72#define DEBUG_TYPE "loop-accesses"
76 cl::desc(
"Sets the SIMD width. Zero is autoselect."),
82 cl::desc(
"Sets the vectorization interleave count. "
83 "Zero is autoselect."),
90 cl::desc(
"When performing memory disambiguation checks at runtime do not "
91 "generate more than this number of comparisons (default = 8)."),
98 cl::desc(
"Maximum number of comparisons done when trying to merge "
99 "runtime memory checks. (default = 100)"),
108 cl::desc(
"Maximum number of dependences collected by "
109 "loop-access analysis (default = 100)"),
125 cl::desc(
"Enable symbolic stride memory access versioning"));
130 "store-to-load-forwarding-conflict-detection",
cl::Hidden,
131 cl::desc(
"Enable conflict detection in loop-access analysis"),
136 cl::desc(
"Maximum recursion depth when finding forked SCEVs (default = 5)"),
141 cl::desc(
"Speculate that non-constant strides are unit in LAA"),
147 "Hoist inner loop runtime memory checks to outer loop if possible"),
152 return ::VectorizationInterleave.getNumOccurrences() > 0;
179 <<
" by: " << *Expr <<
"\n");
185 :
High(RtCheck.Pointers[Index].End),
Low(RtCheck.Pointers[Index].Start),
217 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
223 bool CheckForNonNull, CheckForFreed;
224 Value *StartPtrV = StartPtr->getValue();
226 DL, CheckForNonNull, CheckForFreed);
228 if (DerefBytes && (CheckForNonNull || CheckForFreed))
236 Instruction *CtxI = &*L->getHeader()->getFirstNonPHIIt();
237 if (
BasicBlock *LoopPred = L->getLoopPredecessor()) {
239 CtxI = LoopPred->getTerminator();
249 DerefRK = std::max(DerefRK, RK);
257 if (DerefBytesSCEV->
isZero())
277 const SCEV *OffsetAtLastIter =
279 if (!OffsetAtLastIter) {
289 if (!OffsetAtLastIter)
298 if (IsKnownNonNegative) {
321 DenseMap<std::pair<const SCEV *, Type *>,
324 std::optional<ScalarEvolution::LoopGuards> &LoopGuards) {
325 std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
328 {{PtrExpr, AccessTy},
332 PtrBoundsPair = &Iter->second;
342 ScStart = ScEnd = PtrExpr;
344 ScStart = AR->getStart();
350 ScEnd = AR->evaluateAtIteration(BTC, *SE);
360 DT, AC, LoopGuards)) {
361 ScEnd = AR->evaluateAtIteration(MaxBTC, *SE);
366 ConstantInt::get(EltSizeSCEV->
getType(), -1), AR->getType())));
369 const SCEV *Step = AR->getStepRecurrence(*SE);
374 if (CStep->getValue()->isNegative())
392 std::pair<const SCEV *, const SCEV *> Res = {ScStart, ScEnd};
394 *PtrBoundsPair = Res;
401 Type *AccessTy,
bool WritePtr,
402 unsigned DepSetId,
unsigned ASId,
408 Lp, PtrExpr, AccessTy, BTC, SymbolicMaxBTC, PSE.
getSE(),
409 &DC.getPointerBounds(), DC.getDT(), DC.getAC(), LoopGuards);
412 "must be able to compute both start and end expressions");
413 Pointers.emplace_back(
Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
417bool RuntimePointerChecking::tryToCreateDiffCheck(
440 if (AccSrc.
size() != 1 || AccSink.
size() != 1)
444 if (AccSink[0] < AccSrc[0])
448 const SCEV *SrcStart;
449 const SCEV *SinkStart;
451 if (!
match(Src->Expr,
470 std::max(
DL.getTypeAllocSize(SrcTy),
DL.getTypeAllocSize(DstTy));
500 const Loop *StartARLoop = SrcStartAR->getLoop();
501 if (StartARLoop == SinkStartAR->getLoop() &&
506 SrcStartAR->getStepRecurrence(*SE) !=
507 SinkStartAR->getStepRecurrence(*SE)) {
508 LLVM_DEBUG(
dbgs() <<
"LAA: Not creating diff runtime check, since these "
509 "cannot be hoisted out of the outer loop\n");
515 <<
"SrcStart: " << *SrcStartInt <<
'\n'
516 <<
"SinkStartInt: " << *SinkStartInt <<
'\n');
517 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
518 Src->NeedsFreeze ||
Sink->NeedsFreeze);
523 SmallVector<RuntimePointerCheck, 4> Checks;
531 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
532 Checks.emplace_back(&CGI, &CGJ);
541 assert(Checks.empty() &&
"Checks is not empty");
542 groupChecks(DepCands, UseDependencies);
548 for (
const auto &
I : M.Members)
549 for (
const auto &J :
N.Members)
562 return Diff->isNegative() ? J :
I;
569 RtCheck.
Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
570 RtCheck.
Pointers[Index].NeedsFreeze, *RtCheck.SE);
574 const SCEV *End,
unsigned AS,
578 "all pointers in a checking group must be in the same address space");
604void RuntimePointerChecking::groupChecks(
650 if (!UseDependencies) {
656 unsigned TotalComparisons = 0;
659 for (
unsigned Index = 0; Index <
Pointers.size(); ++Index)
660 PositionMap[
Pointers[Index].PointerValue].push_back(Index);
686 auto PointerI = PositionMap.
find(M.getPointer());
689 if (PointerI == PositionMap.
end())
691 for (
unsigned Pointer : PointerI->second) {
708 if (Group.addPointer(Pointer, *
this)) {
718 Groups.emplace_back(Pointer, *
this);
731 return (PtrToPartition[PtrIdx1] != -1 &&
732 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
755 for (
const auto &[Idx, CG] :
enumerate(CheckingGroups))
756 PtrIndices[&CG] = Idx;
762 unsigned Depth)
const {
765 for (
const auto &[Check1, Check2] : Checks) {
766 const auto &
First = Check1->Members, &Second = Check2->Members;
768 OS.
indent(
Depth + 2) <<
"Comparing group GRP" << PtrIndices.at(Check1)
770 for (
unsigned K :
First)
772 OS.
indent(
Depth + 2) <<
"Against group GRP" << PtrIndices.at(Check2)
774 for (
unsigned K : Second)
787 OS.
indent(
Depth + 2) <<
"Group GRP" << PtrIndices.at(&CG) <<
":\n";
788 OS.
indent(
Depth + 4) <<
"(Low: " << *CG.Low <<
" High: " << *CG.High
790 for (
unsigned Member : CG.Members) {
802class AccessAnalysis {
812 : TheLoop(TheLoop), BAA(*
AA), AST(BAA), LI(LI), DT(DT), DepCands(DA),
813 PSE(PSE), LoopAliasScopes(LoopAliasScopes) {
815 BAA.enableCrossIterationMode();
821 AST.add(adjustLoc(
Loc));
822 Accesses[MemAccessInfo(
Ptr,
false)].insert(AccessTy);
824 ReadOnlyPtr.insert(
Ptr);
828 void addStore(
const MemoryLocation &Loc,
Type *AccessTy) {
830 AST.add(adjustLoc(Loc));
831 Accesses[MemAccessInfo(
Ptr,
true)].insert(AccessTy);
841 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
843 const DenseMap<Value *, const SCEV *> &Strides,
844 DenseMap<Value *, unsigned> &DepSetId,
845 Loop *TheLoop,
unsigned &RunningDepId,
846 unsigned ASId,
bool Assume);
856 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, Loop *TheLoop,
857 const DenseMap<Value *, const SCEV *> &Strides,
858 Value *&UncomputablePtr,
bool AllowPartial);
862 void buildDependenceSets() {
863 processMemAccesses();
871 bool isDependencyCheckNeeded()
const {
return !CheckDeps.empty(); }
874 void resetDepChecks(MemoryDepChecker &DepChecker) {
879 const MemAccessInfoList &getDependenciesToCheck()
const {
return CheckDeps; }
882 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
886 MemoryLocation adjustLoc(MemoryLocation Loc)
const {
896 MDNode *adjustAliasScopeList(MDNode *ScopeList)
const {
903 return LoopAliasScopes.contains(cast<MDNode>(Scope));
912 void processMemAccesses();
922 MemAccessInfoList CheckDeps;
925 SmallPtrSet<Value*, 16> ReadOnlyPtr;
952 bool IsRTCheckAnalysisNeeded =
false;
955 PredicatedScalarEvolution &PSE;
957 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
961 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
968static std::optional<int64_t>
972 LLVM_DEBUG(
dbgs() <<
"LAA: Bad stride - Scalable object: " << *AccessTy
980 dbgs() <<
"LAA: Bad stride - Not striding over innermost loop ";
984 dbgs() <<
"SCEV: " << *AR <<
"\n";
993 const APInt *APStepVal;
996 dbgs() <<
"LAA: Bad stride - Not a constant strided ";
999 dbgs() <<
"SCEV: " << *AR <<
"\n";
1001 return std::nullopt;
1005 TypeSize AllocSize =
DL.getTypeAllocSize(AccessTy);
1009 std::optional<int64_t> StepVal = APStepVal->
trySExtValue();
1011 return std::nullopt;
1014 return *StepVal %
Size ? std::nullopt : std::make_optional(*StepVal /
Size);
1022 std::optional<int64_t> Stride = std::nullopt) {
1036 GEP &&
GEP->hasNoUnsignedSignedWrap()) {
1039 if (L->getHeader() == L->getLoopLatch() ||
1041 if (getLoadStorePointerOperand(U) != GEP)
1043 BasicBlock *UserBB = cast<Instruction>(U)->getParent();
1044 return !LoopAccessInfo::blockNeedsPredication(UserBB, L, &DT);
1057 (Stride == 1 || Stride == -1))
1061 if (
Ptr && Assume) {
1064 <<
"LAA: Pointer: " << *
Ptr <<
"\n"
1065 <<
"LAA: SCEV: " << *AR <<
"\n"
1066 <<
"LAA: Added an overflow assumption\n");
1079 while (!WorkList.
empty()) {
1087 if (PN && InnermostLoop.
contains(PN->getParent()) &&
1088 PN->getParent() != InnermostLoop.
getHeader()) {
1133 auto GetBinOpExpr = [&SE](
unsigned Opcode,
const SCEV *L,
const SCEV *R) {
1135 case Instruction::Add:
1137 case Instruction::Sub:
1145 unsigned Opcode =
I->getOpcode();
1147 case Instruction::GetElementPtr: {
1149 Type *SourceTy =
GEP->getSourceElementType();
1152 if (
I->getNumOperands() != 2 || SourceTy->
isVectorTy()) {
1162 bool NeedsFreeze =
any_of(BaseScevs, UndefPoisonCheck) ||
1163 any_of(OffsetScevs, UndefPoisonCheck);
1168 if (OffsetScevs.
size() == 2 && BaseScevs.
size() == 1)
1170 else if (BaseScevs.
size() == 2 && OffsetScevs.
size() == 1)
1173 ScevList.emplace_back(Scev, NeedsFreeze);
1184 for (
auto [
B, O] :
zip(BaseScevs, OffsetScevs)) {
1195 case Instruction::Select: {
1202 if (ChildScevs.
size() == 2)
1208 case Instruction::PHI: {
1213 if (
I->getNumOperands() == 2) {
1217 if (ChildScevs.
size() == 2)
1223 case Instruction::Add:
1224 case Instruction::Sub: {
1232 any_of(LScevs, UndefPoisonCheck) ||
any_of(RScevs, UndefPoisonCheck);
1237 if (LScevs.
size() == 2 && RScevs.
size() == 1)
1239 else if (RScevs.
size() == 2 && LScevs.
size() == 1)
1242 ScevList.emplace_back(Scev, NeedsFreeze);
1246 for (
auto [L, R] :
zip(LScevs, RScevs))
1247 ScevList.emplace_back(GetBinOpExpr(Opcode,
get<0>(L),
get<0>(R)),
1253 LLVM_DEBUG(
dbgs() <<
"ForkedPtr unhandled instruction: " << *
I <<
"\n");
1259bool AccessAnalysis::createCheckForAccess(
1263 unsigned &RunningDepId,
unsigned ASId,
bool Assume) {
1271 "Must have some runtime-check pointer candidates");
1275 auto IsLoopInvariantOrAR =
1280 if (RTCheckPtrs.
size() == 2 &&
all_of(RTCheckPtrs, IsLoopInvariantOrAR)) {
1283 <<
"\t(" << Idx <<
") " << *Q.getPointer() <<
"\n");
1290 for (
auto &
P : RTCheckPtrs) {
1303 if (RTCheckPtrs.size() == 1) {
1309 if (!
isNoWrap(PSE, AR, RTCheckPtrs.size() == 1 ?
Ptr :
nullptr, AccessTy,
1310 TheLoop, Assume, DT))
1314 for (
const auto &[PtrExpr, NeedsFreeze] : RTCheckPtrs) {
1318 if (isDependencyCheckNeeded()) {
1320 unsigned &LeaderId = DepSetId[Leader];
1322 LeaderId = RunningDepId++;
1326 DepId = RunningDepId++;
1328 bool IsWrite =
Access.getInt();
1329 RtCheck.
insert(TheLoop,
Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1337bool AccessAnalysis::canCheckPtrAtRT(
1340 bool AllowPartial) {
1343 bool CanDoRT =
true;
1345 bool MayNeedRTCheck =
false;
1346 if (!IsRTCheckAnalysisNeeded)
return true;
1348 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1353 for (
const auto &AS : AST) {
1354 int NumReadPtrChecks = 0;
1355 int NumWritePtrChecks = 0;
1356 bool CanDoAliasSetRT =
true;
1358 auto ASPointers = AS.getPointers();
1362 unsigned RunningDepId = 1;
1370 for (
const Value *ConstPtr : ASPointers) {
1372 bool IsWrite =
Accesses.contains(MemAccessInfo(
Ptr,
true));
1374 ++NumWritePtrChecks;
1382 if (NumWritePtrChecks == 0 ||
1383 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1384 assert((ASPointers.size() <= 1 ||
1387 MemAccessInfo AccessWrite(
const_cast<Value *
>(
Ptr),
1389 return !DepCands.
contains(AccessWrite);
1391 "Can only skip updating CanDoRT below, if all entries in AS "
1392 "are reads or there is at most 1 entry");
1396 for (
auto &
Access : AccessInfos) {
1398 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1399 DepSetId, TheLoop, RunningDepId, ASId,
1402 << *
Access.getPointer() <<
'\n');
1404 CanDoAliasSetRT =
false;
1418 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.
empty();
1422 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1426 CanDoAliasSetRT =
true;
1427 for (
const auto &[
Access, AccessTy] : Retries) {
1428 if (!createCheckForAccess(RtCheck,
Access, AccessTy, StridesMap,
1429 DepSetId, TheLoop, RunningDepId, ASId,
1431 CanDoAliasSetRT =
false;
1432 UncomputablePtr =
Access.getPointer();
1439 CanDoRT &= CanDoAliasSetRT;
1440 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1449 unsigned NumPointers = RtCheck.
Pointers.size();
1450 for (
unsigned i = 0; i < NumPointers; ++i) {
1451 for (
unsigned j = i + 1;
j < NumPointers; ++
j) {
1453 if (RtCheck.
Pointers[i].DependencySetId ==
1454 RtCheck.
Pointers[j].DependencySetId)
1467 dbgs() <<
"LAA: Runtime check would require comparison between"
1468 " different address spaces\n");
1474 if (MayNeedRTCheck && (CanDoRT || AllowPartial))
1478 <<
" pointer comparisons.\n");
1485 bool CanDoRTIfNeeded = !RtCheck.
Need || CanDoRT;
1486 assert(CanDoRTIfNeeded == (CanDoRT || !MayNeedRTCheck) &&
1487 "CanDoRTIfNeeded depends on RtCheck.Need");
1488 if (!CanDoRTIfNeeded && !AllowPartial)
1490 return CanDoRTIfNeeded;
1493void AccessAnalysis::processMemAccesses() {
1503 dbgs() <<
"\t" << *
A.getPointer() <<
" ("
1506 : (ReadOnlyPtr.contains(
A.getPointer()) ?
"read-only"
1515 for (
const auto &AS : AST) {
1519 auto ASPointers = AS.getPointers();
1521 bool SetHasWrite =
false;
1526 UnderlyingObjToAccessMap;
1527 UnderlyingObjToAccessMap ObjToLastAccess;
1530 PtrAccessMap DeferredAccesses;
1534 for (
int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1535 bool UseDeferred = SetIteration > 0;
1536 PtrAccessMap &S = UseDeferred ? DeferredAccesses :
Accesses;
1538 for (
const Value *ConstPtr : ASPointers) {
1543 for (
const auto &[AC,
_] : S) {
1544 if (AC.getPointer() !=
Ptr)
1547 bool IsWrite = AC.getInt();
1551 bool IsReadOnlyPtr = ReadOnlyPtr.contains(
Ptr) && !IsWrite;
1552 if (UseDeferred && !IsReadOnlyPtr)
1556 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1557 S.contains(MemAccessInfo(
Ptr,
false))) &&
1558 "Alias-set pointer not in the access set?");
1568 if (!UseDeferred && IsReadOnlyPtr) {
1571 DeferredAccesses.insert({
Access, {}});
1579 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1580 CheckDeps.push_back(
Access);
1581 IsRTCheckAnalysisNeeded =
true;
1593 <<
"Underlying objects for pointer " << *
Ptr <<
"\n");
1594 for (
const Value *UnderlyingObj : UOs) {
1603 auto [It,
Inserted] = ObjToLastAccess.try_emplace(
1621std::optional<int64_t>
1625 bool Assume,
bool ShouldCheckWrap) {
1630 assert(
Ptr->getType()->isPointerTy() &&
"Unexpected non-ptr");
1638 <<
" SCEV: " << *PtrScev <<
"\n");
1639 return std::nullopt;
1642 std::optional<int64_t> Stride =
1644 if (!ShouldCheckWrap || !Stride)
1647 if (
isNoWrap(PSE, AR,
Ptr, AccessTy, Lp, Assume, DT, Stride))
1651 dbgs() <<
"LAA: Bad stride - Pointer may wrap in the address space "
1652 << *
Ptr <<
" SCEV: " << *AR <<
"\n");
1653 return std::nullopt;
1661 assert(PtrA && PtrB &&
"Expected non-nullptr pointers.");
1669 return std::nullopt;
1676 return std::nullopt;
1677 unsigned IdxWidth =
DL.getIndexSizeInBits(ASA);
1679 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1685 std::optional<int64_t> Val;
1686 if (PtrA1 == PtrB1) {
1693 return std::nullopt;
1695 IdxWidth =
DL.getIndexSizeInBits(ASA);
1696 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1705 std::optional<APInt> Diff =
1708 return std::nullopt;
1709 Val = Diff->trySExtValue();
1713 return std::nullopt;
1715 int64_t
Size =
DL.getTypeStoreSize(ElemTyA);
1716 int64_t Dist = *Val /
Size;
1720 if (!StrictCheck || Dist *
Size == Val)
1722 return std::nullopt;
1729 VL, [](
const Value *V) {
return V->getType()->isPointerTy(); }) &&
1730 "Expected list of pointer operands.");
1733 Value *Ptr0 = VL[0];
1735 using DistOrdPair = std::pair<int64_t, unsigned>;
1737 std::set<DistOrdPair,
decltype(Compare)> Offsets(Compare);
1738 Offsets.emplace(0, 0);
1739 bool IsConsecutive =
true;
1741 std::optional<int64_t> Diff =
1749 auto [It, IsInserted] = Offsets.emplace(
Offset, Idx);
1753 IsConsecutive &= std::next(It) == Offsets.end();
1755 SortedIndices.
clear();
1756 if (!IsConsecutive) {
1759 for (
auto [Idx, Off] :
enumerate(Offsets))
1760 SortedIndices[Idx] = Off.second;
1774 std::optional<int64_t> Diff =
1783 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1784 InstMap.push_back(SI);
1792 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1793 InstMap.push_back(LI);
1855bool MemoryDepChecker::couldPreventStoreLoadForward(
uint64_t Distance,
1857 unsigned CommonStride) {
1870 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1872 uint64_t MaxVFWithoutSLForwardIssuesPowerOf2 =
1874 MaxStoreLoadForwardSafeDistanceInBits);
1877 for (
uint64_t VF = 2 * TypeByteSize;
1878 VF <= MaxVFWithoutSLForwardIssuesPowerOf2; VF *= 2) {
1881 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1882 MaxVFWithoutSLForwardIssuesPowerOf2 = (VF >> 1);
1887 if (MaxVFWithoutSLForwardIssuesPowerOf2 < 2 * TypeByteSize) {
1889 dbgs() <<
"LAA: Distance " << Distance
1890 <<
" that could cause a store-load forwarding conflict\n");
1895 MaxVFWithoutSLForwardIssuesPowerOf2 <
1896 MaxStoreLoadForwardSafeDistanceInBits &&
1897 MaxVFWithoutSLForwardIssuesPowerOf2 !=
1900 bit_floor(MaxVFWithoutSLForwardIssuesPowerOf2 / CommonStride);
1901 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1902 MaxStoreLoadForwardSafeDistanceInBits =
1903 std::min(MaxStoreLoadForwardSafeDistanceInBits, MaxVFInBits);
1926 const SCEV &MaxBTC,
const SCEV &Dist,
1949 const SCEV *CastedDist = &Dist;
1950 const SCEV *CastedProduct = Product;
1957 if (DistTypeSizeBits > ProductTypeSizeBits)
1982 assert(Stride > 1 &&
"The stride must be greater than 1");
1983 assert(TypeByteSize > 0 &&
"The type size in byte must be non-zero");
1984 assert(Distance > 0 &&
"The distance must be non-zero");
1987 if (Distance % TypeByteSize)
2006 return Distance % Stride;
2009bool MemoryDepChecker::areAccessesCompletelyBeforeOrAfter(
const SCEV *Src,
2013 const SCEV *BTC = PSE.getBackedgeTakenCount();
2014 const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
2015 ScalarEvolution &SE = *PSE.getSE();
2016 const auto &[SrcStart_, SrcEnd_] =
2018 &SE, &PointerBounds, DT, AC, LoopGuards);
2022 const auto &[SinkStart_, SinkEnd_] =
2024 &SE, &PointerBounds, DT, AC, LoopGuards);
2043 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
2044MemoryDepChecker::getDependenceDistanceStrideAndSize(
2045 const AccessAnalysis::MemAccessInfo &
A, Instruction *AInst,
2046 const AccessAnalysis::MemAccessInfo &
B, Instruction *BInst) {
2047 const auto &
DL = InnermostLoop->getHeader()->getDataLayout();
2048 auto &SE = *PSE.getSE();
2049 const auto &[APtr, AIsWrite] =
A;
2050 const auto &[BPtr, BIsWrite] =
B;
2053 if (!AIsWrite && !BIsWrite)
2060 if (APtr->getType()->getPointerAddressSpace() !=
2061 BPtr->getType()->getPointerAddressSpace())
2065 PSE, ATy, APtr, InnermostLoop, *DT, SymbolicStrides,
true,
true);
2067 PSE, BTy, BPtr, InnermostLoop, *DT, SymbolicStrides,
true,
true);
2069 const SCEV *Src = PSE.getSCEV(APtr);
2070 const SCEV *
Sink = PSE.getSCEV(BPtr);
2075 if (StrideAPtr && *StrideAPtr < 0) {
2084 LLVM_DEBUG(
dbgs() <<
"LAA: Src Scev: " << *Src <<
"Sink Scev: " << *Sink
2086 LLVM_DEBUG(
dbgs() <<
"LAA: Distance for " << *AInst <<
" to " << *BInst
2087 <<
": " << *Dist <<
"\n");
2096 if (!StrideAPtr || !StrideBPtr) {
2097 LLVM_DEBUG(
dbgs() <<
"Pointer access with non-constant stride\n");
2101 int64_t StrideAPtrInt = *StrideAPtr;
2102 int64_t StrideBPtrInt = *StrideBPtr;
2103 LLVM_DEBUG(
dbgs() <<
"LAA: Src induction step: " << StrideAPtrInt
2104 <<
" Sink induction step: " << StrideBPtrInt <<
"\n");
2107 if (!StrideAPtrInt || !StrideBPtrInt)
2112 if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) {
2114 dbgs() <<
"Pointer access with strides in different directions\n");
2118 TypeSize AStoreSz =
DL.getTypeStoreSize(ATy);
2119 TypeSize BStoreSz =
DL.getTypeStoreSize(BTy);
2123 uint64_t ASz =
DL.getTypeAllocSize(ATy);
2124 uint64_t BSz =
DL.getTypeAllocSize(BTy);
2125 uint64_t TypeByteSize = (AStoreSz == BStoreSz) ? BSz : 0;
2127 uint64_t StrideAScaled = std::abs(StrideAPtrInt) * ASz;
2128 uint64_t StrideBScaled = std::abs(StrideBPtrInt) * BSz;
2130 uint64_t MaxStride = std::max(StrideAScaled, StrideBScaled);
2132 std::optional<uint64_t> CommonStride;
2133 if (StrideAScaled == StrideBScaled)
2134 CommonStride = StrideAScaled;
2139 ShouldRetryWithRuntimeChecks |= StrideAPtrInt == StrideBPtrInt;
2147 return DepDistanceStrideAndSizeInfo(Dist, MaxStride, CommonStride,
2148 TypeByteSize, AIsWrite, BIsWrite);
2152MemoryDepChecker::isDependent(
const MemAccessInfo &
A,
unsigned AIdx,
2154 assert(AIdx < BIdx &&
"Must pass arguments in program order");
2159 auto CheckCompletelyBeforeOrAfter = [&]() {
2160 auto *APtr =
A.getPointer();
2161 auto *BPtr =
B.getPointer();
2164 const SCEV *Src = PSE.getSCEV(APtr);
2165 const SCEV *
Sink = PSE.getSCEV(BPtr);
2166 return areAccessesCompletelyBeforeOrAfter(Src, ATy, Sink, BTy);
2172 getDependenceDistanceStrideAndSize(
A, InstMap[AIdx],
B, InstMap[BIdx]);
2173 if (std::holds_alternative<Dependence::DepType>(Res)) {
2175 CheckCompletelyBeforeOrAfter())
2177 return std::get<Dependence::DepType>(Res);
2180 auto &[Dist, MaxStride, CommonStride, TypeByteSize, AIsWrite, BIsWrite] =
2181 std::get<DepDistanceStrideAndSizeInfo>(Res);
2182 bool HasSameSize = TypeByteSize > 0;
2184 ScalarEvolution &SE = *PSE.getSE();
2185 auto &
DL = InnermostLoop->getHeader()->getDataLayout();
2194 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), *Dist, MaxStride))
2199 const APInt *APDist =
nullptr;
2200 uint64_t ConstDist =
2207 if (ConstDist > 0 && CommonStride && CommonStride > 1 && HasSameSize &&
2226 LLVM_DEBUG(
dbgs() <<
"LAA: possibly zero dependence difference but "
2227 "different type sizes\n");
2231 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2246 couldPreventStoreLoadForward(ConstDist, TypeByteSize)) {
2248 dbgs() <<
"LAA: Forward but may prevent st->ld forwarding\n");
2259 if (MinDistance <= 0) {
2265 if (CheckCompletelyBeforeOrAfter())
2267 LLVM_DEBUG(
dbgs() <<
"LAA: ReadWrite-Write positive dependency with "
2268 "different type sizes\n");
2277 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2312 uint64_t MinDistanceNeeded = MaxStride * (MinNumIter - 1) + TypeByteSize;
2313 if (MinDistanceNeeded >
static_cast<uint64_t
>(MinDistance)) {
2322 LLVM_DEBUG(
dbgs() <<
"LAA: Failure because of positive minimum distance "
2323 << MinDistance <<
'\n');
2329 if (MinDistanceNeeded > MinDepDistBytes) {
2331 << MinDistanceNeeded <<
" size in bytes\n");
2336 std::min(
static_cast<uint64_t
>(MinDistance), MinDepDistBytes);
2338 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2340 couldPreventStoreLoadForward(MinDistance, TypeByteSize, *CommonStride))
2343 uint64_t MaxVF = MinDepDistBytes / MaxStride;
2344 LLVM_DEBUG(
dbgs() <<
"LAA: Positive min distance " << MinDistance
2345 <<
" with max VF = " << MaxVF <<
'\n');
2347 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2348 if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) {
2357 if (CheckCompletelyBeforeOrAfter())
2360 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2367 MinDepDistBytes = -1;
2382 bool AIIsWrite = AI->getInt();
2386 (AIIsWrite ? AI : std::next(AI));
2389 auto &Acc = Accesses[*AI];
2390 for (std::vector<unsigned>::iterator I1 = Acc.begin(), I1E = Acc.end();
2394 for (std::vector<unsigned>::iterator
2395 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2396 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2398 auto A = std::make_pair(&*AI, *I1);
2399 auto B = std::make_pair(&*OI, *I2);
2406 isDependent(*
A.first,
A.second, *
B.first,
B.second);
2413 if (RecordDependences) {
2415 Dependences.emplace_back(
A.second,
B.second,
Type);
2418 RecordDependences =
false;
2419 Dependences.clear();
2421 <<
"Too many dependences, stopped recording\n");
2433 LLVM_DEBUG(
dbgs() <<
"Total Dependences: " << Dependences.size() <<
"\n");
2440 auto I = Accesses.find(
Access);
2442 if (
I != Accesses.end()) {
2443 transform(
I->second, std::back_inserter(Insts),
2444 [&](
unsigned Idx) { return this->InstMap[Idx]; });
2455 "ForwardButPreventsForwarding",
2457 "BackwardVectorizable",
2458 "BackwardVectorizableButPreventsForwarding"};
2468bool LoopAccessInfo::canAnalyzeLoop() {
2477 recordAnalysis(
"NotInnerMostLoop") <<
"loop is not the innermost loop";
2484 dbgs() <<
"LAA: loop control flow is not understood by analyzer\n");
2485 recordAnalysis(
"CFGNotUnderstood")
2486 <<
"loop control flow is not understood by analyzer";
2495 recordAnalysis(
"CantComputeNumberOfIterations")
2496 <<
"could not determine number of loop iterations";
2497 LLVM_DEBUG(
dbgs() <<
"LAA: SCEV could not compute the loop exit count.\n");
2506bool LoopAccessInfo::analyzeLoop(AAResults *AA,
const LoopInfo *LI,
2507 const TargetLibraryInfo *TLI,
2508 DominatorTree *DT) {
2512 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2515 unsigned NumReads = 0;
2516 unsigned NumReadWrites = 0;
2518 bool HasComplexMemInst =
false;
2521 HasConvergentOp =
false;
2523 PtrRtChecking->Pointers.
clear();
2524 PtrRtChecking->Need =
false;
2528 const bool EnableMemAccessVersioningOfLoop =
2534 LoopBlocksRPO RPOT(TheLoop);
2536 for (BasicBlock *BB : RPOT) {
2539 for (Instruction &
I : *BB) {
2542 HasConvergentOp =
true;
2547 if (HasComplexMemInst && HasConvergentOp)
2551 if (HasComplexMemInst)
2556 for (
Metadata *
Op : Decl->getScopeList()->operands())
2569 if (
I.mayReadFromMemory()) {
2570 auto hasPointerArgs = [](CallBase *CB) {
2572 return Arg->getType()->isPointerTy();
2585 recordAnalysis(
"CantVectorizeInstruction", Ld)
2586 <<
"instruction cannot be vectorized";
2587 HasComplexMemInst =
true;
2590 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2591 recordAnalysis(
"NonSimpleLoad", Ld)
2592 <<
"read with atomic ordering or volatile read";
2594 HasComplexMemInst =
true;
2600 if (EnableMemAccessVersioningOfLoop)
2601 collectStridedAccess(Ld);
2606 if (
I.mayWriteToMemory()) {
2609 recordAnalysis(
"CantVectorizeInstruction", St)
2610 <<
"instruction cannot be vectorized";
2611 HasComplexMemInst =
true;
2614 if (!St->isSimple() && !IsAnnotatedParallel) {
2615 recordAnalysis(
"NonSimpleStore", St)
2616 <<
"write with atomic ordering or volatile write";
2618 HasComplexMemInst =
true;
2624 if (EnableMemAccessVersioningOfLoop)
2625 collectStridedAccess(St);
2630 if (HasComplexMemInst)
2638 if (!Stores.
size()) {
2644 AccessAnalysis
Accesses(TheLoop, AA, LI, *DT, DepCands, *PSE,
2652 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2656 SmallPtrSet<Value *, 16> UniformStores;
2658 for (StoreInst *ST : Stores) {
2661 if (isInvariant(
Ptr)) {
2663 StoresToInvariantAddresses.push_back(ST);
2664 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2671 if (Seen.
insert({Ptr, AccessTy}).second) {
2678 if (blockNeedsPredication(
ST->getParent(), TheLoop, DT))
2682 [&Accesses, AccessTy, Loc](
Value *
Ptr) {
2683 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2684 Accesses.addStore(NewLoc, AccessTy);
2689 if (IsAnnotatedParallel) {
2691 dbgs() <<
"LAA: A loop annotated parallel, ignore memory dependency "
2696 for (LoadInst *LD : Loads) {
2706 bool IsReadOnlyPtr =
false;
2708 if (Seen.
insert({Ptr, AccessTy}).second ||
2709 !
getPtrStride(*PSE, AccessTy,
Ptr, TheLoop, *DT, SymbolicStrides,
false,
2712 IsReadOnlyPtr =
true;
2718 LLVM_DEBUG(
dbgs() <<
"LAA: Found an unsafe dependency between a uniform "
2719 "load and uniform store to the same address!\n");
2720 HasLoadStoreDependenceInvolvingLoopInvariantAddress =
true;
2727 if (blockNeedsPredication(
LD->getParent(), TheLoop, DT))
2731 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](
Value *
Ptr) {
2732 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2733 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2739 if (NumReadWrites == 1 && NumReads == 0) {
2746 Accesses.buildDependenceSets();
2750 Value *UncomputablePtr =
nullptr;
2751 HasCompletePtrRtChecking = Accesses.canCheckPtrAtRT(
2752 *PtrRtChecking, TheLoop, SymbolicStrides, UncomputablePtr, AllowPartial);
2753 if (!HasCompletePtrRtChecking) {
2755 recordAnalysis(
"CantIdentifyArrayBounds",
I)
2756 <<
"cannot identify array bounds";
2757 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because we can't find "
2758 <<
"the array bounds.\n");
2763 dbgs() <<
"LAA: May be able to perform a memory runtime check if needed.\n");
2765 bool DepsAreSafe =
true;
2766 if (Accesses.isDependencyCheckNeeded()) {
2769 DepChecker->
areDepsSafe(DepCands, Accesses.getDependenciesToCheck());
2775 Accesses.resetDepChecks(*DepChecker);
2777 PtrRtChecking->reset();
2778 PtrRtChecking->Need =
true;
2780 UncomputablePtr =
nullptr;
2781 HasCompletePtrRtChecking =
2782 Accesses.canCheckPtrAtRT(*PtrRtChecking, TheLoop, SymbolicStrides,
2783 UncomputablePtr, AllowPartial);
2786 if (!HasCompletePtrRtChecking) {
2788 recordAnalysis(
"CantCheckMemDepsAtRunTime",
I)
2789 <<
"cannot check memory dependencies at runtime";
2790 LLVM_DEBUG(
dbgs() <<
"LAA: Can't vectorize with memory checks\n");
2797 if (HasConvergentOp) {
2798 recordAnalysis(
"CantInsertRuntimeCheckWithConvergent")
2799 <<
"cannot add control dependency to convergent operation";
2800 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because a runtime check "
2801 "would be needed with a convergent operation\n");
2807 dbgs() <<
"LAA: No unsafe dependent memory operations in loop. We"
2808 << (PtrRtChecking->Need ?
"" :
" don't")
2809 <<
" need runtime memory checks.\n");
2813 emitUnsafeDependenceRemark();
2817void LoopAccessInfo::emitUnsafeDependenceRemark() {
2818 const auto *Deps = getDepChecker().getDependences();
2826 if (Found == Deps->end())
2828 MemoryDepChecker::Dependence Dep = *Found;
2830 LLVM_DEBUG(
dbgs() <<
"LAA: unsafe dependent memory operations in loop\n");
2833 bool HasForcedDistribution =
false;
2834 std::optional<const MDOperand *>
Value =
2842 const std::string
Info =
2843 HasForcedDistribution
2844 ?
"unsafe dependent memory operations in loop."
2845 :
"unsafe dependent memory operations in loop. Use "
2846 "#pragma clang loop distribute(enable) to allow loop distribution "
2847 "to attempt to isolate the offending operations into a separate "
2849 OptimizationRemarkAnalysis &
R =
2858 R <<
"\nBackward loop carried data dependence.";
2861 R <<
"\nForward loop carried data dependence that prevents "
2862 "store-to-load forwarding.";
2865 R <<
"\nBackward loop carried data dependence that prevents "
2866 "store-to-load forwarding.";
2869 R <<
"\nUnsafe indirect dependence.";
2872 R <<
"\nUnknown data dependence.";
2876 if (Instruction *
I = Dep.
getSource(getDepChecker())) {
2879 SourceLoc = DD->getDebugLoc();
2881 R <<
" Memory location is the same as accessed at "
2882 <<
ore::NV(
"Location", SourceLoc);
2887 const Loop *TheLoop,
2889 assert(TheLoop->contains(BB) &&
"Unknown block used");
2892 const BasicBlock *Latch = TheLoop->getLoopLatch();
2898 assert(!Report &&
"Multiple reports generated");
2904 CodeRegion =
I->getParent();
2907 if (
I->getDebugLoc())
2908 DL =
I->getDebugLoc();
2911 Report = std::make_unique<OptimizationRemarkAnalysis>(
DEBUG_TYPE, RemarkName,
2917 auto *SE = PSE->getSE();
2918 if (TheLoop->isLoopInvariant(V))
2935 for (
const Use &U :
GEP->operands()) {
2965 V =
C->getOperand();
2986void LoopAccessInfo::collectStridedAccess(
Value *MemAccess) {
3005 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that is a candidate for "
3010 LLVM_DEBUG(
dbgs() <<
" Chose not to due to -laa-speculate-unit-stride\n");
3027 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
3033 uint64_t StrideTypeSizeBits =
DL.getTypeSizeInBits(StrideExpr->
getType());
3034 uint64_t BETypeSizeBits =
DL.getTypeSizeInBits(MaxBTC->
getType());
3035 const SCEV *CastedStride = StrideExpr;
3036 const SCEV *CastedBECount = MaxBTC;
3037 ScalarEvolution *SE = PSE->getSE();
3038 if (BETypeSizeBits >= StrideTypeSizeBits)
3042 const SCEV *StrideMinusBETaken = SE->
getMinusSCEV(CastedStride, CastedBECount);
3048 dbgs() <<
"LAA: Stride>=TripCount; No point in versioning as the "
3049 "Stride==1 predicate will imply that the loop executes "
3053 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that we can version.\n");
3057 const SCEV *StrideBase = StrideExpr;
3059 StrideBase =
C->getOperand();
3069 PtrRtChecking(nullptr), TheLoop(L), AllowPartial(AllowPartial) {
3070 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3071 if (
TTI && !
TTI->enableScalableVectorization())
3074 MaxTargetVectorWidthInBits =
3077 DepChecker = std::make_unique<MemoryDepChecker>(
3078 *PSE, AC, DT, L, SymbolicStrides, MaxTargetVectorWidthInBits, LoopGuards);
3080 std::make_unique<RuntimePointerChecking>(*DepChecker, SE, LoopGuards);
3081 if (canAnalyzeLoop())
3082 CanVecMem = analyzeLoop(
AA, LI, TLI, DT);
3087 OS.
indent(
Depth) <<
"Memory dependences are safe";
3090 OS <<
" with a maximum safe vector width of "
3094 OS <<
", with a maximum safe store-load forward width of " << SLDist
3097 if (PtrRtChecking->Need)
3098 OS <<
" with run-time checks";
3102 if (HasConvergentOp)
3103 OS.
indent(
Depth) <<
"Has convergent operation in loop\n";
3106 OS.
indent(
Depth) <<
"Report: " << Report->getMsg() <<
"\n";
3108 if (
auto *Dependences = DepChecker->getDependences()) {
3110 for (
const auto &Dep : *Dependences) {
3111 Dep.
print(OS,
Depth + 2, DepChecker->getMemoryInstructions());
3115 OS.
indent(
Depth) <<
"Too many dependences, not recorded\n";
3118 PtrRtChecking->print(OS,
Depth);
3119 if (PtrRtChecking->Need && !HasCompletePtrRtChecking)
3120 OS.
indent(
Depth) <<
"Generated run-time checks are incomplete\n";
3124 <<
"Non vectorizable stores to invariant address were "
3125 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3126 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3129 <<
"found in loop.\n";
3132 PSE->getPredicate().print(OS,
Depth);
3137 PSE->print(OS,
Depth);
3141 bool AllowPartial) {
3142 const auto &[It, Inserted] = LoopAccessInfoMap.try_emplace(&L);
3146 if (Inserted || It->second->hasAllowPartial() != AllowPartial)
3147 It->second = std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT,
3148 &LI, AC, AllowPartial);
3157 for (
const auto &[L, LAI] : LoopAccessInfoMap) {
3158 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3159 LAI->getPSE().getPredicate().isAlwaysTrue())
3161 LoopAccessInfoMap.erase(L);
3167 FunctionAnalysisManager::Invalidator &Inv) {
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
DXIL Forward Handle Accesses
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
This header defines various interfaces for pass management in LLVM.
static cl::opt< unsigned > MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100))
We collect dependences up to this threshold.
static cl::opt< bool > EnableForwardingConflictDetection("store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true))
Enable store-to-load forwarding conflict detection.
static void findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, SmallVectorImpl< PointerIntPair< const SCEV *, 1, bool > > &ScevList, unsigned Depth)
static cl::opt< unsigned > MemoryCheckMergeThreshold("memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100))
The maximum iterations used to merge memory checks.
static const SCEV * getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
Get the stride of a pointer access in a loop.
static bool evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR, const SCEV *MaxBTC, const SCEV *EltSize, ScalarEvolution &SE, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Return true, if evaluating AR at MaxBTC cannot wrap, because AR at MaxBTC is guaranteed inbounds of t...
static std::optional< int64_t > getStrideFromAddRec(const SCEVAddRecExpr *AR, const Loop *Lp, Type *AccessTy, Value *Ptr, PredicatedScalarEvolution &PSE)
Try to compute a constant stride for AR.
static cl::opt< unsigned, true > VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location(VectorizerParams::VectorizationInterleave))
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static DenseMap< const RuntimeCheckingPtrGroup *, unsigned > getPtrToIdxMap(ArrayRef< RuntimeCheckingPtrGroup > CheckingGroups)
Assign each RuntimeCheckingPtrGroup pointer an index for stable UTC output.
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
static cl::opt< unsigned, true > RuntimeMemoryCheckThreshold("runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8))
static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, function_ref< void(Value *)> AddPointer)
static bool isNoWrap(PredicatedScalarEvolution &PSE, const SCEVAddRecExpr *AR, Value *Ptr, Type *AccessTy, const Loop *L, bool Assume, const DominatorTree &DT, std::optional< int64_t > Stride=std::nullopt)
Check whether AR is a non-wrapping AddRec.
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &MaxBTC, const SCEV &Dist, uint64_t MaxStride)
Given a dependence-distance Dist between two memory accesses, that have strides in the same direction...
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize)
Check the dependence for two accesses with the same stride Stride.
static const SCEV * getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE)
Compare I and J and return the minimum.
static const SCEV * mulSCEVOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A * B, if it is guaranteed not to unsigned wrap.
static Value * getLoopVariantGEPOperand(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
If Ptr is a GEP, which has a loop-variant operand, return that operand.
static cl::opt< unsigned > MaxForkedSCEVDepth("max-forked-scev-depth", cl::Hidden, cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), cl::init(5))
static cl::opt< bool > SpeculateUnitStride("laa-speculate-unit-stride", cl::Hidden, cl::desc("Speculate that non-constant strides are unit in LAA"), cl::init(true))
static cl::opt< bool > EnableMemAccessVersioning("enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning"))
This enables versioning on the strides of symbolically striding memory accesses in code like the foll...
static const SCEV * addSCEVNoOverflow(const SCEV *A, const SCEV *B, ScalarEvolution &SE)
Returns A + B, if it is guaranteed not to unsigned wrap.
This header provides classes for managing per-loop analyses.
This file provides utility analysis objects describing memory locations.
FunctionAnalysisManager FAM
This file defines the PointerIntPair class.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static const X86InstrFMA3Group Groups[]
A manager for alias analyses.
Class for arbitrary precision integers.
uint64_t getZExtValue() const
Get zero extended value.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
int64_t getSExtValue() const
Get sign extended value.
This templated class represents "all analyses that operate over <aparticular IR unit>" (e....
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isConvergent() const
Determine if the invoke is convergent.
@ ICMP_UGE
unsigned greater or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
A parsed version of the target data layout string in and methods for querying it.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
iterator_range< member_iterator > members(const ECValue &ECV) const
bool contains(const ElemTy &V) const
Returns true if V is contained an equivalence class.
const ECValue & insert(const ElemTy &Data)
insert - Insert a new value into the union/find set, ignoring the request if the value already exists...
member_iterator member_end() const
const ElemTy & getLeaderValue(const ElemTy &V) const
getLeaderValue - Return the leader for the specified value that is in the set.
member_iterator findLeader(const ElemTy &V) const
findLeader - Given a value in the set, return a member iterator for the equivalence class it is in.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
PointerType * getType() const
Global values are always pointers.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
An instruction for reading from memory.
Value * getPointerOperand()
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
This analysis provides dependence information for the memory accesses of a loop.
LLVM_ABI Result run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const LoopAccessInfo & getInfo(Loop &L, bool AllowPartial=false)
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
LLVM_ABI bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the information about the memory accesses in the loop.
static LLVM_ABI bool blockNeedsPredication(const BasicBlock *BB, const Loop *TheLoop, const DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
LLVM_ABI LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, LoopInfo *LI, AssumptionCache *AC, bool AllowPartial=false)
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Represents a single loop in the control flow graph.
std::string getLocStr() const
Return a string containing the debug location of the loop (file name + line number if present,...
bool isAnnotatedParallel() const
Returns true if the loop is annotated parallel.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
ArrayRef< MDOperand > operands() const
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
ArrayRef< unsigned > getOrderForAccess(Value *Ptr, bool IsWrite) const
Return the program order indices for the access location (Ptr, IsWrite).
bool isSafeForAnyStoreLoadForwardDistances() const
Return true if there are no store-load forwarding dependencies.
bool isSafeForAnyVectorWidth() const
Return true if the number of elements that are safe to operate on simultaneously is not bounded.
LLVM_ABI bool areDepsSafe(const DepCandidates &AccessSets, const MemAccessInfoList &CheckDeps)
Check whether the dependencies between the accesses are safe, and records the dependence information ...
EquivalenceClasses< MemAccessInfo > DepCandidates
Set of potential dependent memory accesses.
bool shouldRetryWithRuntimeChecks() const
In same cases when the dependency check fails we can still vectorize the loop with a dynamic array ac...
const Loop * getInnermostLoop() const
uint64_t getMaxSafeVectorWidthInBits() const
Return the number of elements that are safe to operate on simultaneously, multiplied by the size of t...
bool isSafeForVectorization() const
No memory dependence was encountered that would inhibit vectorization.
SmallVector< MemAccessInfo, 8 > MemAccessInfoList
LLVM_ABI SmallVector< Instruction *, 4 > getInstructionsForAccess(Value *Ptr, bool isWrite) const
Find the set of instructions that read or write via Ptr.
VectorizationSafetyStatus
Type to keep track of the status of the dependence check.
@ PossiblySafeWithRtChecks
LLVM_ABI void addAccess(StoreInst *SI)
Register the location (instructions are given increasing numbers) of a write access.
PointerIntPair< Value *, 1, bool > MemAccessInfo
uint64_t getStoreLoadForwardSafeDistanceInBits() const
Return safe power-of-2 number of elements, which do not prevent store-load forwarding,...
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
const Value * Ptr
The address of the start of the location.
PointerIntPair - This class implements a pair of a pointer and small integer.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Holds information about the memory runtime legality checks to verify that a group of pointers do not ...
bool Need
This flag indicates if we need to add the runtime check.
void reset()
Reset the state of the pointer runtime information.
unsigned getNumberOfChecks() const
Returns the number of run-time checks required according to needsChecking.
LLVM_ABI void printChecks(raw_ostream &OS, const SmallVectorImpl< RuntimePointerCheck > &Checks, unsigned Depth=0) const
Print Checks.
LLVM_ABI bool needsChecking(const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const
Decide if we need to add a check between two groups of pointers, according to needsChecking.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth=0) const
Print the list run-time memory checks necessary.
SmallVector< RuntimeCheckingPtrGroup, 2 > CheckingGroups
Holds a partitioning of pointers into "check groups".
LLVM_ABI void generateChecks(MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies)
Generate the checks and store it.
friend struct RuntimeCheckingPtrGroup
static LLVM_ABI bool arePointersInSamePartition(const SmallVectorImpl< int > &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2)
Check if pointers are in the same partition.
SmallVector< PointerInfo, 2 > Pointers
Information about the pointers that may require checking.
LLVM_ABI void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, bool WritePtr, unsigned DepSetId, unsigned ASId, PredicatedScalarEvolution &PSE, bool NeedsFreeze)
Insert a pointer and calculate the start and end SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const Loop * getLoop() const
This class represents a constant integer value.
ConstantInt * getValue() const
const APInt & getAPInt() const
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
bool contains(const T &V) const
Check if the SmallSet contains the given element.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool canBeFreed() const
Return true if the memory object referred to by V can by freed in the scope for which the SSA value d...
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr ScalarTy getFixedValue() const
An efficient, type-erasing, non-owning reference to a callable.
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
class_match< const SCEVConstant > m_SCEVConstant()
specificloop_ty m_SpecificLoop(const Loop *L)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
specificscev_ty m_scev_Specific(const SCEV *S)
Match if we have a specific specified SCEV.
class_match< const SCEV > m_SCEV()
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, bool > hasa(Y &&MD)
Check whether Metadata has a Value.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI RetainedKnowledge getKnowledgeForValue(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, function_ref< bool(RetainedKnowledge, Instruction *, const CallBase::BundleOpInfo *)> Filter=[](auto...) { return true;})
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and it match...
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI std::optional< int64_t > getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, Value *PtrB, const DataLayout &DL, ScalarEvolution &SE, bool StrictCheck=false, bool CheckType=true)
Returns the distance between the pointers PtrA and PtrB iff they are compatible and it is possible to...
LLVM_ABI bool sortPtrAccesses(ArrayRef< Value * > VL, Type *ElemTy, const DataLayout &DL, ScalarEvolution &SE, SmallVectorImpl< unsigned > &SortedIndices)
Attempt to sort the pointers in VL and return the sorted indices in SortedIndices,...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
LLVM_ABI bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI std::pair< const SCEV *, const SCEV * > getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *BTC, const SCEV *MaxBTC, ScalarEvolution *SE, DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > *PointerBounds, DominatorTree *DT, AssumptionCache *AC, std::optional< ScalarEvolution::LoopGuards > &LoopGuards)
Calculate Start and End points of memory access using exact backedge taken count BTC if computable or...
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DominatorTree &DT, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
IR Values for the lower and upper bounds of a pointer evolution.
MDNode * Scope
The tag for alias scope specification (used with noalias).
MDNode * TBAA
The tag for type-based alias analysis.
MDNode * NoAlias
The tag specifying the noalias scope.
A special type used by analysis passes to provide an address that identifies that particular analysis...
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
DepType Type
The type of the dependence.
unsigned Destination
Index of the destination of the dependence in the InstMap vector.
LLVM_ABI bool isPossiblyBackward() const
May be a lexically backward dependence type (includes Unknown).
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
LLVM_ABI bool isForward() const
Lexically forward dependence.
LLVM_ABI bool isBackward() const
Lexically backward dependence.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth, const SmallVectorImpl< Instruction * > &Instrs) const
Print the dependence.
unsigned Source
Index of the source of the dependence in the InstMap vector.
DepType
The type of the dependence.
@ BackwardVectorizableButPreventsForwarding
@ ForwardButPreventsForwarding
static LLVM_ABI const char * DepName[]
String version of the types.
static LLVM_ABI VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
Represent one information held inside an operand bundle of an llvm.assume.
unsigned AddressSpace
Address space of the involved pointers.
LLVM_ABI bool addPointer(unsigned Index, const RuntimePointerChecking &RtCheck)
Tries to add the pointer recorded in RtCheck at index Index to this pointer checking group.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
LLVM_ABI RuntimeCheckingPtrGroup(unsigned Index, const RuntimePointerChecking &RtCheck)
Create a new pointer checking group containing a single pointer, with index Index in RtCheck.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
SmallVector< unsigned, 2 > Members
Indices of all the pointers that constitute this grouping.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.
bool IsWritePtr
Holds the information if this pointer is used for writing to memory.
unsigned DependencySetId
Holds the id of the set of pointers that could be dependent because of a shared underlying object.
unsigned AliasSetId
Holds the id of the disjoint alias set to which this pointer belongs.
static LLVM_ABI const unsigned MaxVectorWidth
Maximum SIMD width.
static LLVM_ABI unsigned VectorizationFactor
VF as overridden by the user.
static LLVM_ABI unsigned RuntimeMemoryCheckThreshold
\When performing memory disambiguation checks at runtime do not make more than this number of compari...
static LLVM_ABI bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static LLVM_ABI unsigned VectorizationInterleave
Interleave factor as overridden by the user.
static LLVM_ABI bool HoistRuntimeChecks
Function object to check whether the first component of a container supported by std::get (like std::...