFRelocs/Xtensa.def"
988 break;
989 default:
990 // Nothing to do.
991 break;
992 }
993#undef ELF_RELOC
994 IO.enumFallback<Hex32>(Value);
995}
996
998 IO &IO, ELFYAML::ELF_DYNTAG &Value) {
999 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
1000 assert(Object && "The IO context is not initialized");
1001
1002// Disable architecture specific tags by default. We might enable them below.
1003#define AARCH64_DYNAMIC_TAG(name, value)
1004#define MIPS_DYNAMIC_TAG(name, value)
1005#define HEXAGON_DYNAMIC_TAG(name, value)
1006#define PPC_DYNAMIC_TAG(name, value)
1007#define PPC64_DYNAMIC_TAG(name, value)
1008// Ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
1009#define DYNAMIC_TAG_MARKER(name, value)
1010
1011#define STRINGIFY(X) (#X)
1012#define DYNAMIC_TAG(X, Y) IO.enumCase(Value, STRINGIFY(DT_##X), ELF::DT_##X);
1013 switch (Object->getMachine()) {
1014 case ELF::EM_AARCH64:
1015#undef AARCH64_DYNAMIC_TAG
1016#define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
1017#include "llvm/BinaryFormat/DynamicTags.def"
1018#undef AARCH64_DYNAMIC_TAG
1019#define AARCH64_DYNAMIC_TAG(name, value)
1020 break;
1021 case ELF::EM_MIPS:
1022#undef MIPS_DYNAMIC_TAG
1023#define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
1024#include "llvm/BinaryFormat/DynamicTags.def"
1025#undef MIPS_DYNAMIC_TAG
1026#define MIPS_DYNAMIC_TAG(name, value)
1027 break;
1028 case ELF::EM_HEXAGON:
1029#undef HEXAGON_DYNAMIC_TAG
1030#define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
1031#include "llvm/BinaryFormat/DynamicTags.def"
1032#undef HEXAGON_DYNAMIC_TAG
1033#define HEXAGON_DYNAMIC_TAG(name, value)
1034 break;
1035 case ELF::EM_PPC:
1036#undef PPC_DYNAMIC_TAG
1037#define PPC_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
1038#include "llvm/BinaryFormat/DynamicTags.def"
1039#undef PPC_DYNAMIC_TAG
1040#define PPC_DYNAMIC_TAG(name, value)
1041 break;
1042 case ELF::EM_PPC64:
1043#undef PPC64_DYNAMIC_TAG
1044#define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
1045#include "llvm/BinaryFormat/DynamicTags.def"
1046#undef PPC64_DYNAMIC_TAG
1047#define PPC64_DYNAMIC_TAG(name, value)
1048 break;
1049 case ELF::EM_RISCV:
1050#undef RISCV_DYNAMIC_TAG
1051#define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
1052#include "llvm/BinaryFormat/DynamicTags.def"
1053#undef RISCV_DYNAMIC_TAG
1054#define RISCV_DYNAMIC_TAG(name, value)
1055 break;
1056 case ELF::EM_SPARCV9:
1057#undef SPARC_DYNAMIC_TAG
1058#define SPARC_DYNAMIC_TAG(name, value) DYNAMIC_TAG(name, value)
1059#include "llvm/BinaryFormat/DynamicTags.def"
1060#undef SPARC_DYNAMIC_TAG
1061#define SPARC_DYNAMIC_TAG(name, value)
1062 break;
1063 default:
1064#include "llvm/BinaryFormat/DynamicTags.def"
1065 break;
1066 }
1067#undef AARCH64_DYNAMIC_TAG
1068#undef MIPS_DYNAMIC_TAG
1069#undef HEXAGON_DYNAMIC_TAG
1070#undef PPC_DYNAMIC_TAG
1071#undef PPC64_DYNAMIC_TAG
1072#undef DYNAMIC_TAG_MARKER
1073#undef STRINGIFY
1074#undef DYNAMIC_TAG
1075
1076 IO.enumFallback<Hex64>(Value);
1077}
1078
1080 IO &IO, ELFYAML::MIPS_AFL_REG &Value) {
1081#define ECase(X) IO.enumCase(Value, #X, Mips::AFL_##X)
1082 ECase(REG_NONE);
1083 ECase(REG_32);
1084 ECase(REG_64);
1085 ECase(REG_128);
1086#undef ECase
1087}
1088
1090 IO &IO, ELFYAML::MIPS_ABI_FP &Value) {
1091#define ECase(X) IO.enumCase(Value, #X, Mips::Val_GNU_MIPS_ABI_##X)
1092 ECase(FP_ANY);
1093 ECase(FP_DOUBLE);
1094 ECase(FP_SINGLE);
1095 ECase(FP_SOFT);
1096 ECase(FP_OLD_64);
1097 ECase(FP_XX);
1098 ECase(FP_64);
1099 ECase(FP_64A);
1100#undef ECase
1101}
1102
1104 IO &IO, ELFYAML::MIPS_AFL_EXT &Value) {
1105#define ECase(X) IO.enumCase(Value, #X, Mips::AFL_##X)
1106 ECase(EXT_NONE);
1107 ECase(EXT_XLR);
1108 ECase(EXT_OCTEON2);
1109 ECase(EXT_OCTEONP);
1110 ECase(EXT_LOONGSON_3A);
1111 ECase(EXT_OCTEON);
1112 ECase(EXT_5900);
1113 ECase(EXT_4650);
1114 ECase(EXT_4010);
1115 ECase(EXT_4100);
1116 ECase(EXT_3900);
1117 ECase(EXT_10000);
1118 ECase(EXT_SB1);
1119 ECase(EXT_4111);
1120 ECase(EXT_4120);
1121 ECase(EXT_5400);
1122 ECase(EXT_5500);
1123 ECase(EXT_LOONGSON_2E);
1124 ECase(EXT_LOONGSON_2F);
1125 ECase(EXT_OCTEON3);
1126#undef ECase
1127}
1128
1130 IO &IO, ELFYAML::MIPS_ISA &Value) {
1131 IO.enumCase(Value, "MIPS1", 1);
1132 IO.enumCase(Value, "MIPS2", 2);
1133 IO.enumCase(Value, "MIPS3", 3);
1134 IO.enumCase(Value, "MIPS4", 4);
1135 IO.enumCase(Value, "MIPS5", 5);
1136 IO.enumCase(Value, "MIPS32", 32);
1137 IO.enumCase(Value, "MIPS64", 64);
1138 IO.enumFallback<Hex32>(Value);
1139}
1140
1142 IO &IO, ELFYAML::MIPS_AFL_ASE &Value) {
1143#define BCase(X) IO.bitSetCase(Value, #X, Mips::AFL_ASE_##X)
1144 BCase(DSP);
1145 BCase(DSPR2);
1146 BCase(EVA);
1147 BCase(MCU);
1148 BCase(MDMX);
1149 BCase(MIPS3D);
1150 BCase(MT);
1151 BCase(SMARTMIPS);
1152 BCase(VIRT);
1153 BCase(MSA);
1154 BCase(MIPS16);
1155 BCase(MICROMIPS);
1156 BCase(XPA);
1157 BCase(CRC);
1158 BCase(GINV);
1159#undef BCase
1160}
1161
1163 IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value) {
1164#define BCase(X) IO.bitSetCase(Value, #X, Mips::AFL_FLAGS1_##X)
1165 BCase(ODDSPREG);
1166#undef BCase
1167}
1168
1170 IO &IO, ELFYAML::SectionHeader &SHdr) {
1171 IO.mapRequired("Name", SHdr.Name);
1172}
1173
1175 ELFYAML::FileHeader &FileHdr) {
1176 IO.mapRequired("Class", FileHdr.Class);
1177 IO.mapRequired("Data", FileHdr.Data);
1178 IO.mapOptional("OSABI", FileHdr.OSABI, ELFYAML::ELF_ELFOSABI(0));
1179 IO.mapOptional("ABIVersion", FileHdr.ABIVersion, Hex8(0));
1180 IO.mapRequired("Type", FileHdr.Type);
1181 IO.mapOptional("Machine", FileHdr.Machine);
1182 IO.mapOptional("Flags", FileHdr.Flags);
1183 IO.mapOptional("Entry", FileHdr.Entry, Hex64(0));
1184 IO.mapOptional("SectionHeaderStringTable", FileHdr.SectionHeaderStringTable);
1185
1186 // obj2yaml does not dump these fields.
1187 assert(!IO.outputting() ||
1188 (!FileHdr.EPhOff && !FileHdr.EPhEntSize && !FileHdr.EPhNum));
1189 IO.mapOptional("EPhOff", FileHdr.EPhOff);
1190 IO.mapOptional("EPhEntSize", FileHdr.EPhEntSize);
1191 IO.mapOptional("EPhNum", FileHdr.EPhNum);
1192 IO.mapOptional("EShEntSize", FileHdr.EShEntSize);
1193 IO.mapOptional("EShOff", FileHdr.EShOff);
1194 IO.mapOptional("EShNum", FileHdr.EShNum);
1195 IO.mapOptional("EShStrNdx", FileHdr.EShStrNdx);
1196}
1197
1199 IO &IO, ELFYAML::ProgramHeader &Phdr) {
1200 IO.mapRequired("Type", Phdr.Type);
1201 IO.mapOptional("Flags", Phdr.Flags, ELFYAML::ELF_PF(0));
1202 IO.mapOptional("FirstSec", Phdr.FirstSec);
1203 IO.mapOptional("LastSec", Phdr.LastSec);
1204 IO.mapOptional("VAddr", Phdr.VAddr, Hex64(0));
1205 IO.mapOptional("PAddr", Phdr.PAddr, Phdr.VAddr);
1206 IO.mapOptional("Align", Phdr.Align);
1207 IO.mapOptional("FileSize", Phdr.FileSize);
1208 IO.mapOptional("MemSize", Phdr.MemSize);
1209 IO.mapOptional("Offset", Phdr.Offset);
1210}
1211
1213 IO &IO, ELFYAML::ProgramHeader &FileHdr) {
1214 if (!FileHdr.FirstSec && FileHdr.LastSec)
1215 return "the \"LastSec\" key can't be used without the \"FirstSec\" key";
1216 if (FileHdr.FirstSec && !FileHdr.LastSec)
1217 return "the \"FirstSec\" key can't be used without the \"LastSec\" key";
1218 return "";
1219}
1220
1221LLVM_YAML_STRONG_TYPEDEF(StringRef, StOtherPiece)
1222
1223template <> struct ScalarTraits<StOtherPiece> {
1224 static void output(const StOtherPiece &Val, void *, raw_ostream &Out) {
1225 Out << Val;
1226 }
1227 static StringRef input(StringRef Scalar, void *, StOtherPiece &Val) {
1228 Val = Scalar;
1229 return {};
1230 }
1232};
1233template <> struct SequenceElementTraits<StOtherPiece> {
1234 static const bool flow = true;
1235};
1236
1237template <> struct ScalarTraits<ELFYAML::YAMLFlowString> {
1238 static void output(const ELFYAML::YAMLFlowString &Val, void *,
1239 raw_ostream &Out) {
1240 Out << Val;
1241 }
1243 ELFYAML::YAMLFlowString &Val) {
1244 Val = Scalar;
1245 return {};
1246 }
1250};
1251template <> struct SequenceElementTraits<ELFYAML::YAMLFlowString> {
1252 static const bool flow = true;
1253};
1254
1255namespace {
1256
1257struct NormalizedOther {
1258 NormalizedOther(IO &IO) : YamlIO(IO) {}
1259 NormalizedOther(IO &IO, std::optional<uint8_t> Original) : YamlIO(IO) {
1260 assert(Original && "This constructor is only used for outputting YAML and "
1261 "assumes a non-empty Original");
1262 std::vector<StOtherPiece> Ret;
1263 const auto *Object = static_cast<ELFYAML::Object *>(YamlIO.getContext());
1264 for (std::pair<StringRef, uint8_t> &P :
1265 getFlags(Object->getMachine()).takeVector()) {
1266 uint8_t FlagValue = P.second;
1267 if ((*Original & FlagValue) != FlagValue)
1268 continue;
1269 *Original &= ~FlagValue;
1270 Ret.push_back({P.first});
1271 }
1272
1273 if (*Original != 0) {
1274 UnknownFlagsHolder = std::to_string(*Original);
1275 Ret.push_back({UnknownFlagsHolder});
1276 }
1277
1278 if (!Ret.empty())
1279 Other = std::move(Ret);
1280 }
1281
1282 uint8_t toValue(StringRef Name) {
1283 const auto *Object = static_cast<ELFYAML::Object *>(YamlIO.getContext());
1284 MapVector<StringRef, uint8_t> Flags = getFlags(Object->getMachine());
1285
1286 auto It = Flags.find(Name);
1287 if (It != Flags.end())
1288 return It->second;
1289
1290 uint8_t Val;
1291 if (to_integer(Name, Val))
1292 return Val;
1293
1294 YamlIO.setError("an unknown value is used for symbol's 'Other' field: " +
1295 Name);
1296 return 0;
1297 }
1298
1299 std::optional<uint8_t> denormalize(IO &) {
1300 if (!Other)
1301 return std::nullopt;
1302 uint8_t Ret = 0;
1303 for (StOtherPiece &Val : *Other)
1304 Ret |= toValue(Val);
1305 return Ret;
1306 }
1307
1308 // st_other field is used to encode symbol visibility and platform-dependent
1309 // flags and values. This method returns a name to value map that is used for
1310 // parsing and encoding this field.
1311 MapVector<StringRef, uint8_t> getFlags(unsigned EMachine) {
1313 // STV_* values are just enumeration values. We add them in a reversed order
1314 // because when we convert the st_other to named constants when printing
1315 // YAML we want to use a maximum number of bits on each step:
1316 // when we have st_other == 3, we want to print it as STV_PROTECTED (3), but
1317 // not as STV_HIDDEN (2) + STV_INTERNAL (1).
1318 Map["STV_PROTECTED"] = ELF::STV_PROTECTED;
1319 Map["STV_HIDDEN"] = ELF::STV_HIDDEN;
1320 Map["STV_INTERNAL"] = ELF::STV_INTERNAL;
1321 // STV_DEFAULT is used to represent the default visibility and has a value
1322 // 0. We want to be able to read it from YAML documents, but there is no
1323 // reason to print it.
1324 if (!YamlIO.outputting())
1325 Map["STV_DEFAULT"] = ELF::STV_DEFAULT;
1326
1327 // MIPS is not consistent. All of the STO_MIPS_* values are bit flags,
1328 // except STO_MIPS_MIPS16 which overlaps them. It should be checked and
1329 // consumed first when we print the output, because we do not want to print
1330 // any other flags that have the same bits instead.
1331 if (EMachine == ELF::EM_MIPS) {
1332 Map["STO_MIPS_MIPS16"] = ELF::STO_MIPS_MIPS16;
1333 Map["STO_MIPS_MICROMIPS"] = ELF::STO_MIPS_MICROMIPS;
1334 Map["STO_MIPS_PIC"] = ELF::STO_MIPS_PIC;
1335 Map["STO_MIPS_PLT"] = ELF::STO_MIPS_PLT;
1336 Map["STO_MIPS_OPTIONAL"] = ELF::STO_MIPS_OPTIONAL;
1337 }
1338
1339 if (EMachine == ELF::EM_AARCH64)
1340 Map["STO_AARCH64_VARIANT_PCS"] = ELF::STO_AARCH64_VARIANT_PCS;
1341 if (EMachine == ELF::EM_RISCV)
1342 Map["STO_RISCV_VARIANT_CC"] = ELF::STO_RISCV_VARIANT_CC;
1343 return Map;
1344 }
1345
1346 IO &YamlIO;
1347 std::optional<std::vector<StOtherPiece>> Other;
1348 std::string UnknownFlagsHolder;
1349};
1350
1351} // end anonymous namespace
1352
1353void ScalarTraits<ELFYAML::YAMLIntUInt>::output(const ELFYAML::YAMLIntUInt &Val,
1354 void *Ctx, raw_ostream &Out) {
1355 Out << Val;
1356}
1357
1358StringRef ScalarTraits<ELFYAML::YAMLIntUInt>::input(StringRef Scalar, void *Ctx,
1359 ELFYAML::YAMLIntUInt &Val) {
1360 const bool Is64 = static_cast<ELFYAML::Object *>(Ctx)->Header.Class ==
1361 ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
1362 StringRef ErrMsg = "invalid number";
1363 // We do not accept negative hex numbers because their meaning is ambiguous.
1364 // For example, would -0xfffffffff mean 1 or INT32_MIN?
1365 if (Scalar.empty() || Scalar.starts_with("-0x"))
1366 return ErrMsg;
1367
1368 if (Scalar.starts_with("-")) {
1369 const int64_t MinVal = Is64 ? INT64_MIN : INT32_MIN;
1370 long long Int;
1371 if (getAsSignedInteger(Scalar, /*Radix=*/0, Int) || (Int < MinVal))
1372 return ErrMsg;
1373 Val = Int;
1374 return "";
1375 }
1376
1377 const uint64_t MaxVal = Is64 ? UINT64_MAX : UINT32_MAX;
1378 unsigned long long UInt;
1379 if (getAsUnsignedInteger(Scalar, /*Radix=*/0, UInt) || (UInt > MaxVal))
1380 return ErrMsg;
1381 Val = UInt;
1382 return "";
1383}
1384
1385void MappingTraits<ELFYAML::Symbol>::mapping(IO &IO, ELFYAML::Symbol &Symbol) {
1386 IO.mapOptional("Name", Symbol.Name, StringRef());
1387 IO.mapOptional("StName", Symbol.StName);
1388 IO.mapOptional("Type", Symbol.Type, ELFYAML::ELF_STT(0));
1389 IO.mapOptional("Section", Symbol.Section);
1390 IO.mapOptional("Index", Symbol.Index);
1391 IO.mapOptional("Binding", Symbol.Binding, ELFYAML::ELF_STB(0));
1392 IO.mapOptional("Value", Symbol.Value);
1393 IO.mapOptional("Size", Symbol.Size);
1394
1395 // Symbol's Other field is a bit special. It is usually a field that
1396 // represents st_other and holds the symbol visibility. However, on some
1397 // platforms, it can contain bit fields and regular values, or even sometimes
1398 // a crazy mix of them (see comments for NormalizedOther). Because of this, we
1399 // need special handling.
1401 IO, Symbol.Other);
1402 IO.mapOptional("Other", Keys->Other);
1403}
1404
1406 ELFYAML::Symbol &Symbol) {
1407 if (Symbol.Index && Symbol.Section)
1408 return "Index and Section cannot both be specified for Symbol";
1409 return "";
1410}
1411
1413 IO.mapOptional("Name", Section.Name, StringRef());
1414 IO.mapRequired("Type", Section.Type);
1415 IO.mapOptional("Flags", Section.Flags);
1416 IO.mapOptional("Address", Section.Address);
1417 IO.mapOptional("Link", Section.Link);
1418 IO.mapOptional("AddressAlign", Section.AddressAlign, Hex64(0));
1419 IO.mapOptional("EntSize", Section.EntSize);
1420 IO.mapOptional("Offset", Section.Offset);
1421
1422 IO.mapOptional("Content", Section.Content);
1423 IO.mapOptional("Size", Section.Size);
1424
1425 // obj2yaml does not dump these fields. They are expected to be empty when we
1426 // are producing YAML, because yaml2obj sets appropriate values for them
1427 // automatically when they are not explicitly defined.
1428 assert(!IO.outputting() ||
1429 (!Section.ShOffset && !Section.ShSize && !Section.ShName &&
1430 !Section.ShFlags && !Section.ShType && !Section.ShAddrAlign));
1431 IO.mapOptional("ShAddrAlign", Section.ShAddrAlign);
1432 IO.mapOptional("ShName", Section.ShName);
1433 IO.mapOptional("ShOffset", Section.ShOffset);
1434 IO.mapOptional("ShSize", Section.ShSize);
1435 IO.mapOptional("ShFlags", Section.ShFlags);
1436 IO.mapOptional("ShType", Section.ShType);
1437}
1438
1440 commonSectionMapping(IO, Section);
1441 IO.mapOptional("Entries", Section.Entries);
1442}
1443
1445 commonSectionMapping(IO, Section);
1446
1447 // We also support reading a content as array of bytes using the ContentArray
1448 // key. obj2yaml never prints this field.
1449 assert(!IO.outputting() || !Section.ContentBuf);
1450 IO.mapOptional("ContentArray", Section.ContentBuf);
1451 if (Section.ContentBuf) {
1452 if (Section.Content)
1453 IO.setError("Content and ContentArray can't be used together");
1454 Section.Content = yaml::BinaryRef(*Section.ContentBuf);
1455 }
1456
1457 IO.mapOptional("Info", Section.Info);
1458}
1459
1461 commonSectionMapping(IO, Section);
1462 IO.mapOptional("Content", Section.Content);
1463 IO.mapOptional("Entries", Section.Entries);
1464 IO.mapOptional("PGOAnalyses", Section.PGOAnalyses);
1465}
1466
1468 commonSectionMapping(IO, Section);
1469 IO.mapOptional("Entries", Section.Entries);
1470}
1471
1472static void sectionMapping(IO &IO, ELFYAML::HashSection &Section) {
1473 commonSectionMapping(IO, Section);
1474 IO.mapOptional("Bucket", Section.Bucket);
1475 IO.mapOptional("Chain", Section.Chain);
1476
1477 // obj2yaml does not dump these fields. They can be used to override nchain
1478 // and nbucket values for creating broken sections.
1479 assert(!IO.outputting() || (!Section.NBucket && !Section.NChain));
1480 IO.mapOptional("NChain", Section.NChain);
1481 IO.mapOptional("NBucket", Section.NBucket);
1482}
1483
1484static void sectionMapping(IO &IO, ELFYAML::NoteSection &Section) {
1485 commonSectionMapping(IO, Section);
1486 IO.mapOptional("Notes", Section.Notes);
1487}
1488
1489
1491 commonSectionMapping(IO, Section);
1492 IO.mapOptional("Header", Section.Header);
1493 IO.mapOptional("BloomFilter", Section.BloomFilter);
1494 IO.mapOptional("HashBuckets", Section.HashBuckets);
1495 IO.mapOptional("HashValues", Section.HashValues);
1496}
1498 commonSectionMapping(IO, Section);
1499}
1500
1502 commonSectionMapping(IO, Section);
1503 IO.mapOptional("Info", Section.Info);
1504 IO.mapOptional("Entries", Section.Entries);
1505}
1506
1508 commonSectionMapping(IO, Section);
1509 IO.mapOptional("Entries", Section.Entries);
1510}
1511
1513 commonSectionMapping(IO, Section);
1514 IO.mapOptional("Info", Section.Info);
1515 IO.mapOptional("Dependencies", Section.VerneedV);
1516}
1517
1519 commonSectionMapping(IO, Section);
1520 IO.mapOptional("Info", Section.RelocatableSec, StringRef());
1521 IO.mapOptional("Relocations", Section.Relocations);
1522}
1523
1524static void sectionMapping(IO &IO, ELFYAML::RelrSection &Section) {
1525 commonSectionMapping(IO, Section);
1526 IO.mapOptional("Entries", Section.Entries);
1527}
1528
1530 commonSectionMapping(IO, Group);
1531 IO.mapOptional("Info", Group.Signature);
1532 IO.mapOptional("Members", Group.Members);
1533}
1534
1536 commonSectionMapping(IO, Section);
1537 IO.mapOptional("Entries", Section.Entries);
1538}
1539
1541 commonSectionMapping(IO, Section);
1542 IO.mapOptional("Symbols", Section.Symbols);
1543}
1544
1545static void fillMapping(IO &IO, ELFYAML::Fill &Fill) {
1546 IO.mapOptional("Name", Fill.Name, StringRef());
1547 IO.mapOptional("Pattern", Fill.Pattern);
1548 IO.mapOptional("Offset", Fill.Offset);
1549 IO.mapRequired("Size", Fill.Size);
1550}
1551
1554 IO.mapOptional("Offset", SHT.Offset);
1555 IO.mapOptional("Sections", SHT.Sections);
1556 IO.mapOptional("Excluded", SHT.Excluded);
1557 IO.mapOptional("NoHeaders", SHT.NoHeaders);
1558}
1559
1561 commonSectionMapping(IO, Section);
1562 IO.mapOptional("Options", Section.Options);
1563}
1564
1565static void sectionMapping(IO &IO,
1567 commonSectionMapping(IO, Section);
1568 IO.mapOptional("Libraries", Section.Libs);
1569}
1570
1572 commonSectionMapping(IO, Section);
1573 IO.mapOptional("Entries", Section.Entries);
1574}
1575
1576void MappingTraits<ELFYAML::SectionOrType>::mapping(
1577 IO &IO, ELFYAML::SectionOrType &sectionOrType) {
1578 IO.mapRequired("SectionOrType", sectionOrType.sectionNameOrType);
1579}
1580
1582 commonSectionMapping(IO, Section);
1583 IO.mapOptional("Entries", Section.Entries);
1584}
1585
1587 commonSectionMapping(IO, Section);
1588 IO.mapOptional("Version", Section.Version, Hex16(0));
1589 IO.mapRequired("ISA", Section.ISALevel);
1590 IO.mapOptional("ISARevision", Section.ISARevision, Hex8(0));
1591 IO.mapOptional("ISAExtension", Section.ISAExtension,
1592 ELFYAML::MIPS_AFL_EXT(Mips::AFL_EXT_NONE));
1593 IO.mapOptional("ASEs", Section.ASEs, ELFYAML::MIPS_AFL_ASE(0));
1594 IO.mapOptional("FpABI", Section.FpABI,
1595 ELFYAML::MIPS_ABI_FP(Mips::Val_GNU_MIPS_ABI_FP_ANY));
1596 IO.mapOptional("GPRSize", Section.GPRSize,
1597 ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE));
1598 IO.mapOptional("CPR1Size", Section.CPR1Size,
1599 ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE));
1600 IO.mapOptional("CPR2Size", Section.CPR2Size,
1601 ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE));
1602 IO.mapOptional("Flags1", Section.Flags1, ELFYAML::MIPS_AFL_FLAGS1(0));
1603 IO.mapOptional("Flags2", Section.Flags2, Hex32(0));
1604}
1605
1606static StringRef getStringValue(IO &IO, const char *Key) {
1607 StringRef Val;
1608 IO.mapRequired(Key, Val);
1609 return Val;
1610}
1611
1612static void setStringValue(IO &IO, const char *Key, StringRef Val) {
1613 IO.mapRequired(Key, Val);
1614}
1615
1616static bool isInteger(StringRef Val) {
1617 APInt Tmp;
1618 return !Val.getAsInteger(0, Tmp);
1619}
1620
1621void MappingTraits<std::unique_ptr<ELFYAML::Chunk>>::mapping(
1622 IO &IO, std::unique_ptr<ELFYAML::Chunk> &Section) {
1623 ELFYAML::ELF_SHT Type = ELF::SHT_NULL;
1624 StringRef TypeStr;
1625 if (IO.outputting()) {
1626 if (auto *S = dyn_cast<ELFYAML::Section>(Section.get()))
1627 Type = S->Type;
1628 else if (auto *SHT = dyn_cast<ELFYAML::SectionHeaderTable>(Section.get()))
1629 TypeStr = SHT->TypeStr;
1630 } else {
1631 // When the Type string does not have a "SHT_" prefix, we know it is not a
1632 // description of a regular ELF output section.
1633 TypeStr = getStringValue(IO, "Type");
1634 if (TypeStr.starts_with("SHT_") || isInteger(TypeStr))
1635 IO.mapRequired("Type", Type);
1636 }
1637
1638 if (TypeStr == "Fill") {
1639 assert(!IO.outputting()); // We don't dump fills currently.
1640 Section.reset(new ELFYAML::Fill());
1642 return;
1643 }
1644
1645 if (TypeStr == ELFYAML::SectionHeaderTable::TypeStr) {
1646 if (IO.outputting())
1647 setStringValue(IO, "Type", TypeStr);
1648 else
1649 Section.reset(new ELFYAML::SectionHeaderTable(/*IsImplicit=*/false));
1650
1653 return;
1654 }
1655
1656 const auto &Obj = *static_cast<ELFYAML::Object *>(IO.getContext());
1657 if (Obj.getMachine() == ELF::EM_MIPS && Type == ELF::SHT_MIPS_ABIFLAGS) {
1658 if (!IO.outputting())
1659 Section.reset(new ELFYAML::MipsABIFlags());
1661 return;
1662 }
1663
1664 if (Obj.getMachine() == ELF::EM_ARM && Type == ELF::SHT_ARM_EXIDX) {
1665 if (!IO.outputting())
1666 Section.reset(new ELFYAML::ARMIndexTableSection());
1668 return;
1669 }
1670
1671 switch (Type) {
1672 case ELF::SHT_DYNAMIC:
1673 if (!IO.outputting())
1674 Section.reset(new ELFYAML::DynamicSection());
1676 break;
1677 case ELF::SHT_REL:
1678 case ELF::SHT_RELA:
1679 case ELF::SHT_CREL:
1680 if (!IO.outputting())
1681 Section.reset(new ELFYAML::RelocationSection());
1683 break;
1684 case ELF::SHT_RELR:
1685 if (!IO.outputting())
1686 Section.reset(new ELFYAML::RelrSection());
1688 break;
1689 case ELF::SHT_GROUP:
1690 if (!IO.outputting())
1691 Section.reset(new ELFYAML::GroupSection());
1693 break;
1694 case ELF::SHT_NOBITS:
1695 if (!IO.outputting())
1696 Section.reset(new ELFYAML::NoBitsSection());
1698 break;
1699 case ELF::SHT_HASH:
1700 if (!IO.outputting())
1701 Section.reset(new ELFYAML::HashSection());
1703 break;
1704 case ELF::SHT_NOTE:
1705 if (!IO.outputting())
1706 Section.reset(new ELFYAML::NoteSection());
1708 break;
1709 case ELF::SHT_GNU_HASH:
1710 if (!IO.outputting())
1711 Section.reset(new ELFYAML::GnuHashSection());
1713 break;
1715 if (!IO.outputting())
1716 Section.reset(new ELFYAML::VerdefSection());
1718 break;
1720 if (!IO.outputting())
1721 Section.reset(new ELFYAML::SymverSection());
1723 break;
1725 if (!IO.outputting())
1726 Section.reset(new ELFYAML::VerneedSection());
1728 break;
1730 if (!IO.outputting())
1731 Section.reset(new ELFYAML::SymtabShndxSection());
1733 break;
1735 if (!IO.outputting())
1736 Section.reset(new ELFYAML::AddrsigSection());
1738 break;
1740 if (!IO.outputting())
1741 Section.reset(new ELFYAML::LinkerOptionsSection());
1743 break;
1745 if (!IO.outputting())
1746 Section.reset(new ELFYAML::DependentLibrariesSection());
1749 break;
1751 if (!IO.outputting())
1752 Section.reset(new ELFYAML::CallGraphProfileSection());
1754 break;
1756 if (!IO.outputting())
1757 Section.reset(new ELFYAML::BBAddrMapSection());
1759 break;
1760 default:
1761 if (!IO.outputting()) {
1762 StringRef Name;
1763 IO.mapOptional("Name", Name, StringRef());
1765
1767 Section = std::make_unique<ELFYAML::StackSizesSection>();
1768 else
1769 Section = std::make_unique<ELFYAML::RawContentSection>();
1770 }
1771
1773 sectionMapping(IO, *S);
1774 else
1776 }
1777}
1778
1780 IO &io, std::unique_ptr<ELFYAML::Chunk> &C) {
1781 if (const auto *F = dyn_cast<ELFYAML::Fill>(C.get())) {
1782 // Can't check the `Size`, as it's required and may be left uninitialized by
1783 // previous error.
1784 if (!io.error() && F->Pattern && F->Pattern->binary_size() != 0 && !F->Size)
1785 return "\"Size\" can't be 0 when \"Pattern\" is not empty";
1786 return "";
1787 }
1788
1789 if (const auto *SHT = dyn_cast<ELFYAML::SectionHeaderTable>(C.get())) {
1790 if (SHT->NoHeaders && (SHT->Sections || SHT->Excluded || SHT->Offset))
1791 return "NoHeaders can't be used together with Offset/Sections/Excluded";
1792 return "";
1793 }
1794
1795 const ELFYAML::Section &Sec = *cast<ELFYAML::Section>(C.get());
1796 if (Sec.Size && Sec.Content &&
1797 (uint64_t)(*Sec.Size) < Sec.Content->binary_size())
1798 return "Section size must be greater than or equal to the content size";
1799
1800 auto BuildErrPrefix = [](ArrayRef<std::pair<StringRef, bool>> EntV) {
1801 std::string Msg;
1802 for (size_t I = 0, E = EntV.size(); I != E; ++I) {
1803 StringRef Name = EntV[I].first;
1804 if (I == 0) {
1805 Msg = "\"" + Name.str() + "\"";
1806 continue;
1807 }
1808 if (I != EntV.size() - 1)
1809 Msg += ", \"" + Name.str() + "\"";
1810 else
1811 Msg += " and \"" + Name.str() + "\"";
1812 }
1813 return Msg;
1814 };
1815
1816 std::vector<std::pair<StringRef, bool>> Entries = Sec.getEntries();
1817 const size_t NumUsedEntries = llvm::count_if(
1818 Entries, [](const std::pair<StringRef, bool> &P) { return P.second; });
1819
1820 if ((Sec.Size || Sec.Content) && NumUsedEntries > 0)
1821 return BuildErrPrefix(Entries) +
1822 " cannot be used with \"Content\" or \"Size\"";
1823
1824 if (NumUsedEntries > 0 && Entries.size() != NumUsedEntries)
1825 return BuildErrPrefix(Entries) + " must be used together";
1826
1827 if (const auto *RawSection = dyn_cast<ELFYAML::RawContentSection>(C.get())) {
1828 if (RawSection->Flags && RawSection->ShFlags)
1829 return "ShFlags and Flags cannot be used together";
1830 return "";
1831 }
1832
1833 if (const auto *NB = dyn_cast<ELFYAML::NoBitsSection>(C.get())) {
1834 if (NB->Content)
1835 return "SHT_NOBITS section cannot have \"Content\"";
1836 return "";
1837 }
1838
1839 if (const auto *MF = dyn_cast<ELFYAML::MipsABIFlags>(C.get())) {
1840 if (MF->Content)
1841 return "\"Content\" key is not implemented for SHT_MIPS_ABIFLAGS "
1842 "sections";
1843 if (MF->Size)
1844 return "\"Size\" key is not implemented for SHT_MIPS_ABIFLAGS sections";
1845 return "";
1846 }
1847
1848 return "";
1849}
1850
1851namespace {
1852
1853struct NormalizedMips64RelType {
1854 NormalizedMips64RelType(IO &)
1855 : Type(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)),
1856 Type2(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)),
1857 Type3(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)),
1858 SpecSym(ELFYAML::ELF_REL(ELF::RSS_UNDEF)) {}
1859 NormalizedMips64RelType(IO &, ELFYAML::ELF_REL Original)
1860 : Type(Original & 0xFF), Type2(Original >> 8 & 0xFF),
1861 Type3(Original >> 16 & 0xFF), SpecSym(Original >> 24 & 0xFF) {}
1862
1863 ELFYAML::ELF_REL denormalize(IO &) {
1864 ELFYAML::ELF_REL Res = Type | Type2 << 8 | Type3 << 16 | SpecSym << 24;
1865 return Res;
1866 }
1867
1868 ELFYAML::ELF_REL Type;
1869 ELFYAML::ELF_REL Type2;
1870 ELFYAML::ELF_REL Type3;
1871 ELFYAML::ELF_RSS SpecSym;
1872};
1873
1874} // end anonymous namespace
1875
1877 IO &IO, ELFYAML::StackSizeEntry &E) {
1878 assert(IO.getContext() && "The IO context is not initialized");
1879 IO.mapOptional("Address", E.Address, Hex64(0));
1880 IO.mapRequired("Size", E.Size);
1881}
1882
1884 IO &IO, ELFYAML::BBAddrMapEntry &E) {
1885 assert(IO.getContext() && "The IO context is not initialized");
1886 IO.mapRequired("Version", E.Version);
1887 IO.mapOptional("Feature", E.Feature, Hex16(0));
1888 IO.mapOptional("NumBBRanges", E.NumBBRanges);
1889 IO.mapOptional("BBRanges", E.BBRanges);
1890}
1891
1893 IO &IO, ELFYAML::BBAddrMapEntry::BBRangeEntry &E) {
1894 IO.mapOptional("BaseAddress", E.BaseAddress, Hex64(0));
1895 IO.mapOptional("NumBlocks", E.NumBlocks);
1896 IO.mapOptional("BBEntries", E.BBEntries);
1897}
1898
1900 IO &IO, ELFYAML::BBAddrMapEntry::BBEntry &E) {
1901 assert(IO.getContext() && "The IO context is not initialized");
1902 IO.mapOptional("ID", E.ID);
1903 IO.mapRequired("AddressOffset", E.AddressOffset);
1904 IO.mapRequired("Size", E.Size);
1905 IO.mapRequired("Metadata", E.Metadata);
1906 IO.mapOptional("CallsiteEndOffsets", E.CallsiteEndOffsets);
1907 IO.mapOptional("Hash", E.Hash);
1908}
1909
1911 IO &IO, ELFYAML::PGOAnalysisMapEntry &E) {
1912 assert(IO.getContext() && "The IO context is not initialized");
1913 IO.mapOptional("FuncEntryCount", E.FuncEntryCount);
1914 IO.mapOptional("PGOBBEntries", E.PGOBBEntries);
1915}
1916
1918 IO &IO, ELFYAML::PGOAnalysisMapEntry::PGOBBEntry &E) {
1919 assert(IO.getContext() && "The IO context is not initialized");
1920 IO.mapOptional("BBFreq", E.BBFreq);
1921 IO.mapOptional("PostLinkBBFreq", E.PostLinkBBFreq);
1922 IO.mapOptional("Successors", E.Successors);
1923}
1924
1926 mapping(IO &IO,
1927 ELFYAML::PGOAnalysisMapEntry::PGOBBEntry::SuccessorEntry &E) {
1928 assert(IO.getContext() && "The IO context is not initialized");
1929 IO.mapRequired("ID", E.ID);
1930 IO.mapRequired("BrProb", E.BrProb);
1931 IO.mapOptional("PostLinkBrFreq", E.PostLinkBrFreq);
1932}
1933
1935 ELFYAML::GnuHashHeader &E) {
1936 assert(IO.getContext() && "The IO context is not initialized");
1937 IO.mapOptional("NBuckets", E.NBuckets);
1938 IO.mapRequired("SymNdx", E.SymNdx);
1939 IO.mapOptional("MaskWords", E.MaskWords);
1940 IO.mapRequired("Shift2", E.Shift2);
1941}
1942
1944 ELFYAML::DynamicEntry &Rel) {
1945 assert(IO.getContext() && "The IO context is not initialized");
1946
1947 IO.mapRequired("Tag", Rel.Tag);
1948 IO.mapRequired("Value", Rel.Val);
1949}
1950
1951void MappingTraits<ELFYAML::NoteEntry>::mapping(IO &IO, ELFYAML::NoteEntry &N) {
1952 assert(IO.getContext() && "The IO context is not initialized");
1953
1954 IO.mapOptional("Name", N.Name);
1955 IO.mapOptional("Desc", N.Desc);
1956 IO.mapRequired("Type", N.Type);
1957}
1958
1960 ELFYAML::VerdefEntry &E) {
1961 assert(IO.getContext() && "The IO context is not initialized");
1962
1963 IO.mapOptional("Version", E.Version);
1964 IO.mapOptional("Flags", E.Flags);
1965 IO.mapOptional("VersionNdx", E.VersionNdx);
1966 IO.mapOptional("Hash", E.Hash);
1967 IO.mapOptional("VDAux", E.VDAux);
1968 IO.mapRequired("Names", E.VerNames);
1969}
1970
1972 ELFYAML::VerneedEntry &E) {
1973 assert(IO.getContext() && "The IO context is not initialized");
1974
1975 IO.mapRequired("Version", E.Version);
1976 IO.mapRequired("File", E.File);
1977 IO.mapRequired("Entries", E.AuxV);
1978}
1979
1981 ELFYAML::VernauxEntry &E) {
1982 assert(IO.getContext() && "The IO context is not initialized");
1983
1984 IO.mapRequired("Name", E.Name);
1985 IO.mapRequired("Hash", E.Hash);
1986 IO.mapRequired("Flags", E.Flags);
1987 IO.mapRequired("Other", E.Other);
1988}
1989
1991 ELFYAML::Relocation &Rel) {
1992 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
1993 assert(Object && "The IO context is not initialized");
1994
1995 IO.mapOptional("Offset", Rel.Offset, (Hex64)0);
1996 IO.mapOptional("Symbol", Rel.Symbol);
1997
1998 if (Object->getMachine() == ELFYAML::ELF_EM(ELF::EM_MIPS) &&
1999 Object->Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64)) {
2001 IO, Rel.Type);
2002 IO.mapRequired("Type", Key->Type);
2003 IO.mapOptional("Type2", Key->Type2, ELFYAML::ELF_REL(ELF::R_MIPS_NONE));
2004 IO.mapOptional("Type3", Key->Type3, ELFYAML::ELF_REL(ELF::R_MIPS_NONE));
2005 IO.mapOptional("SpecSym", Key->SpecSym, ELFYAML::ELF_RSS(ELF::RSS_UNDEF));
2006 } else
2007 IO.mapRequired("Type", Rel.Type);
2008
2009 IO.mapOptional("Addend", Rel.Addend, (ELFYAML::YAMLIntUInt)0);
2010}
2011
2013 IO &IO, ELFYAML::ARMIndexTableEntry &E) {
2014 assert(IO.getContext() && "The IO context is not initialized");
2015 IO.mapRequired("Offset", E.Offset);
2016
2017 StringRef CantUnwind = "EXIDX_CANTUNWIND";
2018 if (IO.outputting() && (uint32_t)E.Value == ARM::EHABI::EXIDX_CANTUNWIND)
2019 IO.mapRequired("Value", CantUnwind);
2020 else if (!IO.outputting() && getStringValue(IO, "Value") == CantUnwind)
2022 else
2023 IO.mapRequired("Value", E.Value);
2024}
2025
2026void MappingTraits<ELFYAML::Object>::mapping(IO &IO, ELFYAML::Object &Object) {
2027 assert(!IO.getContext() && "The IO context is initialized already");
2028 IO.setContext(&Object);
2029 IO.mapTag("!ELF", true);
2030 IO.mapRequired("FileHeader", Object.Header);
2031 IO.mapOptional("ProgramHeaders", Object.ProgramHeaders);
2032 IO.mapOptional("Sections", Object.Chunks);
2033 IO.mapOptional("Symbols", Object.Symbols);
2034 IO.mapOptional("DynamicSymbols", Object.DynamicSymbols);
2035 IO.mapOptional("DWARF", Object.DWARF);
2036 if (Object.DWARF) {
2037 Object.DWARF->IsLittleEndian =
2038 Object.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
2039 Object.DWARF->Is64BitAddrSize =
2040 Object.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
2041 }
2042 IO.setContext(nullptr);
2043}
2044
2046 ELFYAML::LinkerOption &Opt) {
2047 assert(IO.getContext() && "The IO context is not initialized");
2048 IO.mapRequired("Name", Opt.Key);
2049 IO.mapRequired("Value", Opt.Value);
2050}
2051
2053 IO &IO, ELFYAML::CallGraphEntryWeight &E) {
2054 assert(IO.getContext() && "The IO context is not initialized");
2055 IO.mapRequired("Weight", E.Weight);
2056}
2057
2058LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG)
2059LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP)
2060LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT)
2061LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE)
2062LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1)
2063
2064} // end namespace yaml
2065
2066} // end namespace llvm
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define BCase(X)
Definition COFFYAML.cpp:267
#define BCaseMask(X, M)
This file declares classes for handling the YAML representation of ELF.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
This file implements a map that provides insertion order iteration.
#define P(N)
static uint32_t getFlags(const Symbol *Sym)
Definition TapiFile.cpp:26
#define ECase(X)
#define LLVM_YAML_STRONG_TYPEDEF(_base, _type)
YAML I/O does conversion based on types. But often native data types are just a typedef of built in i...
Class for arbitrary precision integers.
Definition APInt.h:78
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition StringRef.h:472
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:261
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
Type(LLVMContext &C, TypeID tid)
Definition Type.h:93
LLVM Value Representation.
Definition Value.h:75
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
Specialized YAMLIO scalar type for representing a binary blob.
Definition YAML.h:64
void setContext(void *)
virtual bool outputting() const =0
virtual bool mapTag(StringRef Tag, bool Default=false)=0
void enumCase(T &Val, StringRef Str, const T ConstVal)
Definition YAMLTraits.h:734
void mapOptional(StringRef Key, T &Val)
Definition YAMLTraits.h:799
virtual void setError(const Twine &)=0
void * getContext() const
void enumFallback(T &Val)
Definition YAMLTraits.h:748
void mapRequired(StringRef Key, T &Val)
Definition YAMLTraits.h:789
void maskedBitSetCase(T &Val, StringRef Str, T ConstVal, T Mask)
Definition YAMLTraits.h:774
#define UINT64_MAX
Definition DataTypes.h:77
#define INT64_MIN
Definition DataTypes.h:74
@ EXIDX_CANTUNWIND
Special entry for the function never unwind.
Definition ARMEHABI.h:35
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
StringRef dropUniqueSuffix(StringRef S)
@ EM_MSP430
Definition ELF.h:227
@ EM_PPC64
Definition ELF.h:154
@ EM_CSKY
Definition ELF.h:326
@ EM_SPARC32PLUS
Definition ELF.h:151
@ EM_NONE
Definition ELF.h:138
@ EM_68K
Definition ELF.h:142
@ EM_386
Definition ELF.h:141
@ EM_LOONGARCH
Definition ELF.h:327
@ EM_BPF
Definition ELF.h:324
@ EM_PPC
Definition ELF.h:153
@ EM_X86_64
Definition ELF.h:183
@ EM_HEXAGON
Definition ELF.h:262
@ EM_LANAI
Definition ELF.h:323
@ EM_MIPS
Definition ELF.h:146
@ EM_ARC
Definition ELF.h:166
@ EM_SPARCV9
Definition ELF.h:164
@ EM_AARCH64
Definition ELF.h:285
@ EM_XTENSA
Definition ELF.h:216
@ EM_RISCV
Definition ELF.h:322
@ EM_ARM
Definition ELF.h:161
@ EM_VE
Definition ELF.h:325
@ EM_IAMCU
Definition ELF.h:144
@ EM_AMDGPU
Definition ELF.h:321
@ EM_AVR
Definition ELF.h:204
@ STO_MIPS_PIC
Definition ELF.h:601
@ STO_MIPS_OPTIONAL
Definition ELF.h:599
@ STO_MIPS_MICROMIPS
Definition ELF.h:602
@ STO_MIPS_MIPS16
Definition ELF.h:603
@ STO_MIPS_PLT
Definition ELF.h:600
@ SHT_LLVM_DEPENDENT_LIBRARIES
Definition ELF.h:1178
@ SHT_GROUP
Definition ELF.h:1161
@ SHT_LLVM_LINKER_OPTIONS
Definition ELF.h:1175
@ SHT_REL
Definition ELF.h:1155
@ SHT_NULL
Definition ELF.h:1146
@ SHT_LLVM_CALL_GRAPH_PROFILE
Definition ELF.h:1184
@ SHT_NOBITS
Definition ELF.h:1154
@ SHT_GNU_verneed
Definition ELF.h:1198
@ SHT_RELR
Definition ELF.h:1165
@ SHT_GNU_verdef
Definition ELF.h:1197
@ SHT_CREL
Definition ELF.h:1168
@ SHT_DYNAMIC
Definition ELF.h:1152
@ SHT_SYMTAB_SHNDX
Definition ELF.h:1162
@ SHT_LLVM_ADDRSIG
Definition ELF.h:1176
@ SHT_ARM_EXIDX
Definition ELF.h:1204
@ SHT_LLVM_BB_ADDR_MAP
Definition ELF.h:1185
@ SHT_GNU_HASH
Definition ELF.h:1196
@ SHT_RELA
Definition ELF.h:1150
@ SHT_NOTE
Definition ELF.h:1153
@ SHT_MIPS_ABIFLAGS
Definition ELF.h:1227
@ SHT_GNU_versym
Definition ELF.h:1199
@ SHT_HASH
Definition ELF.h:1151
@ ELFOSABI_SOLARIS
Definition ELF.h:352
@ ELFDATA2LSB
Definition ELF.h:340
@ RSS_UNDEF
Definition ELF.h:1445
@ ELFABIVERSION_AMDGPU_HSA_V4
Definition ELF.h:384
@ ELFABIVERSION_AMDGPU_HSA_V5
Definition ELF.h:385
@ ELFABIVERSION_AMDGPU_HSA_V3
Definition ELF.h:383
@ ELFABIVERSION_AMDGPU_HSA_V6
Definition ELF.h:386
@ ELFCLASS64
Definition ELF.h:334
@ STO_RISCV_VARIANT_CC
Definition ELF.h:731
@ EF_AMDGPU_GENERIC_VERSION_MAX
Definition ELF.h:924
@ EF_AMDGPU_GENERIC_VERSION_OFFSET
Definition ELF.h:922
@ EF_AMDGPU_GENERIC_VERSION_MIN
Definition ELF.h:923
@ EF_AMDGPU_GENERIC_VERSION
Definition ELF.h:921
@ STO_AARCH64_VARIANT_PCS
Definition ELF.h:444
@ STV_INTERNAL
Definition ELF.h:1435
@ STV_HIDDEN
Definition ELF.h:1436
@ STV_PROTECTED
Definition ELF.h:1437
@ STV_DEFAULT
Definition ELF.h:1434
@ Val_GNU_MIPS_ABI_FP_ANY
static void sectionMapping(IO &IO, ELFYAML::DynamicSection &Section)
Definition ELFYAML.cpp:1439
QuotingType
Describe which type of quotes should be used when quoting is necessary.
Definition YAMLTraits.h:131
static void groupSectionMapping(IO &IO, ELFYAML::GroupSection &Group)
Definition ELFYAML.cpp:1529
static StringRef getStringValue(IO &IO, const char *Key)
Definition ELFYAML.cpp:1606
static void sectionHeaderTableMapping(IO &IO, ELFYAML::SectionHeaderTable &SHT)
Definition ELFYAML.cpp:1552
static void commonSectionMapping(IO &IO, ELFYAML::Section &Section)
Definition ELFYAML.cpp:1412
static bool isInteger(StringRef Val)
Definition ELFYAML.cpp:1616
static void fillMapping(IO &IO, ELFYAML::Fill &Fill)
Definition ELFYAML.cpp:1545
static void setStringValue(IO &IO, const char *Key, StringRef Val)
Definition ELFYAML.cpp:1612
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI bool getAsSignedInteger(StringRef Str, unsigned Radix, long long &Result)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
@ Other
Any other memory.
Definition ModRef.h:68
ArrayRef(const T &OneElt) -> ArrayRef< T >
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1961
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool getAsUnsignedInteger(StringRef Str, unsigned Radix, unsigned long long &Result)
Helper functions for StringRef::getAsInteger.
bool to_integer(StringRef S, N &Num, unsigned Base=0)
Convert the string S to an integer of the specified type using the radix Base. If Base is 0,...
#define N
std::optional< llvm::yaml::Hex64 > Offset
Definition ELFYAML.h:259
llvm::yaml::Hex64 Size
Definition ELFYAML.h:329
std::optional< yaml::BinaryRef > Pattern
Definition ELFYAML.h:328
std::optional< std::vector< SectionOrType > > Members
Definition ELFYAML.h:623
std::optional< StringRef > Signature
Definition ELFYAML.h:624
unsigned getMachine() const
Definition ELFYAML.cpp:35
FileHeader Header
Definition ELFYAML.h:742
ELF_ELFOSABI getOSAbi() const
Definition ELFYAML.cpp:33
std::optional< std::vector< SectionHeader > > Excluded
Definition ELFYAML.h:345
static constexpr StringRef TypeStr
Definition ELFYAML.h:358
std::optional< bool > NoHeaders
Definition ELFYAML.h:346
std::optional< std::vector< SectionHeader > > Sections
Definition ELFYAML.h:344
static bool nameMatches(StringRef Name)
Definition ELFYAML.h:389
This class should be specialized by any type that needs to be converted to/from a YAML mapping.
Definition YAMLTraits.h:62
This class should be specialized by any integer type that is a union of bit values and the YAML repre...
Definition YAMLTraits.h:123
This class should be specialized by any integral type that converts to/from a YAML scalar where there...
Definition YAMLTraits.h:107
static StringRef input(StringRef Scalar, void *, ELFYAML::YAMLFlowString &Val)
Definition ELFYAML.cpp:1242
static void output(const ELFYAML::YAMLFlowString &Val, void *, raw_ostream &Out)
Definition ELFYAML.cpp:1238
static QuotingType mustQuote(StringRef S)
Definition ELFYAML.cpp:1247
static StringRef input(StringRef Scalar, void *, StOtherPiece &Val)
Definition ELFYAML.cpp:1227
static QuotingType mustQuote(StringRef)
Definition ELFYAML.cpp:1231
static void output(const StOtherPiece &Val, void *, raw_ostream &Out)
Definition ELFYAML.cpp:1224
This class should be specialized by type that requires custom conversion to/from a yaml scalar.
Definition YAMLTraits.h:149
This class should be specialized by any type for which vectors of that type need to be converted to/f...
Definition YAMLTraits.h:257