LLVM 22.0.0git
TargetLoweringBase.cpp
Go to the documentation of this file.
1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Analysis/Loads.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/CallingConv.h"
41#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Type.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <cstring>
62#include <iterator>
63#include <string>
64#include <tuple>
65#include <utility>
66
67using namespace llvm;
68
70 "jump-is-expensive", cl::init(false),
71 cl::desc("Do not create extra branches to split comparison logic."),
73
75 ("min-jump-table-entries", cl::init(4), cl::Hidden,
76 cl::desc("Set minimum number of entries to use a jump table."));
77
79 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
80 cl::desc("Set maximum size of jump tables."));
81
82/// Minimum jump table density for normal functions.
84 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
85 cl::desc("Minimum density for building a jump table in "
86 "a normal function"));
87
88/// Minimum jump table density for -Os or -Oz functions.
90 "optsize-jump-table-density", cl::init(40), cl::Hidden,
91 cl::desc("Minimum density for building a jump table in "
92 "an optsize function"));
93
95 "min-bit-test-cmps", cl::init(2), cl::Hidden,
96 cl::desc("Set minimum of largest number of comparisons "
97 "to use bit test for switch."));
98
99// FIXME: This option is only to test if the strict fp operation processed
100// correctly by preventing mutating strict fp operation to normal fp operation
101// during development. When the backend supports strict float operation, this
102// option will be meaningless.
103static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
104 cl::desc("Don't mutate strict-float node to a legalize node"),
105 cl::init(false), cl::Hidden);
106
107/// GetFPLibCall - Helper to return the right libcall for the given floating
108/// point type, or UNKNOWN_LIBCALL if there is none.
109RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
110 RTLIB::Libcall Call_F32,
111 RTLIB::Libcall Call_F64,
112 RTLIB::Libcall Call_F80,
113 RTLIB::Libcall Call_F128,
114 RTLIB::Libcall Call_PPCF128) {
115 return
116 VT == MVT::f32 ? Call_F32 :
117 VT == MVT::f64 ? Call_F64 :
118 VT == MVT::f80 ? Call_F80 :
119 VT == MVT::f128 ? Call_F128 :
120 VT == MVT::ppcf128 ? Call_PPCF128 :
121 RTLIB::UNKNOWN_LIBCALL;
122}
123
124/// getFPEXT - Return the FPEXT_*_* value for the given types, or
125/// UNKNOWN_LIBCALL if there is none.
126RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
127 if (OpVT == MVT::f16) {
128 if (RetVT == MVT::f32)
129 return FPEXT_F16_F32;
130 if (RetVT == MVT::f64)
131 return FPEXT_F16_F64;
132 if (RetVT == MVT::f80)
133 return FPEXT_F16_F80;
134 if (RetVT == MVT::f128)
135 return FPEXT_F16_F128;
136 } else if (OpVT == MVT::f32) {
137 if (RetVT == MVT::f64)
138 return FPEXT_F32_F64;
139 if (RetVT == MVT::f128)
140 return FPEXT_F32_F128;
141 if (RetVT == MVT::ppcf128)
142 return FPEXT_F32_PPCF128;
143 } else if (OpVT == MVT::f64) {
144 if (RetVT == MVT::f128)
145 return FPEXT_F64_F128;
146 else if (RetVT == MVT::ppcf128)
147 return FPEXT_F64_PPCF128;
148 } else if (OpVT == MVT::f80) {
149 if (RetVT == MVT::f128)
150 return FPEXT_F80_F128;
151 } else if (OpVT == MVT::bf16) {
152 if (RetVT == MVT::f32)
153 return FPEXT_BF16_F32;
154 }
155
156 return UNKNOWN_LIBCALL;
157}
158
159/// getFPROUND - Return the FPROUND_*_* value for the given types, or
160/// UNKNOWN_LIBCALL if there is none.
161RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
162 if (RetVT == MVT::f16) {
163 if (OpVT == MVT::f32)
164 return FPROUND_F32_F16;
165 if (OpVT == MVT::f64)
166 return FPROUND_F64_F16;
167 if (OpVT == MVT::f80)
168 return FPROUND_F80_F16;
169 if (OpVT == MVT::f128)
170 return FPROUND_F128_F16;
171 if (OpVT == MVT::ppcf128)
172 return FPROUND_PPCF128_F16;
173 } else if (RetVT == MVT::bf16) {
174 if (OpVT == MVT::f32)
175 return FPROUND_F32_BF16;
176 if (OpVT == MVT::f64)
177 return FPROUND_F64_BF16;
178 if (OpVT == MVT::f80)
179 return FPROUND_F80_BF16;
180 if (OpVT == MVT::f128)
181 return FPROUND_F128_BF16;
182 } else if (RetVT == MVT::f32) {
183 if (OpVT == MVT::f64)
184 return FPROUND_F64_F32;
185 if (OpVT == MVT::f80)
186 return FPROUND_F80_F32;
187 if (OpVT == MVT::f128)
188 return FPROUND_F128_F32;
189 if (OpVT == MVT::ppcf128)
190 return FPROUND_PPCF128_F32;
191 } else if (RetVT == MVT::f64) {
192 if (OpVT == MVT::f80)
193 return FPROUND_F80_F64;
194 if (OpVT == MVT::f128)
195 return FPROUND_F128_F64;
196 if (OpVT == MVT::ppcf128)
197 return FPROUND_PPCF128_F64;
198 } else if (RetVT == MVT::f80) {
199 if (OpVT == MVT::f128)
200 return FPROUND_F128_F80;
201 }
202
203 return UNKNOWN_LIBCALL;
204}
205
206/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
207/// UNKNOWN_LIBCALL if there is none.
208RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
209 if (OpVT == MVT::f16) {
210 if (RetVT == MVT::i32)
211 return FPTOSINT_F16_I32;
212 if (RetVT == MVT::i64)
213 return FPTOSINT_F16_I64;
214 if (RetVT == MVT::i128)
215 return FPTOSINT_F16_I128;
216 } else if (OpVT == MVT::f32) {
217 if (RetVT == MVT::i32)
218 return FPTOSINT_F32_I32;
219 if (RetVT == MVT::i64)
220 return FPTOSINT_F32_I64;
221 if (RetVT == MVT::i128)
222 return FPTOSINT_F32_I128;
223 } else if (OpVT == MVT::f64) {
224 if (RetVT == MVT::i32)
225 return FPTOSINT_F64_I32;
226 if (RetVT == MVT::i64)
227 return FPTOSINT_F64_I64;
228 if (RetVT == MVT::i128)
229 return FPTOSINT_F64_I128;
230 } else if (OpVT == MVT::f80) {
231 if (RetVT == MVT::i32)
232 return FPTOSINT_F80_I32;
233 if (RetVT == MVT::i64)
234 return FPTOSINT_F80_I64;
235 if (RetVT == MVT::i128)
236 return FPTOSINT_F80_I128;
237 } else if (OpVT == MVT::f128) {
238 if (RetVT == MVT::i32)
239 return FPTOSINT_F128_I32;
240 if (RetVT == MVT::i64)
241 return FPTOSINT_F128_I64;
242 if (RetVT == MVT::i128)
243 return FPTOSINT_F128_I128;
244 } else if (OpVT == MVT::ppcf128) {
245 if (RetVT == MVT::i32)
246 return FPTOSINT_PPCF128_I32;
247 if (RetVT == MVT::i64)
248 return FPTOSINT_PPCF128_I64;
249 if (RetVT == MVT::i128)
250 return FPTOSINT_PPCF128_I128;
251 }
252 return UNKNOWN_LIBCALL;
253}
254
255/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
256/// UNKNOWN_LIBCALL if there is none.
257RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
258 if (OpVT == MVT::f16) {
259 if (RetVT == MVT::i32)
260 return FPTOUINT_F16_I32;
261 if (RetVT == MVT::i64)
262 return FPTOUINT_F16_I64;
263 if (RetVT == MVT::i128)
264 return FPTOUINT_F16_I128;
265 } else if (OpVT == MVT::f32) {
266 if (RetVT == MVT::i32)
267 return FPTOUINT_F32_I32;
268 if (RetVT == MVT::i64)
269 return FPTOUINT_F32_I64;
270 if (RetVT == MVT::i128)
271 return FPTOUINT_F32_I128;
272 } else if (OpVT == MVT::f64) {
273 if (RetVT == MVT::i32)
274 return FPTOUINT_F64_I32;
275 if (RetVT == MVT::i64)
276 return FPTOUINT_F64_I64;
277 if (RetVT == MVT::i128)
278 return FPTOUINT_F64_I128;
279 } else if (OpVT == MVT::f80) {
280 if (RetVT == MVT::i32)
281 return FPTOUINT_F80_I32;
282 if (RetVT == MVT::i64)
283 return FPTOUINT_F80_I64;
284 if (RetVT == MVT::i128)
285 return FPTOUINT_F80_I128;
286 } else if (OpVT == MVT::f128) {
287 if (RetVT == MVT::i32)
288 return FPTOUINT_F128_I32;
289 if (RetVT == MVT::i64)
290 return FPTOUINT_F128_I64;
291 if (RetVT == MVT::i128)
292 return FPTOUINT_F128_I128;
293 } else if (OpVT == MVT::ppcf128) {
294 if (RetVT == MVT::i32)
295 return FPTOUINT_PPCF128_I32;
296 if (RetVT == MVT::i64)
297 return FPTOUINT_PPCF128_I64;
298 if (RetVT == MVT::i128)
299 return FPTOUINT_PPCF128_I128;
300 }
301 return UNKNOWN_LIBCALL;
302}
303
304/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
305/// UNKNOWN_LIBCALL if there is none.
306RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
307 if (OpVT == MVT::i32) {
308 if (RetVT == MVT::f16)
309 return SINTTOFP_I32_F16;
310 if (RetVT == MVT::f32)
311 return SINTTOFP_I32_F32;
312 if (RetVT == MVT::f64)
313 return SINTTOFP_I32_F64;
314 if (RetVT == MVT::f80)
315 return SINTTOFP_I32_F80;
316 if (RetVT == MVT::f128)
317 return SINTTOFP_I32_F128;
318 if (RetVT == MVT::ppcf128)
319 return SINTTOFP_I32_PPCF128;
320 } else if (OpVT == MVT::i64) {
321 if (RetVT == MVT::bf16)
322 return SINTTOFP_I64_BF16;
323 if (RetVT == MVT::f16)
324 return SINTTOFP_I64_F16;
325 if (RetVT == MVT::f32)
326 return SINTTOFP_I64_F32;
327 if (RetVT == MVT::f64)
328 return SINTTOFP_I64_F64;
329 if (RetVT == MVT::f80)
330 return SINTTOFP_I64_F80;
331 if (RetVT == MVT::f128)
332 return SINTTOFP_I64_F128;
333 if (RetVT == MVT::ppcf128)
334 return SINTTOFP_I64_PPCF128;
335 } else if (OpVT == MVT::i128) {
336 if (RetVT == MVT::f16)
337 return SINTTOFP_I128_F16;
338 if (RetVT == MVT::f32)
339 return SINTTOFP_I128_F32;
340 if (RetVT == MVT::f64)
341 return SINTTOFP_I128_F64;
342 if (RetVT == MVT::f80)
343 return SINTTOFP_I128_F80;
344 if (RetVT == MVT::f128)
345 return SINTTOFP_I128_F128;
346 if (RetVT == MVT::ppcf128)
347 return SINTTOFP_I128_PPCF128;
348 }
349 return UNKNOWN_LIBCALL;
350}
351
352/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
353/// UNKNOWN_LIBCALL if there is none.
354RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
355 if (OpVT == MVT::i32) {
356 if (RetVT == MVT::f16)
357 return UINTTOFP_I32_F16;
358 if (RetVT == MVT::f32)
359 return UINTTOFP_I32_F32;
360 if (RetVT == MVT::f64)
361 return UINTTOFP_I32_F64;
362 if (RetVT == MVT::f80)
363 return UINTTOFP_I32_F80;
364 if (RetVT == MVT::f128)
365 return UINTTOFP_I32_F128;
366 if (RetVT == MVT::ppcf128)
367 return UINTTOFP_I32_PPCF128;
368 } else if (OpVT == MVT::i64) {
369 if (RetVT == MVT::bf16)
370 return UINTTOFP_I64_BF16;
371 if (RetVT == MVT::f16)
372 return UINTTOFP_I64_F16;
373 if (RetVT == MVT::f32)
374 return UINTTOFP_I64_F32;
375 if (RetVT == MVT::f64)
376 return UINTTOFP_I64_F64;
377 if (RetVT == MVT::f80)
378 return UINTTOFP_I64_F80;
379 if (RetVT == MVT::f128)
380 return UINTTOFP_I64_F128;
381 if (RetVT == MVT::ppcf128)
382 return UINTTOFP_I64_PPCF128;
383 } else if (OpVT == MVT::i128) {
384 if (RetVT == MVT::f16)
385 return UINTTOFP_I128_F16;
386 if (RetVT == MVT::f32)
387 return UINTTOFP_I128_F32;
388 if (RetVT == MVT::f64)
389 return UINTTOFP_I128_F64;
390 if (RetVT == MVT::f80)
391 return UINTTOFP_I128_F80;
392 if (RetVT == MVT::f128)
393 return UINTTOFP_I128_F128;
394 if (RetVT == MVT::ppcf128)
395 return UINTTOFP_I128_PPCF128;
396 }
397 return UNKNOWN_LIBCALL;
398}
399
400RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
401 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
402 POWI_PPCF128);
403}
404
405RTLIB::Libcall RTLIB::getPOW(EVT RetVT) {
406 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
407}
408
409RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
410 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
411 LDEXP_PPCF128);
412}
413
414RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
415 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
416 FREXP_PPCF128);
417}
418
419RTLIB::Libcall RTLIB::getSIN(EVT RetVT) {
420 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
421}
422
423RTLIB::Libcall RTLIB::getCOS(EVT RetVT) {
424 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
425}
426
427RTLIB::Libcall RTLIB::getSINCOS(EVT RetVT) {
428 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
429 SINCOS_PPCF128);
430}
431
432RTLIB::Libcall RTLIB::getSINCOSPI(EVT RetVT) {
433 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
434 SINCOSPI_F128, SINCOSPI_PPCF128);
435}
436
437RTLIB::Libcall RTLIB::getSINCOS_STRET(EVT RetVT) {
438 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
439 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
440}
441
442RTLIB::Libcall RTLIB::getMODF(EVT RetVT) {
443 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
444 MODF_PPCF128);
445}
446
447RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
448 AtomicOrdering Order,
449 uint64_t MemSize) {
450 unsigned ModeN, ModelN;
451 switch (MemSize) {
452 case 1:
453 ModeN = 0;
454 break;
455 case 2:
456 ModeN = 1;
457 break;
458 case 4:
459 ModeN = 2;
460 break;
461 case 8:
462 ModeN = 3;
463 break;
464 case 16:
465 ModeN = 4;
466 break;
467 default:
468 return RTLIB::UNKNOWN_LIBCALL;
469 }
470
471 switch (Order) {
473 ModelN = 0;
474 break;
476 ModelN = 1;
477 break;
479 ModelN = 2;
480 break;
483 ModelN = 3;
484 break;
485 default:
486 return UNKNOWN_LIBCALL;
487 }
488
489 return LC[ModeN][ModelN];
490}
491
492RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
493 MVT VT) {
494 if (!VT.isScalarInteger())
495 return UNKNOWN_LIBCALL;
496 uint64_t MemSize = VT.getScalarSizeInBits() / 8;
497
498#define LCALLS(A, B) \
499 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
500#define LCALL5(A) \
501 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
502 switch (Opc) {
503 case ISD::ATOMIC_CMP_SWAP: {
504 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
505 return getOutlineAtomicHelper(LC, Order, MemSize);
506 }
507 case ISD::ATOMIC_SWAP: {
508 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
509 return getOutlineAtomicHelper(LC, Order, MemSize);
510 }
511 case ISD::ATOMIC_LOAD_ADD: {
512 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
513 return getOutlineAtomicHelper(LC, Order, MemSize);
514 }
515 case ISD::ATOMIC_LOAD_OR: {
516 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
517 return getOutlineAtomicHelper(LC, Order, MemSize);
518 }
519 case ISD::ATOMIC_LOAD_CLR: {
520 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
521 return getOutlineAtomicHelper(LC, Order, MemSize);
522 }
523 case ISD::ATOMIC_LOAD_XOR: {
524 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
525 return getOutlineAtomicHelper(LC, Order, MemSize);
526 }
527 default:
528 return UNKNOWN_LIBCALL;
529 }
530#undef LCALLS
531#undef LCALL5
532}
533
534RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
535#define OP_TO_LIBCALL(Name, Enum) \
536 case Name: \
537 switch (VT.SimpleTy) { \
538 default: \
539 return UNKNOWN_LIBCALL; \
540 case MVT::i8: \
541 return Enum##_1; \
542 case MVT::i16: \
543 return Enum##_2; \
544 case MVT::i32: \
545 return Enum##_4; \
546 case MVT::i64: \
547 return Enum##_8; \
548 case MVT::i128: \
549 return Enum##_16; \
550 }
551
552 switch (Opc) {
553 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
554 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
555 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
556 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
557 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
558 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
559 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
560 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
561 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
562 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
563 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
564 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
565 }
566
567#undef OP_TO_LIBCALL
568
569 return UNKNOWN_LIBCALL;
570}
571
573 switch (ElementSize) {
574 case 1:
575 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
576 case 2:
577 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
578 case 4:
579 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
580 case 8:
581 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
582 case 16:
583 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
584 default:
585 return UNKNOWN_LIBCALL;
586 }
587}
588
590 switch (ElementSize) {
591 case 1:
592 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
593 case 2:
594 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
595 case 4:
596 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
597 case 8:
598 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
599 case 16:
600 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
601 default:
602 return UNKNOWN_LIBCALL;
603 }
604}
605
607 switch (ElementSize) {
608 case 1:
609 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
610 case 2:
611 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
612 case 4:
613 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
614 case 8:
615 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
616 case 16:
617 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
618 default:
619 return UNKNOWN_LIBCALL;
620 }
621}
622
624 RTLIB::LibcallImpl Impl) const {
625 switch (Impl) {
626 case RTLIB::impl___aeabi_dcmpeq__une:
627 case RTLIB::impl___aeabi_fcmpeq__une:
628 // Usage in the eq case, so we have to invert the comparison.
629 return ISD::SETEQ;
630 case RTLIB::impl___aeabi_dcmpeq__oeq:
631 case RTLIB::impl___aeabi_fcmpeq__oeq:
632 // Normal comparison to boolean value.
633 return ISD::SETNE;
634 case RTLIB::impl___aeabi_dcmplt:
635 case RTLIB::impl___aeabi_dcmple:
636 case RTLIB::impl___aeabi_dcmpge:
637 case RTLIB::impl___aeabi_dcmpgt:
638 case RTLIB::impl___aeabi_dcmpun:
639 case RTLIB::impl___aeabi_fcmplt:
640 case RTLIB::impl___aeabi_fcmple:
641 case RTLIB::impl___aeabi_fcmpge:
642 case RTLIB::impl___aeabi_fcmpgt:
643 /// The AEABI versions return a typical boolean value, so we can compare
644 /// against the integer result as simply != 0.
645 return ISD::SETNE;
646 default:
647 break;
648 }
649
650 // Assume libgcc/compiler-rt behavior. Most of the cases are really aliases of
651 // each other, and return a 3-way comparison style result of -1, 0, or 1
652 // depending on lt/eq/gt.
653 //
654 // FIXME: It would be cleaner to directly express this as a 3-way comparison
655 // soft FP libcall instead of individual compares.
656 RTLIB::Libcall LC = RTLIB::RuntimeLibcallsInfo::getLibcallFromImpl(Impl);
657 switch (LC) {
658 case RTLIB::OEQ_F32:
659 case RTLIB::OEQ_F64:
660 case RTLIB::OEQ_F128:
661 case RTLIB::OEQ_PPCF128:
662 return ISD::SETEQ;
663 case RTLIB::UNE_F32:
664 case RTLIB::UNE_F64:
665 case RTLIB::UNE_F128:
666 case RTLIB::UNE_PPCF128:
667 return ISD::SETNE;
668 case RTLIB::OGE_F32:
669 case RTLIB::OGE_F64:
670 case RTLIB::OGE_F128:
671 case RTLIB::OGE_PPCF128:
672 return ISD::SETGE;
673 case RTLIB::OLT_F32:
674 case RTLIB::OLT_F64:
675 case RTLIB::OLT_F128:
676 case RTLIB::OLT_PPCF128:
677 return ISD::SETLT;
678 case RTLIB::OLE_F32:
679 case RTLIB::OLE_F64:
680 case RTLIB::OLE_F128:
681 case RTLIB::OLE_PPCF128:
682 return ISD::SETLE;
683 case RTLIB::OGT_F32:
684 case RTLIB::OGT_F64:
685 case RTLIB::OGT_F128:
686 case RTLIB::OGT_PPCF128:
687 return ISD::SETGT;
688 case RTLIB::UO_F32:
689 case RTLIB::UO_F64:
690 case RTLIB::UO_F128:
691 case RTLIB::UO_PPCF128:
692 return ISD::SETNE;
693 default:
694 llvm_unreachable("not a compare libcall");
695 }
696}
697
698/// NOTE: The TargetMachine owns TLOF.
700 : TM(tm),
701 RuntimeLibcallInfo(TM.getTargetTriple(), TM.Options.ExceptionModel,
702 TM.Options.FloatABIType, TM.Options.EABIVersion,
703 TM.Options.MCOptions.getABIName()),
704 Libcalls(RuntimeLibcallInfo) {
705 initActions();
706
707 // Perform these initializations only once.
713 HasExtractBitsInsn = false;
714 JumpIsExpensive = JumpIsExpensiveOverride;
716 EnableExtLdPromotion = false;
717 StackPointerRegisterToSaveRestore = 0;
718 BooleanContents = UndefinedBooleanContent;
719 BooleanFloatContents = UndefinedBooleanContent;
720 BooleanVectorContents = UndefinedBooleanContent;
721 SchedPreferenceInfo = Sched::ILP;
724 MaxBytesForAlignment = 0;
725 MaxAtomicSizeInBitsSupported = 0;
726
727 // Assume that even with libcalls, no target supports wider than 128 bit
728 // division.
729 MaxDivRemBitWidthSupported = 128;
730
731 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
732
733 MinCmpXchgSizeInBits = 0;
734 SupportsUnalignedAtomics = false;
735
736 MinimumBitTestCmps = MinimumBitTestCmpsOverride;
737}
738
739// Define the virtual destructor out-of-line to act as a key method to anchor
740// debug info (see coding standards).
742
744 // All operations default to being supported.
745 memset(OpActions, 0, sizeof(OpActions));
746 memset(LoadExtActions, 0, sizeof(LoadExtActions));
747 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
748 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
749 memset(CondCodeActions, 0, sizeof(CondCodeActions));
750 llvm::fill(RegClassForVT, nullptr);
751 llvm::fill(TargetDAGCombineArray, 0);
752
753 // Let extending atomic loads be unsupported by default.
754 for (MVT ValVT : MVT::all_valuetypes())
755 for (MVT MemVT : MVT::all_valuetypes())
757 Expand);
758
759 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
760 // remove this and targets should individually set these types if not legal.
763 for (MVT VT : {MVT::i2, MVT::i4})
764 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
765 }
766 for (MVT AVT : MVT::all_valuetypes()) {
767 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
768 setTruncStoreAction(AVT, VT, Expand);
771 }
772 }
773 for (unsigned IM = (unsigned)ISD::PRE_INC;
774 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
775 for (MVT VT : {MVT::i2, MVT::i4}) {
780 }
781 }
782
783 for (MVT VT : MVT::fp_valuetypes()) {
784 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
785 if (IntVT.isValid()) {
786 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
787 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
788 }
789 }
790
791 // Set default actions for various operations.
792 for (MVT VT : MVT::all_valuetypes()) {
793 // Default all indexed load / store to expand.
794 for (unsigned IM = (unsigned)ISD::PRE_INC;
795 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
800 }
801
802 // Most backends expect to see the node which just returns the value loaded.
803 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
804
805 // These operations default to expand.
807 ISD::FMINNUM, ISD::FMAXNUM,
808 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
809 ISD::FMINIMUM, ISD::FMAXIMUM,
810 ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM,
823 ISD::IS_FPCLASS, ISD::FCBRT,
824 ISD::FLOG, ISD::FLOG2,
825 ISD::FLOG10, ISD::FEXP,
826 ISD::FEXP2, ISD::FEXP10,
827 ISD::FFLOOR, ISD::FNEARBYINT,
828 ISD::FCEIL, ISD::FRINT,
829 ISD::FTRUNC, ISD::FROUNDEVEN,
830 ISD::FTAN, ISD::FACOS,
831 ISD::FASIN, ISD::FATAN,
832 ISD::FCOSH, ISD::FSINH,
833 ISD::FTANH, ISD::FATAN2,
835 VT, Expand);
836
837 // Overflow operations default to expand
840 VT, Expand);
841
842 // Carry-using overflow operations default to expand.
845 VT, Expand);
846
847 // ADDC/ADDE/SUBC/SUBE default to expand.
849 Expand);
850
851 // [US]CMP default to expand
853
854 // Halving adds
857 Expand);
858
859 // Absolute difference
861
862 // Saturated trunc
866
867 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
869 Expand);
870
872
873 // These library functions default to expand.
874 setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP,
875 ISD::FSINCOS, ISD::FSINCOSPI, ISD::FMODF},
876 VT, Expand);
877
878 // These operations default to expand for vector types.
879 if (VT.isVector())
884 ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
885 VT, Expand);
886
887 // Constrained floating-point operations default to expand.
888#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
889 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
890#include "llvm/IR/ConstrainedOps.def"
891
892 // For most targets @llvm.get.dynamic.area.offset just returns 0.
893 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
894
895 // Vector reduction default to expand.
897 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
898 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
899 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
900 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
901 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
902 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
903 VT, Expand);
904
905 // Named vector shuffles default to expand.
907
908 // Only some target support this vector operation. Most need to expand it.
910
911 // VP operations default to expand.
912#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
913 setOperationAction(ISD::SDOPC, VT, Expand);
914#include "llvm/IR/VPIntrinsics.def"
915
916 // Masked vector extracts default to expand.
917 setOperationAction(ISD::VECTOR_FIND_LAST_ACTIVE, VT, Expand);
918
921
922 // FP environment operations default to expand.
923 setOperationAction(ISD::GET_FPENV, VT, Expand);
924 setOperationAction(ISD::SET_FPENV, VT, Expand);
925 setOperationAction(ISD::RESET_FPENV, VT, Expand);
926
927 setOperationAction(ISD::MSTORE, VT, Expand);
928 }
929
930 // Most targets ignore the @llvm.prefetch intrinsic.
931 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
932
933 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
934 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
935
936 // Most targets also ignore the @llvm.readsteadycounter intrinsic.
937 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
938
939 // ConstantFP nodes default to expand. Targets can either change this to
940 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
941 // to optimize expansions for certain constants.
943 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
944 Expand);
945
946 // Insert custom handling default for llvm.canonicalize.*.
948 {MVT::f16, MVT::f32, MVT::f64, MVT::f128}, Expand);
949
950 // FIXME: Query RuntimeLibCalls to make the decision.
951 setOperationAction({ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
952 {MVT::f32, MVT::f64, MVT::f128}, LibCall);
953
954 setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
955 ISD::FSINH, ISD::FTANH, ISD::FATAN2},
956 MVT::f16, Promote);
957 // Default ISD::TRAP to expand (which turns it into abort).
958 setOperationAction(ISD::TRAP, MVT::Other, Expand);
959
960 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
961 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
962 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
963
964 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
965
966 setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
967 setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
968
969 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
970 setOperationAction(ISD::GET_FPMODE, VT, Expand);
971 setOperationAction(ISD::SET_FPMODE, VT, Expand);
972 }
973 setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
974
975 // This one by default will call __clear_cache unless the target
976 // wants something different.
978}
979
981 EVT) const {
982 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
983}
984
986 const DataLayout &DL) const {
987 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
988 if (LHSTy.isVector())
989 return LHSTy;
990 MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
991 // If any possible shift value won't fit in the prefered type, just use
992 // something safe. Assume it will be legalized when the shift is expanded.
993 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
994 ShiftVT = MVT::i32;
995 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
996 "ShiftVT is still too small!");
997 return ShiftVT;
998}
999
1000bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1001 assert(isTypeLegal(VT));
1002 switch (Op) {
1003 default:
1004 return false;
1005 case ISD::SDIV:
1006 case ISD::UDIV:
1007 case ISD::SREM:
1008 case ISD::UREM:
1009 return true;
1010 }
1011}
1012
1014 unsigned DestAS) const {
1015 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1016}
1017
1019 Type *RetTy, ElementCount EC, bool ZeroIsPoison,
1020 const ConstantRange *VScaleRange) const {
1021 // Find the smallest "sensible" element type to use for the expansion.
1022 ConstantRange CR(APInt(64, EC.getKnownMinValue()));
1023 if (EC.isScalable())
1024 CR = CR.umul_sat(*VScaleRange);
1025
1026 if (ZeroIsPoison)
1027 CR = CR.subtract(APInt(64, 1));
1028
1029 unsigned EltWidth = RetTy->getScalarSizeInBits();
1030 EltWidth = std::min(EltWidth, CR.getActiveBits());
1031 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
1032
1033 return EltWidth;
1034}
1035
1037 // If the command-line option was specified, ignore this request.
1038 if (!JumpIsExpensiveOverride.getNumOccurrences())
1039 JumpIsExpensive = isExpensive;
1040}
1041
1044 // If this is a simple type, use the ComputeRegisterProp mechanism.
1045 if (VT.isSimple()) {
1046 MVT SVT = VT.getSimpleVT();
1047 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1048 MVT NVT = TransformToType[SVT.SimpleTy];
1049 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1050
1051 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1052 LA == TypeSoftPromoteHalf ||
1053 (NVT.isVector() ||
1054 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1055 "Promote may not follow Expand or Promote");
1056
1057 if (LA == TypeSplitVector)
1058 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1059 if (LA == TypeScalarizeVector)
1060 return LegalizeKind(LA, SVT.getVectorElementType());
1061 return LegalizeKind(LA, NVT);
1062 }
1063
1064 // Handle Extended Scalar Types.
1065 if (!VT.isVector()) {
1066 assert(VT.isInteger() && "Float types must be simple");
1067 unsigned BitSize = VT.getSizeInBits();
1068 // First promote to a power-of-two size, then expand if necessary.
1069 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1070 EVT NVT = VT.getRoundIntegerType(Context);
1071 assert(NVT != VT && "Unable to round integer VT");
1072 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1073 // Avoid multi-step promotion.
1074 if (NextStep.first == TypePromoteInteger)
1075 return NextStep;
1076 // Return rounded integer type.
1077 return LegalizeKind(TypePromoteInteger, NVT);
1078 }
1079
1081 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1082 }
1083
1084 // Handle vector types.
1085 ElementCount NumElts = VT.getVectorElementCount();
1086 EVT EltVT = VT.getVectorElementType();
1087
1088 // Vectors with only one element are always scalarized.
1089 if (NumElts.isScalar())
1090 return LegalizeKind(TypeScalarizeVector, EltVT);
1091
1092 // Try to widen vector elements until the element type is a power of two and
1093 // promote it to a legal type later on, for example:
1094 // <3 x i8> -> <4 x i8> -> <4 x i32>
1095 if (EltVT.isInteger()) {
1096 // Vectors with a number of elements that is not a power of two are always
1097 // widened, for example <3 x i8> -> <4 x i8>.
1098 if (!VT.isPow2VectorType()) {
1099 NumElts = NumElts.coefficientNextPowerOf2();
1100 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1101 return LegalizeKind(TypeWidenVector, NVT);
1102 }
1103
1104 // Examine the element type.
1105 LegalizeKind LK = getTypeConversion(Context, EltVT);
1106
1107 // If type is to be expanded, split the vector.
1108 // <4 x i140> -> <2 x i140>
1109 if (LK.first == TypeExpandInteger) {
1110 if (NumElts.isScalable() && NumElts.getKnownMinValue() == 1)
1113 VT.getHalfNumVectorElementsVT(Context));
1114 }
1115
1116 // Promote the integer element types until a legal vector type is found
1117 // or until the element integer type is too big. If a legal type was not
1118 // found, fallback to the usual mechanism of widening/splitting the
1119 // vector.
1120 EVT OldEltVT = EltVT;
1121 while (true) {
1122 // Increase the bitwidth of the element to the next pow-of-two
1123 // (which is greater than 8 bits).
1124 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1125 .getRoundIntegerType(Context);
1126
1127 // Stop trying when getting a non-simple element type.
1128 // Note that vector elements may be greater than legal vector element
1129 // types. Example: X86 XMM registers hold 64bit element on 32bit
1130 // systems.
1131 if (!EltVT.isSimple())
1132 break;
1133
1134 // Build a new vector type and check if it is legal.
1135 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1136 // Found a legal promoted vector type.
1137 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1139 EVT::getVectorVT(Context, EltVT, NumElts));
1140 }
1141
1142 // Reset the type to the unexpanded type if we did not find a legal vector
1143 // type with a promoted vector element type.
1144 EltVT = OldEltVT;
1145 }
1146
1147 // Try to widen the vector until a legal type is found.
1148 // If there is no wider legal type, split the vector.
1149 while (true) {
1150 // Round up to the next power of 2.
1151 NumElts = NumElts.coefficientNextPowerOf2();
1152
1153 // If there is no simple vector type with this many elements then there
1154 // cannot be a larger legal vector type. Note that this assumes that
1155 // there are no skipped intermediate vector types in the simple types.
1156 if (!EltVT.isSimple())
1157 break;
1158 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1159 if (LargerVector == MVT())
1160 break;
1161
1162 // If this type is legal then widen the vector.
1163 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1164 return LegalizeKind(TypeWidenVector, LargerVector);
1165 }
1166
1167 // Widen odd vectors to next power of two.
1168 if (!VT.isPow2VectorType()) {
1169 EVT NVT = VT.getPow2VectorType(Context);
1170 return LegalizeKind(TypeWidenVector, NVT);
1171 }
1172
1175
1176 // Vectors with illegal element types are expanded.
1177 EVT NVT = EVT::getVectorVT(Context, EltVT,
1179 return LegalizeKind(TypeSplitVector, NVT);
1180}
1181
1182static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1183 unsigned &NumIntermediates,
1184 MVT &RegisterVT,
1185 TargetLoweringBase *TLI) {
1186 // Figure out the right, legal destination reg to copy into.
1188 MVT EltTy = VT.getVectorElementType();
1189
1190 unsigned NumVectorRegs = 1;
1191
1192 // Scalable vectors cannot be scalarized, so splitting or widening is
1193 // required.
1194 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1196 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1197
1198 // FIXME: We don't support non-power-of-2-sized vectors for now.
1199 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1200 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1201 // Split EC to unit size (scalable property is preserved).
1202 NumVectorRegs = EC.getKnownMinValue();
1203 EC = ElementCount::getFixed(1);
1204 }
1205
1206 // Divide the input until we get to a supported size. This will
1207 // always end up with an EC that represent a scalar or a scalable
1208 // scalar.
1209 while (EC.getKnownMinValue() > 1 &&
1210 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1211 EC = EC.divideCoefficientBy(2);
1212 NumVectorRegs <<= 1;
1213 }
1214
1215 NumIntermediates = NumVectorRegs;
1216
1217 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1218 if (!TLI->isTypeLegal(NewVT))
1219 NewVT = EltTy;
1220 IntermediateVT = NewVT;
1221
1222 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1223
1224 // Convert sizes such as i33 to i64.
1225 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1226
1227 MVT DestVT = TLI->getRegisterType(NewVT);
1228 RegisterVT = DestVT;
1229 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1230 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1231
1232 // Otherwise, promotion or legal types use the same number of registers as
1233 // the vector decimated to the appropriate level.
1234 return NumVectorRegs;
1235}
1236
1237/// isLegalRC - Return true if the value types that can be represented by the
1238/// specified register class are all legal.
1240 const TargetRegisterClass &RC) const {
1241 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1242 if (isTypeLegal(*I))
1243 return true;
1244 return false;
1245}
1246
1247/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1248/// sequence of memory operands that is recognized by PrologEpilogInserter.
1251 MachineBasicBlock *MBB) const {
1252 MachineInstr *MI = &InitialMI;
1253 MachineFunction &MF = *MI->getMF();
1254 MachineFrameInfo &MFI = MF.getFrameInfo();
1255
1256 // We're handling multiple types of operands here:
1257 // PATCHPOINT MetaArgs - live-in, read only, direct
1258 // STATEPOINT Deopt Spill - live-through, read only, indirect
1259 // STATEPOINT Deopt Alloca - live-through, read only, direct
1260 // (We're currently conservative and mark the deopt slots read/write in
1261 // practice.)
1262 // STATEPOINT GC Spill - live-through, read/write, indirect
1263 // STATEPOINT GC Alloca - live-through, read/write, direct
1264 // The live-in vs live-through is handled already (the live through ones are
1265 // all stack slots), but we need to handle the different type of stackmap
1266 // operands and memory effects here.
1267
1268 if (llvm::none_of(MI->operands(),
1269 [](MachineOperand &Operand) { return Operand.isFI(); }))
1270 return MBB;
1271
1272 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1273
1274 // Inherit previous memory operands.
1275 MIB.cloneMemRefs(*MI);
1276
1277 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1278 MachineOperand &MO = MI->getOperand(i);
1279 if (!MO.isFI()) {
1280 // Index of Def operand this Use it tied to.
1281 // Since Defs are coming before Uses, if Use is tied, then
1282 // index of Def must be smaller that index of that Use.
1283 // Also, Defs preserve their position in new MI.
1284 unsigned TiedTo = i;
1285 if (MO.isReg() && MO.isTied())
1286 TiedTo = MI->findTiedOperandIdx(i);
1287 MIB.add(MO);
1288 if (TiedTo < i)
1289 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1290 continue;
1291 }
1292
1293 // foldMemoryOperand builds a new MI after replacing a single FI operand
1294 // with the canonical set of five x86 addressing-mode operands.
1295 int FI = MO.getIndex();
1296
1297 // Add frame index operands recognized by stackmaps.cpp
1299 // indirect-mem-ref tag, size, #FI, offset.
1300 // Used for spills inserted by StatepointLowering. This codepath is not
1301 // used for patchpoints/stackmaps at all, for these spilling is done via
1302 // foldMemoryOperand callback only.
1303 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1304 MIB.addImm(StackMaps::IndirectMemRefOp);
1305 MIB.addImm(MFI.getObjectSize(FI));
1306 MIB.add(MO);
1307 MIB.addImm(0);
1308 } else {
1309 // direct-mem-ref tag, #FI, offset.
1310 // Used by patchpoint, and direct alloca arguments to statepoints
1311 MIB.addImm(StackMaps::DirectMemRefOp);
1312 MIB.add(MO);
1313 MIB.addImm(0);
1314 }
1315
1316 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1317
1318 // Add a new memory operand for this FI.
1319 assert(MFI.getObjectOffset(FI) != -1);
1320
1321 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1322 // PATCHPOINT should be updated to do the same. (TODO)
1323 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1324 auto Flags = MachineMemOperand::MOLoad;
1326 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1328 MIB->addMemOperand(MF, MMO);
1329 }
1330 }
1331 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1332 MI->eraseFromParent();
1333 return MBB;
1334}
1335
1336/// findRepresentativeClass - Return the largest legal super-reg register class
1337/// of the register class for the specified type and its associated "cost".
1338// This function is in TargetLowering because it uses RegClassForVT which would
1339// need to be moved to TargetRegisterInfo and would necessitate moving
1340// isTypeLegal over as well - a massive change that would just require
1341// TargetLowering having a TargetRegisterInfo class member that it would use.
1342std::pair<const TargetRegisterClass *, uint8_t>
1344 MVT VT) const {
1345 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1346 if (!RC)
1347 return std::make_pair(RC, 0);
1348
1349 // Compute the set of all super-register classes.
1350 BitVector SuperRegRC(TRI->getNumRegClasses());
1351 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1352 SuperRegRC.setBitsInMask(RCI.getMask());
1353
1354 // Find the first legal register class with the largest spill size.
1355 const TargetRegisterClass *BestRC = RC;
1356 for (unsigned i : SuperRegRC.set_bits()) {
1357 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1358 // We want the largest possible spill size.
1359 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1360 continue;
1361 if (!isLegalRC(*TRI, *SuperRC))
1362 continue;
1363 BestRC = SuperRC;
1364 }
1365 return std::make_pair(BestRC, 1);
1366}
1367
1368/// computeRegisterProperties - Once all of the register classes are added,
1369/// this allows us to compute derived properties we expose.
1371 const TargetRegisterInfo *TRI) {
1372 // Everything defaults to needing one register.
1373 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1374 NumRegistersForVT[i] = 1;
1375 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1376 }
1377 // ...except isVoid, which doesn't need any registers.
1378 NumRegistersForVT[MVT::isVoid] = 0;
1379
1380 // Find the largest integer register class.
1381 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1382 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1383 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1384
1385 // Every integer value type larger than this largest register takes twice as
1386 // many registers to represent as the previous ValueType.
1387 for (unsigned ExpandedReg = LargestIntReg + 1;
1388 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1389 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1390 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1391 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1392 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1394 }
1395
1396 // Inspect all of the ValueType's smaller than the largest integer
1397 // register to see which ones need promotion.
1398 unsigned LegalIntReg = LargestIntReg;
1399 for (unsigned IntReg = LargestIntReg - 1;
1400 IntReg >= (unsigned)MVT::i1; --IntReg) {
1401 MVT IVT = (MVT::SimpleValueType)IntReg;
1402 if (isTypeLegal(IVT)) {
1403 LegalIntReg = IntReg;
1404 } else {
1405 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1406 (MVT::SimpleValueType)LegalIntReg;
1407 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1408 }
1409 }
1410
1411 // ppcf128 type is really two f64's.
1412 if (!isTypeLegal(MVT::ppcf128)) {
1413 if (isTypeLegal(MVT::f64)) {
1414 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1415 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1416 TransformToType[MVT::ppcf128] = MVT::f64;
1417 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1418 } else {
1419 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1420 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1421 TransformToType[MVT::ppcf128] = MVT::i128;
1422 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1423 }
1424 }
1425
1426 // Decide how to handle f128. If the target does not have native f128 support,
1427 // expand it to i128 and we will be generating soft float library calls.
1428 if (!isTypeLegal(MVT::f128)) {
1429 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1430 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1431 TransformToType[MVT::f128] = MVT::i128;
1432 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1433 }
1434
1435 // Decide how to handle f80. If the target does not have native f80 support,
1436 // expand it to i96 and we will be generating soft float library calls.
1437 if (!isTypeLegal(MVT::f80)) {
1438 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1439 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1440 TransformToType[MVT::f80] = MVT::i32;
1441 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1442 }
1443
1444 // Decide how to handle f64. If the target does not have native f64 support,
1445 // expand it to i64 and we will be generating soft float library calls.
1446 if (!isTypeLegal(MVT::f64)) {
1447 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1448 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1449 TransformToType[MVT::f64] = MVT::i64;
1450 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1451 }
1452
1453 // Decide how to handle f32. If the target does not have native f32 support,
1454 // expand it to i32 and we will be generating soft float library calls.
1455 if (!isTypeLegal(MVT::f32)) {
1456 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1457 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1458 TransformToType[MVT::f32] = MVT::i32;
1459 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1460 }
1461
1462 // Decide how to handle f16. If the target does not have native f16 support,
1463 // promote it to f32, because there are no f16 library calls (except for
1464 // conversions).
1465 if (!isTypeLegal(MVT::f16)) {
1466 // Allow targets to control how we legalize half.
1467 bool SoftPromoteHalfType = softPromoteHalfType();
1468 bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1469
1470 if (!UseFPRegsForHalfType) {
1471 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1472 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1473 } else {
1474 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1475 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1476 }
1477 TransformToType[MVT::f16] = MVT::f32;
1478 if (SoftPromoteHalfType) {
1479 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1480 } else {
1481 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1482 }
1483 }
1484
1485 // Decide how to handle bf16. If the target does not have native bf16 support,
1486 // promote it to f32, because there are no bf16 library calls (except for
1487 // converting from f32 to bf16).
1488 if (!isTypeLegal(MVT::bf16)) {
1489 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1490 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1491 TransformToType[MVT::bf16] = MVT::f32;
1492 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1493 }
1494
1495 // Loop over all of the vector value types to see which need transformations.
1496 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1497 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1498 MVT VT = (MVT::SimpleValueType) i;
1499 if (isTypeLegal(VT))
1500 continue;
1501
1502 MVT EltVT = VT.getVectorElementType();
1504 bool IsLegalWiderType = false;
1505 bool IsScalable = VT.isScalableVector();
1506 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1507 switch (PreferredAction) {
1508 case TypePromoteInteger: {
1509 MVT::SimpleValueType EndVT = IsScalable ?
1510 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1511 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1512 // Try to promote the elements of integer vectors. If no legal
1513 // promotion was found, fall through to the widen-vector method.
1514 for (unsigned nVT = i + 1;
1515 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1516 MVT SVT = (MVT::SimpleValueType) nVT;
1517 // Promote vectors of integers to vectors with the same number
1518 // of elements, with a wider element type.
1519 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1520 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1521 TransformToType[i] = SVT;
1522 RegisterTypeForVT[i] = SVT;
1523 NumRegistersForVT[i] = 1;
1524 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1525 IsLegalWiderType = true;
1526 break;
1527 }
1528 }
1529 if (IsLegalWiderType)
1530 break;
1531 [[fallthrough]];
1532 }
1533
1534 case TypeWidenVector:
1535 if (isPowerOf2_32(EC.getKnownMinValue())) {
1536 // Try to widen the vector.
1537 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1538 MVT SVT = (MVT::SimpleValueType) nVT;
1539 if (SVT.getVectorElementType() == EltVT &&
1540 SVT.isScalableVector() == IsScalable &&
1542 EC.getKnownMinValue() &&
1543 isTypeLegal(SVT)) {
1544 TransformToType[i] = SVT;
1545 RegisterTypeForVT[i] = SVT;
1546 NumRegistersForVT[i] = 1;
1547 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1548 IsLegalWiderType = true;
1549 break;
1550 }
1551 }
1552 if (IsLegalWiderType)
1553 break;
1554 } else {
1555 // Only widen to the next power of 2 to keep consistency with EVT.
1556 MVT NVT = VT.getPow2VectorType();
1557 if (isTypeLegal(NVT)) {
1558 TransformToType[i] = NVT;
1559 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1560 RegisterTypeForVT[i] = NVT;
1561 NumRegistersForVT[i] = 1;
1562 break;
1563 }
1564 }
1565 [[fallthrough]];
1566
1567 case TypeSplitVector:
1568 case TypeScalarizeVector: {
1569 MVT IntermediateVT;
1570 MVT RegisterVT;
1571 unsigned NumIntermediates;
1572 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1573 NumIntermediates, RegisterVT, this);
1574 NumRegistersForVT[i] = NumRegisters;
1575 assert(NumRegistersForVT[i] == NumRegisters &&
1576 "NumRegistersForVT size cannot represent NumRegisters!");
1577 RegisterTypeForVT[i] = RegisterVT;
1578
1579 MVT NVT = VT.getPow2VectorType();
1580 if (NVT == VT) {
1581 // Type is already a power of 2. The default action is to split.
1582 TransformToType[i] = MVT::Other;
1583 if (PreferredAction == TypeScalarizeVector)
1584 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1585 else if (PreferredAction == TypeSplitVector)
1586 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1587 else if (EC.getKnownMinValue() > 1)
1588 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1589 else
1590 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1593 } else {
1594 TransformToType[i] = NVT;
1595 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1596 }
1597 break;
1598 }
1599 default:
1600 llvm_unreachable("Unknown vector legalization action!");
1601 }
1602 }
1603
1604 // Determine the 'representative' register class for each value type.
1605 // An representative register class is the largest (meaning one which is
1606 // not a sub-register class / subreg register class) legal register class for
1607 // a group of value types. For example, on i386, i8, i16, and i32
1608 // representative would be GR32; while on x86_64 it's GR64.
1609 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1610 const TargetRegisterClass* RRC;
1611 uint8_t Cost;
1613 RepRegClassForVT[i] = RRC;
1614 RepRegClassCostForVT[i] = Cost;
1615 }
1616}
1617
1619 EVT VT) const {
1620 assert(!VT.isVector() && "No default SetCC type for vectors!");
1621 return getPointerTy(DL).SimpleTy;
1622}
1623
1625 return MVT::i32; // return the default value
1626}
1627
1628/// getVectorTypeBreakdown - Vector types are broken down into some number of
1629/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1630/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1631/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1632///
1633/// This method returns the number of registers needed, and the VT for each
1634/// register. It also returns the VT and quantity of the intermediate values
1635/// before they are promoted/expanded.
1637 EVT VT, EVT &IntermediateVT,
1638 unsigned &NumIntermediates,
1639 MVT &RegisterVT) const {
1640 ElementCount EltCnt = VT.getVectorElementCount();
1641
1642 // If there is a wider vector type with the same element type as this one,
1643 // or a promoted vector type that has the same number of elements which
1644 // are wider, then we should convert to that legal vector type.
1645 // This handles things like <2 x float> -> <4 x float> and
1646 // <4 x i1> -> <4 x i32>.
1647 LegalizeTypeAction TA = getTypeAction(Context, VT);
1648 if (!EltCnt.isScalar() &&
1649 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1650 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1651 if (isTypeLegal(RegisterEVT)) {
1652 IntermediateVT = RegisterEVT;
1653 RegisterVT = RegisterEVT.getSimpleVT();
1654 NumIntermediates = 1;
1655 return 1;
1656 }
1657 }
1658
1659 // Figure out the right, legal destination reg to copy into.
1660 EVT EltTy = VT.getVectorElementType();
1661
1662 unsigned NumVectorRegs = 1;
1663
1664 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1665 // types like done elsewhere in SelectionDAG.
1666 if (EltCnt.isScalable()) {
1667 LegalizeKind LK;
1668 EVT PartVT = VT;
1669 do {
1670 // Iterate until we've found a legal (part) type to hold VT.
1671 LK = getTypeConversion(Context, PartVT);
1672 PartVT = LK.second;
1673 } while (LK.first != TypeLegal);
1674
1675 if (!PartVT.isVector()) {
1677 "Don't know how to legalize this scalable vector type");
1678 }
1679
1680 NumIntermediates =
1683 IntermediateVT = PartVT;
1684 RegisterVT = getRegisterType(Context, IntermediateVT);
1685 return NumIntermediates;
1686 }
1687
1688 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1689 // we could break down into LHS/RHS like LegalizeDAG does.
1690 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1691 NumVectorRegs = EltCnt.getKnownMinValue();
1692 EltCnt = ElementCount::getFixed(1);
1693 }
1694
1695 // Divide the input until we get to a supported size. This will always
1696 // end with a scalar if the target doesn't support vectors.
1697 while (EltCnt.getKnownMinValue() > 1 &&
1698 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1699 EltCnt = EltCnt.divideCoefficientBy(2);
1700 NumVectorRegs <<= 1;
1701 }
1702
1703 NumIntermediates = NumVectorRegs;
1704
1705 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1706 if (!isTypeLegal(NewVT))
1707 NewVT = EltTy;
1708 IntermediateVT = NewVT;
1709
1710 MVT DestVT = getRegisterType(Context, NewVT);
1711 RegisterVT = DestVT;
1712
1713 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1714 TypeSize NewVTSize = NewVT.getSizeInBits();
1715 // Convert sizes such as i33 to i64.
1717 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1718 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1719 }
1720
1721 // Otherwise, promotion or legal types use the same number of registers as
1722 // the vector decimated to the appropriate level.
1723 return NumVectorRegs;
1724}
1725
1727 uint64_t NumCases,
1729 ProfileSummaryInfo *PSI,
1730 BlockFrequencyInfo *BFI) const {
1731 // FIXME: This function check the maximum table size and density, but the
1732 // minimum size is not checked. It would be nice if the minimum size is
1733 // also combined within this function. Currently, the minimum size check is
1734 // performed in findJumpTable() in SelectionDAGBuiler and
1735 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1736 const bool OptForSize =
1737 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1738 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1739 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1740
1741 // Check whether the number of cases is small enough and
1742 // the range is dense enough for a jump table.
1743 return (OptForSize || Range <= MaxJumpTableSize) &&
1744 (NumCases * 100 >= Range * MinDensity);
1745}
1746
1748 EVT ConditionVT) const {
1749 return getRegisterType(Context, ConditionVT);
1750}
1751
1752/// Get the EVTs and ArgFlags collections that represent the legalized return
1753/// type of the given function. This does not require a DAG or a return value,
1754/// and is suitable for use before any DAGs for the function are constructed.
1755/// TODO: Move this out of TargetLowering.cpp.
1757 AttributeList attr,
1759 const TargetLowering &TLI, const DataLayout &DL) {
1761 ComputeValueTypes(DL, ReturnType, Types);
1762 unsigned NumValues = Types.size();
1763 if (NumValues == 0) return;
1764
1765 for (Type *Ty : Types) {
1766 EVT VT = TLI.getValueType(DL, Ty);
1767 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1768
1769 if (attr.hasRetAttr(Attribute::SExt))
1770 ExtendKind = ISD::SIGN_EXTEND;
1771 else if (attr.hasRetAttr(Attribute::ZExt))
1772 ExtendKind = ISD::ZERO_EXTEND;
1773
1774 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1775 VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
1776
1777 unsigned NumParts =
1778 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1779 MVT PartVT =
1780 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1781
1782 // 'inreg' on function refers to return value
1784 if (attr.hasRetAttr(Attribute::InReg))
1785 Flags.setInReg();
1786
1787 // Propagate extension type if any
1788 if (attr.hasRetAttr(Attribute::SExt))
1789 Flags.setSExt();
1790 else if (attr.hasRetAttr(Attribute::ZExt))
1791 Flags.setZExt();
1792
1793 for (unsigned i = 0; i < NumParts; ++i)
1794 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, Ty, 0, 0));
1795 }
1796}
1797
1799 const DataLayout &DL) const {
1800 return DL.getABITypeAlign(Ty);
1801}
1802
1804 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1805 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1806 // Check if the specified alignment is sufficient based on the data layout.
1807 // TODO: While using the data layout works in practice, a better solution
1808 // would be to implement this check directly (make this a virtual function).
1809 // For example, the ABI alignment may change based on software platform while
1810 // this function should only be affected by hardware implementation.
1811 Type *Ty = VT.getTypeForEVT(Context);
1812 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1813 // Assume that an access that meets the ABI-specified alignment is fast.
1814 if (Fast != nullptr)
1815 *Fast = 1;
1816 return true;
1817 }
1818
1819 // This is a misaligned access.
1820 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1821}
1822
1824 LLVMContext &Context, const DataLayout &DL, EVT VT,
1825 const MachineMemOperand &MMO, unsigned *Fast) const {
1826 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1827 MMO.getAlign(), MMO.getFlags(), Fast);
1828}
1829
1831 const DataLayout &DL, EVT VT,
1832 unsigned AddrSpace, Align Alignment,
1834 unsigned *Fast) const {
1835 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1836 Flags, Fast);
1837}
1838
1840 const DataLayout &DL, EVT VT,
1841 const MachineMemOperand &MMO,
1842 unsigned *Fast) const {
1843 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1844 MMO.getFlags(), Fast);
1845}
1846
1848 const DataLayout &DL, LLT Ty,
1849 const MachineMemOperand &MMO,
1850 unsigned *Fast) const {
1851 EVT VT = getApproximateEVTForLLT(Ty, Context);
1852 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1853 MMO.getFlags(), Fast);
1854}
1855
1856//===----------------------------------------------------------------------===//
1857// TargetTransformInfo Helpers
1858//===----------------------------------------------------------------------===//
1859
1861 enum InstructionOpcodes {
1862#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1863#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1864#include "llvm/IR/Instruction.def"
1865 };
1866 switch (static_cast<InstructionOpcodes>(Opcode)) {
1867 case Ret: return 0;
1868 case Br: return 0;
1869 case Switch: return 0;
1870 case IndirectBr: return 0;
1871 case Invoke: return 0;
1872 case CallBr: return 0;
1873 case Resume: return 0;
1874 case Unreachable: return 0;
1875 case CleanupRet: return 0;
1876 case CatchRet: return 0;
1877 case CatchPad: return 0;
1878 case CatchSwitch: return 0;
1879 case CleanupPad: return 0;
1880 case FNeg: return ISD::FNEG;
1881 case Add: return ISD::ADD;
1882 case FAdd: return ISD::FADD;
1883 case Sub: return ISD::SUB;
1884 case FSub: return ISD::FSUB;
1885 case Mul: return ISD::MUL;
1886 case FMul: return ISD::FMUL;
1887 case UDiv: return ISD::UDIV;
1888 case SDiv: return ISD::SDIV;
1889 case FDiv: return ISD::FDIV;
1890 case URem: return ISD::UREM;
1891 case SRem: return ISD::SREM;
1892 case FRem: return ISD::FREM;
1893 case Shl: return ISD::SHL;
1894 case LShr: return ISD::SRL;
1895 case AShr: return ISD::SRA;
1896 case And: return ISD::AND;
1897 case Or: return ISD::OR;
1898 case Xor: return ISD::XOR;
1899 case Alloca: return 0;
1900 case Load: return ISD::LOAD;
1901 case Store: return ISD::STORE;
1902 case GetElementPtr: return 0;
1903 case Fence: return 0;
1904 case AtomicCmpXchg: return 0;
1905 case AtomicRMW: return 0;
1906 case Trunc: return ISD::TRUNCATE;
1907 case ZExt: return ISD::ZERO_EXTEND;
1908 case SExt: return ISD::SIGN_EXTEND;
1909 case FPToUI: return ISD::FP_TO_UINT;
1910 case FPToSI: return ISD::FP_TO_SINT;
1911 case UIToFP: return ISD::UINT_TO_FP;
1912 case SIToFP: return ISD::SINT_TO_FP;
1913 case FPTrunc: return ISD::FP_ROUND;
1914 case FPExt: return ISD::FP_EXTEND;
1915 case PtrToAddr: return ISD::BITCAST;
1916 case PtrToInt: return ISD::BITCAST;
1917 case IntToPtr: return ISD::BITCAST;
1918 case BitCast: return ISD::BITCAST;
1919 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1920 case ICmp: return ISD::SETCC;
1921 case FCmp: return ISD::SETCC;
1922 case PHI: return 0;
1923 case Call: return 0;
1924 case Select: return ISD::SELECT;
1925 case UserOp1: return 0;
1926 case UserOp2: return 0;
1927 case VAArg: return 0;
1928 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1929 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1930 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1931 case ExtractValue: return ISD::MERGE_VALUES;
1932 case InsertValue: return ISD::MERGE_VALUES;
1933 case LandingPad: return 0;
1934 case Freeze: return ISD::FREEZE;
1935 }
1936
1937 llvm_unreachable("Unknown instruction type encountered!");
1938}
1939
1941 switch (ID) {
1942 case Intrinsic::exp:
1943 return ISD::FEXP;
1944 case Intrinsic::exp2:
1945 return ISD::FEXP2;
1946 case Intrinsic::log:
1947 return ISD::FLOG;
1948 default:
1949 return ISD::DELETED_NODE;
1950 }
1951}
1952
1953Value *
1955 bool UseTLS) const {
1956 // compiler-rt provides a variable with a magic name. Targets that do not
1957 // link with compiler-rt may also provide such a variable.
1958 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1959 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1960 auto UnsafeStackPtr =
1961 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1962
1963 const DataLayout &DL = M->getDataLayout();
1964 PointerType *StackPtrTy = DL.getAllocaPtrType(M->getContext());
1965
1966 if (!UnsafeStackPtr) {
1967 auto TLSModel = UseTLS ?
1970 // The global variable is not defined yet, define it ourselves.
1971 // We use the initial-exec TLS model because we do not support the
1972 // variable living anywhere other than in the main executable.
1973 UnsafeStackPtr = new GlobalVariable(
1974 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1975 UnsafeStackPtrVar, nullptr, TLSModel);
1976 } else {
1977 // The variable exists, check its type and attributes.
1978 //
1979 // FIXME: Move to IR verifier.
1980 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1981 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1982 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1983 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1984 (UseTLS ? "" : "not ") + "be thread-local");
1985 }
1986 return UnsafeStackPtr;
1987}
1988
1989Value *
1991 // FIXME: Can this triple check be replaced with SAFESTACK_POINTER_ADDRESS
1992 // being available?
1993 if (!TM.getTargetTriple().isAndroid())
1994 return getDefaultSafeStackPointerLocation(IRB, true);
1995
1996 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1997 auto *PtrTy = PointerType::getUnqual(M->getContext());
1998
1999 const char *SafestackPointerAddressName =
2000 getLibcallName(RTLIB::SAFESTACK_POINTER_ADDRESS);
2001 if (!SafestackPointerAddressName) {
2002 M->getContext().emitError(
2003 "no libcall available for safestack pointer address");
2004 return PoisonValue::get(PtrTy);
2005 }
2006
2007 // Android provides a libc function to retrieve the address of the current
2008 // thread's unsafe stack pointer.
2009 FunctionCallee Fn =
2010 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2011 return IRB.CreateCall(Fn);
2012}
2013
2014//===----------------------------------------------------------------------===//
2015// Loop Strength Reduction hooks
2016//===----------------------------------------------------------------------===//
2017
2018/// isLegalAddressingMode - Return true if the addressing mode represented
2019/// by AM is legal for this target, for a load/store of the specified type.
2021 const AddrMode &AM, Type *Ty,
2022 unsigned AS, Instruction *I) const {
2023 // The default implementation of this implements a conservative RISCy, r+r and
2024 // r+i addr mode.
2025
2026 // Scalable offsets not supported
2027 if (AM.ScalableOffset)
2028 return false;
2029
2030 // Allows a sign-extended 16-bit immediate field.
2031 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2032 return false;
2033
2034 // No global is ever allowed as a base.
2035 if (AM.BaseGV)
2036 return false;
2037
2038 // Only support r+r,
2039 switch (AM.Scale) {
2040 case 0: // "r+i" or just "i", depending on HasBaseReg.
2041 break;
2042 case 1:
2043 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2044 return false;
2045 // Otherwise we have r+r or r+i.
2046 break;
2047 case 2:
2048 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2049 return false;
2050 // Allow 2*r as r+r.
2051 break;
2052 default: // Don't allow n * r
2053 return false;
2054 }
2055
2056 return true;
2057}
2058
2059//===----------------------------------------------------------------------===//
2060// Stack Protector
2061//===----------------------------------------------------------------------===//
2062
2063// For OpenBSD return its special guard variable. Otherwise return nullptr,
2064// so that SelectionDAG handle SSP.
2066 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
2067 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2068 const DataLayout &DL = M.getDataLayout();
2069 PointerType *PtrTy =
2070 PointerType::get(M.getContext(), DL.getDefaultGlobalsAddressSpace());
2071 GlobalVariable *G = M.getOrInsertGlobal("__guard_local", PtrTy);
2072 G->setVisibility(GlobalValue::HiddenVisibility);
2073 return G;
2074 }
2075 return nullptr;
2076}
2077
2078// Currently only support "standard" __stack_chk_guard.
2079// TODO: add LOAD_STACK_GUARD support.
2081 RTLIB::LibcallImpl StackGuardImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2082 if (StackGuardImpl == RTLIB::Unsupported)
2083 return;
2084
2085 StringRef StackGuardVarName = getLibcallImplName(StackGuardImpl);
2086 M.getOrInsertGlobal(
2087 StackGuardVarName, PointerType::getUnqual(M.getContext()), [=, &M]() {
2088 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2089 false, GlobalVariable::ExternalLinkage,
2090 nullptr, StackGuardVarName);
2091
2092 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2093 if (M.getDirectAccessExternalData() &&
2094 !TM.getTargetTriple().isOSCygMing() &&
2095 !(TM.getTargetTriple().isPPC64() &&
2096 TM.getTargetTriple().isOSFreeBSD()) &&
2097 (!TM.getTargetTriple().isOSDarwin() ||
2098 TM.getRelocationModel() == Reloc::Static))
2099 GV->setDSOLocal(true);
2100
2101 return GV;
2102 });
2103}
2104
2105// Currently only support "standard" __stack_chk_guard.
2106// TODO: add LOAD_STACK_GUARD support.
2108 RTLIB::LibcallImpl GuardVarImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2109 if (GuardVarImpl == RTLIB::Unsupported)
2110 return nullptr;
2111 return M.getNamedValue(getLibcallImplName(GuardVarImpl));
2112}
2113
2115 // MSVC CRT has a function to validate security cookie.
2116 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2117 getLibcallImpl(RTLIB::SECURITY_CHECK_COOKIE);
2118 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2119 return M.getFunction(getLibcallImplName(SecurityCheckCookieLibcall));
2120 return nullptr;
2121}
2122
2126
2130
2131unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2132 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2133}
2134
2138
2142
2146
2148 return MinimumBitTestCmps;
2149}
2150
2152 MinimumBitTestCmps = Val;
2153}
2154
2156 if (TM.Options.LoopAlignment)
2157 return Align(TM.Options.LoopAlignment);
2158 return PrefLoopAlignment;
2159}
2160
2162 MachineBasicBlock *MBB) const {
2163 return MaxBytesForAlignment;
2164}
2165
2166//===----------------------------------------------------------------------===//
2167// Reciprocal Estimates
2168//===----------------------------------------------------------------------===//
2169
2170/// Get the reciprocal estimate attribute string for a function that will
2171/// override the target defaults.
2173 const Function &F = MF.getFunction();
2174 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2175}
2176
2177/// Construct a string for the given reciprocal operation of the given type.
2178/// This string should match the corresponding option to the front-end's
2179/// "-mrecip" flag assuming those strings have been passed through in an
2180/// attribute string. For example, "vec-divf" for a division of a vXf32.
2181static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2182 std::string Name = VT.isVector() ? "vec-" : "";
2183
2184 Name += IsSqrt ? "sqrt" : "div";
2185
2186 // TODO: Handle other float types?
2187 if (VT.getScalarType() == MVT::f64) {
2188 Name += "d";
2189 } else if (VT.getScalarType() == MVT::f16) {
2190 Name += "h";
2191 } else {
2192 assert(VT.getScalarType() == MVT::f32 &&
2193 "Unexpected FP type for reciprocal estimate");
2194 Name += "f";
2195 }
2196
2197 return Name;
2198}
2199
2200/// Return the character position and value (a single numeric character) of a
2201/// customized refinement operation in the input string if it exists. Return
2202/// false if there is no customized refinement step count.
2203static bool parseRefinementStep(StringRef In, size_t &Position,
2204 uint8_t &Value) {
2205 const char RefStepToken = ':';
2206 Position = In.find(RefStepToken);
2207 if (Position == StringRef::npos)
2208 return false;
2209
2210 StringRef RefStepString = In.substr(Position + 1);
2211 // Allow exactly one numeric character for the additional refinement
2212 // step parameter.
2213 if (RefStepString.size() == 1) {
2214 char RefStepChar = RefStepString[0];
2215 if (isDigit(RefStepChar)) {
2216 Value = RefStepChar - '0';
2217 return true;
2218 }
2219 }
2220 report_fatal_error("Invalid refinement step for -recip.");
2221}
2222
2223/// For the input attribute string, return one of the ReciprocalEstimate enum
2224/// status values (enabled, disabled, or not specified) for this operation on
2225/// the specified data type.
2226static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2227 if (Override.empty())
2229
2230 SmallVector<StringRef, 4> OverrideVector;
2231 Override.split(OverrideVector, ',');
2232 unsigned NumArgs = OverrideVector.size();
2233
2234 // Check if "all", "none", or "default" was specified.
2235 if (NumArgs == 1) {
2236 // Look for an optional setting of the number of refinement steps needed
2237 // for this type of reciprocal operation.
2238 size_t RefPos;
2239 uint8_t RefSteps;
2240 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2241 // Split the string for further processing.
2242 Override = Override.substr(0, RefPos);
2243 }
2244
2245 // All reciprocal types are enabled.
2246 if (Override == "all")
2248
2249 // All reciprocal types are disabled.
2250 if (Override == "none")
2252
2253 // Target defaults for enablement are used.
2254 if (Override == "default")
2256 }
2257
2258 // The attribute string may omit the size suffix ('f'/'d').
2259 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2260 std::string VTNameNoSize = VTName;
2261 VTNameNoSize.pop_back();
2262 static const char DisabledPrefix = '!';
2263
2264 for (StringRef RecipType : OverrideVector) {
2265 size_t RefPos;
2266 uint8_t RefSteps;
2267 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2268 RecipType = RecipType.substr(0, RefPos);
2269
2270 // Ignore the disablement token for string matching.
2271 bool IsDisabled = RecipType[0] == DisabledPrefix;
2272 if (IsDisabled)
2273 RecipType = RecipType.substr(1);
2274
2275 if (RecipType == VTName || RecipType == VTNameNoSize)
2278 }
2279
2281}
2282
2283/// For the input attribute string, return the customized refinement step count
2284/// for this operation on the specified data type. If the step count does not
2285/// exist, return the ReciprocalEstimate enum value for unspecified.
2286static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2287 if (Override.empty())
2289
2290 SmallVector<StringRef, 4> OverrideVector;
2291 Override.split(OverrideVector, ',');
2292 unsigned NumArgs = OverrideVector.size();
2293
2294 // Check if "all", "default", or "none" was specified.
2295 if (NumArgs == 1) {
2296 // Look for an optional setting of the number of refinement steps needed
2297 // for this type of reciprocal operation.
2298 size_t RefPos;
2299 uint8_t RefSteps;
2300 if (!parseRefinementStep(Override, RefPos, RefSteps))
2302
2303 // Split the string for further processing.
2304 Override = Override.substr(0, RefPos);
2305 assert(Override != "none" &&
2306 "Disabled reciprocals, but specifed refinement steps?");
2307
2308 // If this is a general override, return the specified number of steps.
2309 if (Override == "all" || Override == "default")
2310 return RefSteps;
2311 }
2312
2313 // The attribute string may omit the size suffix ('f'/'d').
2314 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2315 std::string VTNameNoSize = VTName;
2316 VTNameNoSize.pop_back();
2317
2318 for (StringRef RecipType : OverrideVector) {
2319 size_t RefPos;
2320 uint8_t RefSteps;
2321 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2322 continue;
2323
2324 RecipType = RecipType.substr(0, RefPos);
2325 if (RecipType == VTName || RecipType == VTNameNoSize)
2326 return RefSteps;
2327 }
2328
2330}
2331
2336
2341
2346
2351
2353 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2354 const MachineMemOperand &MMO) const {
2355 // Single-element vectors are scalarized, so we should generally avoid having
2356 // any memory operations on such types, as they would get scalarized too.
2357 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2358 BitcastVT.getVectorNumElements() == 1)
2359 return false;
2360
2361 // Don't do if we could do an indexed load on the original type, but not on
2362 // the new one.
2363 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2364 return true;
2365
2366 MVT LoadMVT = LoadVT.getSimpleVT();
2367
2368 // Don't bother doing this if it's just going to be promoted again later, as
2369 // doing so might interfere with other combines.
2370 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2371 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2372 return false;
2373
2374 unsigned Fast = 0;
2375 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2376 MMO, &Fast) &&
2377 Fast;
2378}
2379
2383
2385 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2386 const TargetLibraryInfo *LibInfo) const {
2388 if (LI.isVolatile())
2390
2391 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2393
2394 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2396
2398 LI.getAlign(), DL, &LI, AC,
2399 /*DT=*/nullptr, LibInfo))
2401
2402 Flags |= getTargetMMOFlags(LI);
2403 return Flags;
2404}
2405
2408 const DataLayout &DL) const {
2410
2411 if (SI.isVolatile())
2413
2414 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2416
2417 // FIXME: Not preserving dereferenceable
2418 Flags |= getTargetMMOFlags(SI);
2419 return Flags;
2420}
2421
2424 const DataLayout &DL) const {
2426
2427 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2428 if (RMW->isVolatile())
2430 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2431 if (CmpX->isVolatile())
2433 } else
2434 llvm_unreachable("not an atomic instruction");
2435
2436 // FIXME: Not preserving dereferenceable
2437 Flags |= getTargetMMOFlags(AI);
2438 return Flags;
2439}
2440
2442 const VPIntrinsic &VPIntrin) const {
2444 Intrinsic::ID IntrinID = VPIntrin.getIntrinsicID();
2445
2446 switch (IntrinID) {
2447 default:
2448 llvm_unreachable("unexpected intrinsic. Existing code may be appropriate "
2449 "for it, but support must be explicitly enabled");
2450 case Intrinsic::vp_load:
2451 case Intrinsic::vp_gather:
2452 case Intrinsic::experimental_vp_strided_load:
2454 break;
2455 case Intrinsic::vp_store:
2456 case Intrinsic::vp_scatter:
2457 case Intrinsic::experimental_vp_strided_store:
2459 break;
2460 }
2461
2462 if (VPIntrin.hasMetadata(LLVMContext::MD_nontemporal))
2464
2465 Flags |= getTargetMMOFlags(VPIntrin);
2466 return Flags;
2467}
2468
2470 Instruction *Inst,
2471 AtomicOrdering Ord) const {
2472 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2473 return Builder.CreateFence(Ord);
2474 else
2475 return nullptr;
2476}
2477
2479 Instruction *Inst,
2480 AtomicOrdering Ord) const {
2481 if (isAcquireOrStronger(Ord))
2482 return Builder.CreateFence(Ord);
2483 else
2484 return nullptr;
2485}
2486
2487//===----------------------------------------------------------------------===//
2488// GlobalISel Hooks
2489//===----------------------------------------------------------------------===//
2490
2492 const TargetTransformInfo *TTI) const {
2493 auto &MF = *MI.getMF();
2494 auto &MRI = MF.getRegInfo();
2495 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2496 // this helper function computes the maximum number of uses we should consider
2497 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2498 // break even in terms of code size when the original MI has 2 users vs
2499 // choosing to potentially spill. Any more than 2 users we we have a net code
2500 // size increase. This doesn't take into account register pressure though.
2501 auto maxUses = [](unsigned RematCost) {
2502 // A cost of 1 means remats are basically free.
2503 if (RematCost == 1)
2504 return std::numeric_limits<unsigned>::max();
2505 if (RematCost == 2)
2506 return 2U;
2507
2508 // Remat is too expensive, only sink if there's one user.
2509 if (RematCost > 2)
2510 return 1U;
2511 llvm_unreachable("Unexpected remat cost");
2512 };
2513
2514 switch (MI.getOpcode()) {
2515 default:
2516 return false;
2517 // Constants-like instructions should be close to their users.
2518 // We don't want long live-ranges for them.
2519 case TargetOpcode::G_CONSTANT:
2520 case TargetOpcode::G_FCONSTANT:
2521 case TargetOpcode::G_FRAME_INDEX:
2522 case TargetOpcode::G_INTTOPTR:
2523 return true;
2524 case TargetOpcode::G_GLOBAL_VALUE: {
2525 unsigned RematCost = TTI->getGISelRematGlobalCost();
2526 Register Reg = MI.getOperand(0).getReg();
2527 unsigned MaxUses = maxUses(RematCost);
2528 if (MaxUses == UINT_MAX)
2529 return true; // Remats are "free" so always localize.
2530 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2531 }
2532 }
2533}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
This file defines the DenseMap class.
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
#define LCALL5(A)
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
Definition BitVector.h:723
iterator_range< const_set_bits_iterator > set_bits() const
Definition BitVector.h:159
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:313
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:310
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:321
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
BasicBlock * GetInsertBlock() const
Definition IRBuilder.h:201
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2511
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
static constexpr size_t npos
Definition StringRef.h:57
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Multiway switch.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
constexpr LeafTy coefficientNextPowerOf2() const
Definition TypeSize.h:261
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:253
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ LOOP_DEPENDENCE_RAW_MASK
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:531
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:898
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ TRUNCATE_SSAT_U
Definition ISDOpcodes.h:861
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:815
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:541
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:887
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:909
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
Definition ISDOpcodes.h:859
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
@ TRUNCATE_USAT_U
Definition ISDOpcodes.h:863
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMODF(EVT RetVT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
InstructionCost Cost
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
Definition Sequence.h:337
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
Definition Sequence.h:109
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
TargetTransformInfo TTI
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
Definition ValueTypes.h:477
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
Definition ValueTypes.h:419
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition ValueTypes.h:132
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
Matching combinators.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...