57 "disable-i2p-p2i-opt",
cl::init(
false),
58 cl::desc(
"Disables inttoptr/ptrtoint roundtrip optimization"));
64std::optional<TypeSize>
71 assert(!
Size.isScalable() &&
"Array elements cannot have a scalable size");
81std::optional<TypeSize>
101 return "both values to select must have same type";
104 return "select values cannot have token type";
109 return "vector select condition element type must be i1";
112 return "selected values for vector select must be vectors";
114 return "vector select requires selected vectors to have "
115 "the same vector length as select condition";
117 return "select condition must be i1 or <n x i1>";
126PHINode::PHINode(
const PHINode &PN)
128 ReservedSpace(PN.getNumOperands()) {
148 Op<-1>().set(
nullptr);
161 bool DeletePHIIfEmpty) {
165 for (
unsigned Idx =
NumOps; Idx-- > 0;) {
166 if (Predicate(Idx)) {
167 unsigned LastIdx =
NumOps - 1;
168 if (Idx != LastIdx) {
191void PHINode::growOperands() {
193 unsigned NumOps = e + e / 2;
207 if (ConstantValue !=
this)
212 if (ConstantValue ==
this)
214 return ConstantValue;
223 Value *ConstantValue =
nullptr;
227 if (ConstantValue && ConstantValue !=
Incoming)
239LandingPadInst::LandingPadInst(
Type *RetTy,
unsigned NumReservedValues,
240 const Twine &NameStr,
243 init(NumReservedValues, NameStr);
248 ReservedSpace(LP.getNumOperands()) {
253 for (
unsigned I = 0,
E = ReservedSpace;
I !=
E; ++
I)
260 const Twine &NameStr,
262 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
265void LandingPadInst::init(
unsigned NumReservedValues,
const Twine &NameStr) {
266 ReservedSpace = NumReservedValues;
275void LandingPadInst::growOperands(
unsigned Size) {
277 if (ReservedSpace >= e +
Size)
return;
278 ReservedSpace = (std::max(e, 1U) +
Size / 2) * 2;
285 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
297 case Instruction::Call:
299 case Instruction::Invoke:
301 case Instruction::CallBr:
313 if (ChildOB.getTagName() != OpB.
getTag())
338 return CI->isMustTailCall();
345 return CI->isTailCall();
351 return F->getIntrinsicID();
359 Mask |=
F->getAttributes().getRetNoFPClass();
367 Mask |=
F->getAttributes().getParamNoFPClass(i);
375 FnAttr =
F->getRetAttribute(Attribute::Range);
400 if (
Attrs.hasAttrSomewhere(Kind, &Index))
403 if (
F->getAttributes().hasAttrSomewhere(Kind, &Index))
413 if (
Attrs.hasParamAttr(ArgNo, Kind))
420 if (!
F->getAttributes().hasParamAttr(ArgNo, Kind))
425 case Attribute::ReadNone:
427 case Attribute::ReadOnly:
429 case Attribute::WriteOnly:
437 bool AllowUndefOrPoison)
const {
439 "Argument must be a pointer");
441 (AllowUndefOrPoison ||
paramHasAttr(ArgNo, Attribute::NoUndef)))
455 return F->getAttributes().hasFnAttr(Kind);
460bool CallBase::hasFnAttrOnCalledFunction(
StringRef Kind)
const {
462 return F->getAttributes().hasFnAttr(Kind);
467template <
typename AK>
468Attribute CallBase::getFnAttrOnCalledFunction(AK Kind)
const {
469 if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
472 assert(Kind != Attribute::Memory &&
"Use getMemoryEffects() instead");
476 return F->getAttributes().getFnAttr(Kind);
484CallBase::getFnAttrOnCalledFunction(
StringRef Kind)
const;
486template <
typename AK>
487Attribute CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
492 return F->getAttributes().getParamAttr(ArgNo, Kind);
499CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
StringRef Kind)
const;
509 const unsigned BeginIndex) {
511 for (
auto &
B : Bundles)
512 It = std::copy(
B.input_begin(),
B.input_end(), It);
515 auto BI = Bundles.
begin();
516 unsigned CurrentIndex = BeginIndex;
519 assert(BI != Bundles.
end() &&
"Incorrect allocation?");
521 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
522 BOI.Begin = CurrentIndex;
523 BOI.End = CurrentIndex + BI->input_size();
524 CurrentIndex = BOI.End;
528 assert(BI == Bundles.
end() &&
"Incorrect allocation?");
548 "The Idx isn't in the operand bundle");
552 constexpr unsigned NumberScaling = 1024;
558 while (Begin != End) {
559 unsigned ScaledOperandPerBundle =
560 NumberScaling * (std::prev(End)->End - Begin->
Begin) / (End - Begin);
561 Current = Begin + (((
OpIdx - Begin->
Begin) * NumberScaling) /
562 ScaledOperandPerBundle);
564 Current = std::prev(End);
565 assert(Current < End && Current >= Begin &&
566 "the operand bundle doesn't cover every value in the range");
576 "the operand bundle doesn't cover every value in the range");
589 return Create(CB, Bundles, InsertPt);
595 bool CreateNew =
false;
599 if (Bundle.getTagID() ==
ID) {
606 return CreateNew ?
Create(CB, Bundles, InsertPt) : CB;
713 CI &= Fn->getAttributes().getParamAttrs(OpNo).getCaptureInfo();
734 CI &= Fn->getAttributes().getParamAttrs(
I).getCaptureInfo();
749 "NumOperands not set up?");
754 "Calling a function with bad signature!");
756 for (
unsigned i = 0; i != Args.size(); ++i)
759 "Calling a function with a bad signature!");
788 init(Ty, Func, Name);
794 "Wrong number of operands allocated");
809 Args, OpB, CI->
getName(), InsertPt);
823 LLVM_DEBUG(
dbgs() <<
"Attempting to update profile weights will result in "
824 "div by 0. Ignoring. Likely the function "
826 <<
" has 0 entry count, and contains call instructions "
827 "with non-zero prof info.");
840 const Twine &NameStr) {
845 "NumOperands not set up?");
850 "Invoking a function with bad signature");
852 for (
unsigned i = 0, e = Args.size(); i != e; i++)
855 "Invoking a function with a bad signature!");
875 "Wrong number of operands allocated");
878 std::copy(
II.bundle_op_info_begin(),
II.bundle_op_info_end(),
885 std::vector<Value *> Args(
II->arg_begin(),
II->arg_end());
888 II->getFunctionType(),
II->getCalledOperand(),
II->getNormalDest(),
889 II->getUnwindDest(), Args, OpB,
II->getName(), InsertPt);
890 NewII->setCallingConv(
II->getCallingConv());
891 NewII->SubclassOptionalData =
II->SubclassOptionalData;
892 NewII->setAttributes(
II->getAttributes());
893 NewII->setDebugLoc(
II->getDebugLoc());
903 LLVM_DEBUG(
dbgs() <<
"Attempting to update profile weights will result in "
904 "div by 0. Ignoring. Likely the function "
906 <<
" has 0 entry count, and contains call instructions "
907 "with non-zero prof info.");
921 const Twine &NameStr) {
925 IndirectDests.
size(),
927 "NumOperands not set up?");
932 "Calling a function with bad signature");
934 for (
unsigned i = 0, e = Args.size(); i != e; i++)
937 "Calling a function with a bad signature!");
943 NumIndirectDests = IndirectDests.
size();
945 for (
unsigned i = 0; i != NumIndirectDests; ++i)
960 "Wrong number of operands allocated");
966 NumIndirectDests = CBI.NumIndirectDests;
980 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
992 "Wrong number of operands allocated");
1018 AllocMarker, InsertBefore) {
1030 "Wrong number of operands allocated");
1031 setSubclassData<Instruction::OpaqueField>(
1038void CleanupReturnInst::init(
Value *CleanupPad,
BasicBlock *UnwindBB) {
1040 setSubclassData<UnwindDestField>(
true);
1042 Op<0>() = CleanupPad;
1047CleanupReturnInst::CleanupReturnInst(
Value *CleanupPad,
BasicBlock *UnwindBB,
1052 init(CleanupPad, UnwindBB);
1073 AllocMarker, InsertBefore) {
1081CatchSwitchInst::CatchSwitchInst(
Value *ParentPad,
BasicBlock *UnwindDest,
1082 unsigned NumReservedValues,
1083 const Twine &NameStr,
1088 ++NumReservedValues;
1089 init(ParentPad, UnwindDest, NumReservedValues + 1);
1100 for (
unsigned I = 1,
E = ReservedSpace;
I !=
E; ++
I)
1105 unsigned NumReservedValues) {
1106 assert(ParentPad && NumReservedValues);
1108 ReservedSpace = NumReservedValues;
1112 Op<0>() = ParentPad;
1121void CatchSwitchInst::growOperands(
unsigned Size) {
1123 assert(NumOperands >= 1);
1124 if (ReservedSpace >= NumOperands +
Size)
1126 ReservedSpace = (NumOperands +
Size / 2) * 2;
1133 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
1141 for (
Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1142 *CurDst = *(CurDst + 1);
1153 const Twine &NameStr) {
1163 "Wrong number of operands allocated");
1170 const Twine &NameStr,
1173 init(ParentPad, Args, NameStr);
1183 AllocMarker, InsertBefore) {}
1189void BranchInst::AssertOK() {
1192 "May only branch on boolean predicates!");
1199 assert(IfTrue &&
"Branch destination may not be null!");
1220 "Wrong number of operands allocated");
1224 Op<-3>() = BI.
Op<-3>();
1225 Op<-2>() = BI.
Op<-2>();
1227 Op<-1>() = BI.
Op<-1>();
1233 "Cannot swap successors of an unconditional branch");
1250 "Passed basic block into allocation size parameter! Use other ctor");
1252 "Allocation array size is not an integer!");
1259 "Insertion position cannot be null when alignment not provided!");
1262 "BB must be in a Function when alignment not provided!");
1264 return DL.getPrefTypeAlign(Ty);
1269 :
AllocaInst(Ty, AddrSpace, nullptr, Name, InsertBefore) {}
1284 assert(!Ty->isVoidTy() &&
"Cannot allocate void!");
1290 return !CI->isOne();
1310void LoadInst::AssertOK() {
1312 "Ptr must have pointer type.");
1317 "Insertion position cannot be null when alignment not provided!");
1320 "BB must be in a Function when alignment not provided!");
1322 return DL.getABITypeAlign(Ty);
1354void StoreInst::AssertOK() {
1357 "Ptr must have pointer type!");
1404 "All operands must be non-null!");
1406 "Ptr must have pointer type!");
1408 "Cmp type and NewVal type must be same!");
1419 AtomicCmpXchg, AllocMarker, InsertBefore) {
1420 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1431 "atomicrmw instructions can only be atomic.");
1433 "atomicrmw instructions cannot be unordered.");
1443 "Ptr must have pointer type!");
1445 "AtomicRMW instructions must be atomic!");
1452 Init(
Operation, Ptr, Val, Alignment, Ordering, SSID);
1500 return "<invalid operation>";
1522 const Twine &Name) {
1524 "NumOperands not initialized?");
1533 SourceElementType(GEPI.SourceElementType),
1534 ResultElementType(GEPI.ResultElementType) {
1536 "Wrong number of operands allocated");
1543 if (!Struct->indexValid(Idx))
1545 return Struct->getTypeAtIndex(Idx);
1550 return Array->getElementType();
1552 return Vector->getElementType();
1558 if (Idx >= Struct->getNumElements())
1560 return Struct->getElementType(Idx);
1563 return Array->getElementType();
1565 return Vector->getElementType();
1569template <
typename IndexTy>
1571 if (IdxList.
empty())
1573 for (IndexTy V : IdxList.
slice(1)) {
1600 if (!CI->isZero())
return false;
1657 APInt &ConstantOffset)
const {
1667ExtractElementInst::ExtractElementInst(
Value *Val,
Value *Index,
1671 ExtractElement, AllocMarker, InsertBef) {
1672 assert(isValidOperands(Val, Index) &&
1673 "Invalid extractelement instruction operands!");
1689InsertElementInst::InsertElementInst(
Value *Vec,
Value *Elt,
Value *Index,
1694 "Invalid insertelement instruction operands!");
1702 const Value *Index) {
1709 if (!Index->getType()->isIntegerTy())
1719 assert(V &&
"Cannot create placeholder of nullptr V");
1740 ShuffleVector, AllocMarker, InsertBefore) {
1742 "Invalid shuffle vector instruction operands!");
1758 ShuffleVector, AllocMarker, InsertBefore) {
1760 "Invalid shuffle vector instruction operands!");
1769 int NumMaskElts = ShuffleMask.size();
1771 for (
int i = 0; i != NumMaskElts; ++i) {
1777 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts &&
"Out-of-range mask");
1778 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1779 NewMask[i] = MaskElt;
1794 for (
int Elem : Mask)
1806 const Value *Mask) {
1814 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1830 return !CI->uge(V1Size * 2);
1833 for (
Value *
Op : MV->operands()) {
1835 if (CI->uge(V1Size*2))
1847 if (CDS->getElementAsInteger(i) >= V1Size*2)
1861 Result.append(EC.getKnownMinValue(), MaskVal);
1865 assert(!EC.isScalable() &&
1866 "Scalable vector shuffle mask must be undef or zeroinitializer");
1868 unsigned NumElts = EC.getFixedValue();
1870 Result.reserve(NumElts);
1873 for (
unsigned i = 0; i != NumElts; ++i)
1874 Result.push_back(CDS->getElementAsInteger(i));
1877 for (
unsigned i = 0; i != NumElts; ++i) {
1878 Constant *
C = Mask->getAggregateElement(i);
1885 ShuffleMask.assign(Mask.begin(), Mask.end());
1900 for (
int Elem : Mask) {
1910 assert(!Mask.empty() &&
"Shuffle mask must contain elements");
1911 bool UsesLHS =
false;
1912 bool UsesRHS =
false;
1913 for (
int I : Mask) {
1916 assert(
I >= 0 &&
I < (NumOpElts * 2) &&
1917 "Out-of-bounds shuffle mask element");
1918 UsesLHS |= (
I < NumOpElts);
1919 UsesRHS |= (
I >= NumOpElts);
1920 if (UsesLHS && UsesRHS)
1924 return UsesLHS || UsesRHS;
1936 for (
int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1939 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1946 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1954 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1963 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1966 if (Mask[
I] != (NumSrcElts - 1 -
I) &&
1967 Mask[
I] != (NumSrcElts + NumSrcElts - 1 -
I))
1974 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1978 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1981 if (Mask[
I] != 0 && Mask[
I] != NumSrcElts)
1988 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1993 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1996 if (Mask[
I] !=
I && Mask[
I] != (NumSrcElts +
I))
2009 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
2012 int Sz = Mask.size();
2017 if (Mask[0] != 0 && Mask[0] != 1)
2022 if ((Mask[1] - Mask[0]) != NumSrcElts)
2027 for (
int I = 2;
I < Sz; ++
I) {
2028 int MaskEltVal = Mask[
I];
2029 if (MaskEltVal == -1)
2031 int MaskEltPrevVal = Mask[
I - 2];
2032 if (MaskEltVal - MaskEltPrevVal != 2)
2040 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
2043 int StartIndex = -1;
2044 for (
int I = 0, E = Mask.size();
I != E; ++
I) {
2045 int MaskEltVal = Mask[
I];
2046 if (MaskEltVal == -1)
2049 if (StartIndex == -1) {
2052 if (MaskEltVal <
I || NumSrcElts <= (MaskEltVal -
I))
2055 StartIndex = MaskEltVal -
I;
2060 if (MaskEltVal != (StartIndex +
I))
2064 if (StartIndex == -1)
2073 int NumSrcElts,
int &Index) {
2079 if (NumSrcElts <= (
int)Mask.size())
2084 for (
int i = 0, e = Mask.size(); i != e; ++i) {
2088 int Offset = (M % NumSrcElts) - i;
2089 if (0 <= SubIndex && SubIndex !=
Offset)
2094 if (0 <= SubIndex && SubIndex + (
int)Mask.size() <= NumSrcElts) {
2102 int NumSrcElts,
int &NumSubElts,
2104 int NumMaskElts = Mask.size();
2107 if (NumMaskElts < NumSrcElts)
2118 bool Src0Identity =
true;
2119 bool Src1Identity =
true;
2121 for (
int i = 0; i != NumMaskElts; ++i) {
2127 if (M < NumSrcElts) {
2129 Src0Identity &= (M == i);
2133 Src1Identity &= (M == (i + NumSrcElts));
2135 assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2136 "unknown shuffle elements");
2138 "2-source shuffle not found");
2144 int Src0Hi = NumMaskElts - Src0Elts.
countl_zero();
2145 int Src1Hi = NumMaskElts - Src1Elts.
countl_zero();
2150 int NumSub1Elts = Src1Hi - Src1Lo;
2153 NumSubElts = NumSub1Elts;
2162 int NumSub0Elts = Src0Hi - Src0Lo;
2165 NumSubElts = NumSub0Elts;
2182 if (NumMaskElts <= NumOpElts)
2191 for (
int i = NumOpElts; i < NumMaskElts; ++i)
2206 if (NumMaskElts >= NumOpElts)
2224 if (NumMaskElts != NumOpElts * 2)
2235 int ReplicationFactor,
int VF) {
2236 assert(Mask.size() == (
unsigned)ReplicationFactor * VF &&
2237 "Unexpected mask size.");
2239 for (
int CurrElt :
seq(VF)) {
2240 ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2241 assert(CurrSubMask.
size() == (
unsigned)ReplicationFactor &&
2242 "Run out of mask?");
2243 Mask = Mask.drop_front(ReplicationFactor);
2244 if (!
all_of(CurrSubMask, [CurrElt](
int MaskElt) {
2249 assert(Mask.empty() &&
"Did not consume the whole mask?");
2255 int &ReplicationFactor,
int &VF) {
2259 Mask.take_while([](
int MaskElt) {
return MaskElt == 0; }).
size();
2260 if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2262 VF = Mask.size() / ReplicationFactor;
2274 for (
int MaskElt : Mask) {
2278 if (MaskElt < Largest)
2280 Largest = std::max(Largest, MaskElt);
2284 for (
int PossibleReplicationFactor :
2286 if (Mask.size() % PossibleReplicationFactor != 0)
2288 int PossibleVF = Mask.size() / PossibleReplicationFactor;
2292 ReplicationFactor = PossibleReplicationFactor;
2308 if (ShuffleMask.size() % VF != 0)
2310 ReplicationFactor = ShuffleMask.size() / VF;
2316 if (VF <= 0 || Mask.size() <
static_cast<unsigned>(VF) ||
2317 Mask.size() % VF != 0)
2319 for (
unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2324 for (
int Idx : SubMask) {
2360 unsigned NumElts = Mask.size();
2361 if (NumElts % Factor)
2364 unsigned LaneLen = NumElts / Factor;
2368 StartIndexes.
resize(Factor);
2374 for (;
I < Factor;
I++) {
2375 unsigned SavedLaneValue;
2376 unsigned SavedNoUndefs = 0;
2379 for (J = 0; J < LaneLen - 1; J++) {
2381 unsigned Lane = J * Factor +
I;
2382 unsigned NextLane = Lane + Factor;
2383 int LaneValue = Mask[Lane];
2384 int NextLaneValue = Mask[NextLane];
2387 if (LaneValue >= 0 && NextLaneValue >= 0 &&
2388 LaneValue + 1 != NextLaneValue)
2392 if (LaneValue >= 0 && NextLaneValue < 0) {
2393 SavedLaneValue = LaneValue;
2402 if (SavedNoUndefs > 0 && LaneValue < 0) {
2404 if (NextLaneValue >= 0 &&
2405 SavedLaneValue + SavedNoUndefs != (
unsigned)NextLaneValue)
2410 if (J < LaneLen - 1)
2416 StartMask = Mask[
I];
2417 }
else if (Mask[(LaneLen - 1) * Factor +
I] >= 0) {
2419 StartMask = Mask[(LaneLen - 1) * Factor +
I] - J;
2420 }
else if (SavedNoUndefs > 0) {
2422 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2429 if (StartMask + LaneLen > NumInputElts)
2432 StartIndexes[
I] = StartMask;
2445 for (
unsigned Idx = 0; Idx < Factor; Idx++) {
2450 for (;
I < Mask.size();
I++)
2451 if (Mask[
I] >= 0 &&
static_cast<unsigned>(Mask[
I]) != Idx +
I * Factor)
2454 if (
I == Mask.size()) {
2468 int NumElts = Mask.size();
2469 assert((NumElts % NumSubElts) == 0 &&
"Illegal shuffle mask");
2472 for (
int i = 0; i != NumElts; i += NumSubElts) {
2473 for (
int j = 0; j != NumSubElts; ++j) {
2474 int M = Mask[i + j];
2477 if (M < i || M >= i + NumSubElts)
2479 int Offset = (NumSubElts - (M - (i + j))) % NumSubElts;
2480 if (0 <= RotateAmt &&
Offset != RotateAmt)
2489 ArrayRef<int> Mask,
unsigned EltSizeInBits,
unsigned MinSubElts,
2490 unsigned MaxSubElts,
unsigned &NumSubElts,
unsigned &RotateAmt) {
2491 for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) {
2493 if (EltRotateAmt < 0)
2495 RotateAmt = EltRotateAmt * EltSizeInBits;
2507 const Twine &Name) {
2514 assert(!Idxs.
empty() &&
"InsertValueInst must have at least one index");
2517 Val->
getType() &&
"Inserted value must match indexed type!");
2527 Indices(IVI.Indices) {
2542 assert(!Idxs.
empty() &&
"ExtractValueInst must have at least one index");
2544 Indices.append(Idxs.
begin(), Idxs.
end());
2551 Indices(EVI.Indices) {
2563 for (
unsigned Index : Idxs) {
2571 if (Index >= AT->getNumElements())
2573 Agg = AT->getElementType();
2575 if (Index >= ST->getNumElements())
2577 Agg = ST->getElementType(Index);
2603void UnaryOperator::AssertOK() {
2610 "Unary operation should return same type as operand!");
2612 "Tried to create a floating-point operation on a "
2613 "non-floating-point type!");
2626 :
Instruction(Ty, iType, AllocMarker, InsertBefore) {
2633void BinaryOperator::AssertOK() {
2635 (void)LHS; (void)RHS;
2636 assert(LHS->getType() == RHS->getType() &&
2637 "Binary operator operand types must match!");
2643 "Arithmetic operation should return same type as operands!");
2645 "Tried to create an integer operation on a non-integer type!");
2647 case FAdd:
case FSub:
2650 "Arithmetic operation should return same type as operands!");
2652 "Tried to create a floating-point operation on a "
2653 "non-floating-point type!");
2658 "Arithmetic operation should return same type as operands!");
2660 "Incorrect operand type (not integer) for S/UDIV");
2664 "Arithmetic operation should return same type as operands!");
2666 "Incorrect operand type (not floating point) for FDIV");
2671 "Arithmetic operation should return same type as operands!");
2673 "Incorrect operand type (not integer) for S/UREM");
2677 "Arithmetic operation should return same type as operands!");
2679 "Incorrect operand type (not floating point) for FREM");
2685 "Shift operation should return same type as operands!");
2687 "Tried to create a shift operation on a non-integral type!");
2692 "Logical operation should return same type as operands!");
2694 "Tried to create a logical operation on a non-integral type!");
2705 "Cannot create binary operator with two operands of differing type!");
2711 Value *Zero = ConstantInt::get(
Op->getType(), 0);
2718 Value *Zero = ConstantInt::get(
Op->getType(), 0);
2719 return BinaryOperator::CreateNSWSub(Zero,
Op, Name, InsertBefore);
2726 Op->getType(), Name, InsertBefore);
2759 default:
return false;
2760 case Instruction::ZExt:
2761 case Instruction::SExt:
2762 case Instruction::Trunc:
2764 case Instruction::BitCast:
2785 case Instruction::Trunc:
2786 case Instruction::ZExt:
2787 case Instruction::SExt:
2788 case Instruction::FPTrunc:
2789 case Instruction::FPExt:
2790 case Instruction::UIToFP:
2791 case Instruction::SIToFP:
2792 case Instruction::FPToUI:
2793 case Instruction::FPToSI:
2794 case Instruction::AddrSpaceCast:
2797 case Instruction::BitCast:
2799 case Instruction::PtrToAddr:
2800 case Instruction::PtrToInt:
2801 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2803 case Instruction::IntToPtr:
2804 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2805 SrcTy->getScalarSizeInBits();
2856 const unsigned numCastOps =
2857 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2859 static const uint8_t CastResults[numCastOps][numCastOps] = {
2865 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2866 { 8, 1, 9,99,99, 2,17,99,99,99,99, 2, 3, 0},
2867 { 8, 0, 1,99,99, 0, 2,99,99,99,99, 0, 3, 0},
2868 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2869 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2870 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0},
2871 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0},
2872 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0},
2873 { 99,99,99, 2, 2,99,99, 8, 2,99,99,99, 4, 0},
2874 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 7, 3, 0},
2875 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2876 { 99,99,99,99,99,99,99,99,99,11,11,99,15, 0},
2877 { 5, 5, 5, 0, 0, 5, 5, 0, 0,16,16, 5, 1,14},
2878 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12},
2886 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2887 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2888 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2893 if (!AreBothBitcasts)
2896 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2897 [secondOp-Instruction::CastOpsBegin];
2924 if (SrcTy->isIntegerTy())
2939 if (!
DL || MidSize < DL->getPointerTypeSizeInBits(SrcTy))
2942 return Instruction::BitCast;
2948 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2951 return Instruction::BitCast;
2952 if (SrcSize < DstSize)
2954 if (SrcSize > DstSize)
2960 return Instruction::ZExt;
2965 unsigned MidSize = secondOp == Instruction::PtrToAddr
2966 ?
DL->getAddressSizeInBits(MidTy)
2967 :
DL->getPointerTypeSizeInBits(MidTy);
2968 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2972 if (MidSize < SrcSize && MidSize < DstSize)
2974 if (DstSize < SrcSize)
2975 return Instruction::Trunc;
2976 if (DstSize > SrcSize)
2977 return Instruction::ZExt;
2978 return Instruction::BitCast;
2984 return Instruction::AddrSpaceCast;
2985 return Instruction::BitCast;
2991 SrcTy->isPtrOrPtrVectorTy() &&
2996 "Illegal addrspacecast, bitcast sequence!");
3001 return Instruction::AddrSpaceCast;
3007 SrcTy->isIntOrIntVectorTy() &&
3011 "Illegal inttoptr, bitcast sequence!");
3019 SrcTy->isPtrOrPtrVectorTy() &&
3023 "Illegal bitcast, ptrtoint sequence!");
3028 return Instruction::UIToFP;
3043 case Trunc:
return new TruncInst (S, Ty, Name, InsertBefore);
3044 case ZExt:
return new ZExtInst (S, Ty, Name, InsertBefore);
3045 case SExt:
return new SExtInst (S, Ty, Name, InsertBefore);
3046 case FPTrunc:
return new FPTruncInst (S, Ty, Name, InsertBefore);
3047 case FPExt:
return new FPExtInst (S, Ty, Name, InsertBefore);
3048 case UIToFP:
return new UIToFPInst (S, Ty, Name, InsertBefore);
3049 case SIToFP:
return new SIToFPInst (S, Ty, Name, InsertBefore);
3050 case FPToUI:
return new FPToUIInst (S, Ty, Name, InsertBefore);
3051 case FPToSI:
return new FPToSIInst (S, Ty, Name, InsertBefore);
3052 case PtrToAddr:
return new PtrToAddrInst (S, Ty, Name, InsertBefore);
3053 case PtrToInt:
return new PtrToIntInst (S, Ty, Name, InsertBefore);
3054 case IntToPtr:
return new IntToPtrInst (S, Ty, Name, InsertBefore);
3056 return new BitCastInst(S, Ty, Name, InsertBefore);
3067 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3068 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3074 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3075 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3081 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3082 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3089 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3092 assert((!Ty->isVectorTy() ||
3097 if (Ty->isIntOrIntVectorTy())
3098 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3106 assert(Ty->isPtrOrPtrVectorTy() &&
"Invalid cast");
3109 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3111 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3118 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3120 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3122 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3128 assert(
C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3129 "Invalid integer cast");
3130 unsigned SrcBits =
C->getType()->getScalarSizeInBits();
3131 unsigned DstBits = Ty->getScalarSizeInBits();
3133 (SrcBits == DstBits ? Instruction::BitCast :
3134 (SrcBits > DstBits ? Instruction::Trunc :
3135 (isSigned ? Instruction::SExt : Instruction::ZExt)));
3136 return Create(opcode,
C, Ty, Name, InsertBefore);
3141 assert(
C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3143 unsigned SrcBits =
C->getType()->getScalarSizeInBits();
3144 unsigned DstBits = Ty->getScalarSizeInBits();
3145 assert((
C->getType() == Ty || SrcBits != DstBits) &&
"Invalid cast");
3147 (SrcBits == DstBits ? Instruction::BitCast :
3148 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3149 return Create(opcode,
C, Ty, Name, InsertBefore);
3156 if (SrcTy == DestTy)
3161 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3163 SrcTy = SrcVecTy->getElementType();
3164 DestTy = DestVecTy->getElementType();
3171 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3175 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();
3183 if (SrcBits != DestBits)
3194 return (IntTy->getBitWidth() ==
DL.getPointerTypeSizeInBits(PtrTy) &&
3195 !
DL.isNonIntegralPointerType(PtrTy));
3198 return (IntTy->getBitWidth() ==
DL.getPointerTypeSizeInBits(PtrTy) &&
3199 !
DL.isNonIntegralPointerType(PtrTy));
3212 const Value *Src,
bool SrcIsSigned,
Type *DestTy,
bool DestIsSigned) {
3213 Type *SrcTy = Src->getType();
3216 "Only first class types are castable!");
3218 if (SrcTy == DestTy)
3224 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3227 SrcTy = SrcVecTy->getElementType();
3228 DestTy = DestVecTy->getElementType();
3235 SrcTy->getPrimitiveSizeInBits().getFixedValue();
3241 if (SrcTy->isIntegerTy()) {
3242 if (DestBits < SrcBits)
3244 else if (DestBits > SrcBits) {
3252 }
else if (SrcTy->isFloatingPointTy()) {
3257 }
else if (SrcTy->isVectorTy()) {
3258 assert(DestBits == SrcBits &&
3259 "Casting vector to integer of different width");
3262 assert(SrcTy->isPointerTy() &&
3263 "Casting from a value that is not first-class type");
3267 if (SrcTy->isIntegerTy()) {
3272 }
else if (SrcTy->isFloatingPointTy()) {
3273 if (DestBits < SrcBits) {
3275 }
else if (DestBits > SrcBits) {
3280 }
else if (SrcTy->isVectorTy()) {
3281 assert(DestBits == SrcBits &&
3282 "Casting vector to floating point of different width");
3287 assert(DestBits == SrcBits &&
3288 "Illegal cast to vector (wrong type or size)");
3291 if (SrcTy->isPointerTy()) {
3293 return AddrSpaceCast;
3295 }
else if (SrcTy->isIntegerTy()) {
3321 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3334 default:
return false;
3335 case Instruction::Trunc:
3337 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3338 case Instruction::ZExt:
3340 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3341 case Instruction::SExt:
3343 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3344 case Instruction::FPTrunc:
3346 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3347 case Instruction::FPExt:
3349 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3350 case Instruction::UIToFP:
3351 case Instruction::SIToFP:
3354 case Instruction::FPToUI:
3355 case Instruction::FPToSI:
3358 case Instruction::PtrToAddr:
3359 case Instruction::PtrToInt:
3363 case Instruction::IntToPtr:
3367 case Instruction::BitCast: {
3373 if (!SrcPtrTy != !DstPtrTy)
3386 if (SrcIsVec && DstIsVec)
3387 return SrcEC == DstEC;
3395 case Instruction::AddrSpaceCast: {
3407 return SrcEC == DstEC;
3414 :
CastInst(Ty, Trunc, S, Name, InsertBefore) {
3420 :
CastInst(Ty, ZExt, S, Name, InsertBefore) {
3426 :
CastInst(Ty, SExt, S, Name, InsertBefore) {
3432 :
CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3438 :
CastInst(Ty, FPExt, S, Name, InsertBefore) {
3444 :
CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3450 :
CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3456 :
CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3462 :
CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3468 :
CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3474 :
CastInst(Ty, PtrToAddr, S, Name, InsertBefore) {
3480 :
CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3486 :
CastInst(Ty, BitCast, S, Name, InsertBefore) {
3492 :
CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3514 if (
Op == Instruction::ICmp) {
3550 return IC->isCommutative();
3627 default:
return "unknown";
3808 switch (predicate) {
3809 default:
return false;
3816 switch (predicate) {
3817 default:
return false;
3832 return LHS.ugt(RHS);
3834 return LHS.uge(RHS);
3836 return LHS.ult(RHS);
3838 return LHS.ule(RHS);
3840 return LHS.sgt(RHS);
3842 return LHS.sge(RHS);
3844 return LHS.slt(RHS);
3846 return LHS.sle(RHS);
3934 switch (predicate) {
3935 default:
return false;
3943 switch (predicate) {
3944 default:
return false;
3953 default:
return false;
3963 default:
return false;
4009 return std::nullopt;
4018 if (
A.Pred ==
B.Pred)
4022 if (
A.HasSameSign &&
4025 if (
B.HasSameSign &&
4037 return ICI->getCmpPredicate();
4038 return Cmp->getPredicate();
4055 ReservedSpace = NumReserved;
4070 AllocMarker, InsertBefore) {
4076 init(
SI.getCondition(),
SI.getDefaultDest(),
SI.getNumOperands());
4077 setNumHungOffUseOperands(
SI.getNumOperands());
4078 Use *OL = getOperandList();
4079 ConstantInt **VL = case_values();
4080 const Use *InOL =
SI.getOperandList();
4081 ConstantInt *
const *InVL =
SI.case_values();
4082 for (
unsigned i = 2,
E =
SI.getNumOperands(); i !=
E; ++i) {
4084 VL[i - 2] = InVL[i - 2];
4086 SubclassOptionalData =
SI.SubclassOptionalData;
4094 if (OpNo + 1 > ReservedSpace)
4097 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
4107 unsigned idx =
I->getCaseIndex();
4116 if (2 + idx + 1 !=
NumOps) {
4117 OL[2 + idx] = OL[
NumOps - 1];
4118 VL[idx] = VL[
NumOps - 2 - 1];
4123 VL[
NumOps - 2 - 1] =
nullptr;
4126 return CaseIt(
this, idx);
4132void SwitchInst::growOperands() {
4147 "not correspond to number of succesors");
4153 this->Weights = std::move(Weights);
4159 assert(SI.getNumSuccessors() == Weights->size() &&
4160 "num of prof branch_weights must accord with num of successors");
4165 (*Weights)[
I->getCaseIndex() + 1] = Weights->back();
4166 Weights->pop_back();
4168 return SI.removeCase(
I);
4172 auto *DestBlock =
I->getCaseSuccessor();
4175 (*Weights)[0] = Weight.value();
4178 SI.setDefaultDest(DestBlock);
4184 SI.addCase(OnVal, Dest);
4186 if (!Weights && W && *W) {
4189 (*Weights)[SI.getNumSuccessors() - 1] = *W;
4190 }
else if (Weights) {
4192 Weights->push_back(W.value_or(0));
4195 assert(SI.getNumSuccessors() == Weights->size() &&
4196 "num of prof branch_weights must accord with num of successors");
4205 return SI.eraseFromParent();
4211 return std::nullopt;
4212 return (*Weights)[idx];
4224 auto &OldW = (*Weights)[idx];
4236 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4241 return std::nullopt;
4248void IndirectBrInst::init(
Value *
Address,
unsigned NumDests) {
4250 "Address of indirectbr must be a pointer");
4251 ReservedSpace = 1+NumDests;
4262void IndirectBrInst::growOperands() {
4270IndirectBrInst::IndirectBrInst(
Value *
Address,
unsigned NumCases,
4273 Instruction::IndirectBr, AllocMarker, InsertBefore) {
4282 Use *OL = getOperandList();
4293 if (OpNo+1 > ReservedSpace)
4296 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
4310 OL[idx+1] = OL[
NumOps-1];
4335 return new (AllocMarker) GetElementPtrInst(*
this, AllocMarker);
4355 return new ExtractValueInst(*
this);
4359 return new InsertValueInst(*
this);
4385 Result->setWeak(
isWeak());
4462 return new (AllocMarker) CallInst(*
this, AllocMarker);
4465 return new (AllocMarker) CallInst(*
this, AllocMarker);
4491 return new LandingPadInst(*
this);
4496 return new (AllocMarker) ReturnInst(*
this, AllocMarker);
4501 return new (AllocMarker) BranchInst(*
this, AllocMarker);
4507 return new IndirectBrInst(*
this);
4515 return new (AllocMarker) InvokeInst(*
this, AllocMarker);
4518 return new (AllocMarker) InvokeInst(*
this, AllocMarker);
4526 return new (AllocMarker) CallBrInst(*
this, AllocMarker);
4529 return new (AllocMarker) CallBrInst(*
this, AllocMarker);
4533 return new (AllocMarker) ResumeInst(*
this);
4538 return new (AllocMarker) CleanupReturnInst(*
this, AllocMarker);
4542 return new (AllocMarker) CatchReturnInst(*
this);
4546 return new CatchSwitchInst(*
this);
4551 return new (AllocMarker) FuncletPadInst(*
this, AllocMarker);
4560 bool NoTrapAfterNoreturn)
const {
4561 if (!TrapUnreachable)
4567 if (NoTrapAfterNoreturn)
4570 if (
Call->isNonContinuableTrap())
4574 if (
getFunction()->hasFnAttribute(Attribute::Naked))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Module.h This file contains the declarations for the Module class.
static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos)
static bool isImpliedFalseByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
static Value * createPlaceholderForShuffleVector(Value *V)
static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos)
static cl::opt< bool > DisableI2pP2iOpt("disable-i2p-p2i-opt", cl::init(false), cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"))
static bool hasNonZeroFPOperands(const CmpInst *Cmp)
static int matchShuffleAsBitRotate(ArrayRef< int > Mask, int NumSubElts)
Try to lower a vector shuffle as a bit rotation.
static Type * getIndexedTypeInternal(Type *Ty, ArrayRef< IndexTy > IdxList)
static bool isReplicationMaskWithParams(ArrayRef< int > Mask, int ReplicationFactor, int VF)
static bool isIdentityMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static bool isSingleSourceMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static Value * getAISize(LLVMContext &Context, Value *Amt)
static bool isImpliedTrueByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
This file implements the SmallBitVector class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Class for arbitrary precision integers.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
This class represents a conversion between pointers from one address space to another.
LLVM_ABI AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
LLVM_ABI AddrSpaceCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI std::optional< TypeSize > getAllocationSizeInBits(const DataLayout &DL) const
Get allocation size in bits.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
LLVM_ABI AllocaInst * cloneImpl() const
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, InsertPosition InsertBefore)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this cmpxchg instruction.
bool isVolatile() const
Return true if this is a cmpxchg from a volatile memory location.
void setFailureOrdering(AtomicOrdering Ordering)
Sets the failure ordering constraint of this cmpxchg instruction.
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering)
Sets the success ordering constraint of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst * cloneImpl() const
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isWeak() const
Return true if this cmpxchg may spuriously fail.
void setAlignment(Align Align)
AtomicOrdering getSuccessOrdering() const
Returns the success ordering constraint of this cmpxchg instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
LLVM_ABI AtomicRMWInst * cloneImpl() const
bool isVolatile() const
Return true if this is a RMW on a volatile memory location.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this rmw instruction.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this rmw instruction.
void setOperation(BinOp Operation)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
BinOp getOperation() const
LLVM_ABI AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
void setAlignment(Align Align)
static LLVM_ABI StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM_ABI CaptureInfo getCaptureInfo() const
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI const ConstantRange & getRange() const
Returns the value of the range attribute.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
static LLVM_ABI Attribute getWithMemoryEffects(LLVMContext &Context, MemoryEffects ME)
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
LLVM_ABI bool swapOperands()
Exchange the two operands to this instruction.
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
LLVM_ABI BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
LLVM_ABI BinaryOperator * cloneImpl() const
This class represents a no-op cast from one type to another.
LLVM_ABI BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
LLVM_ABI BitCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
LLVM_ABI BranchInst * cloneImpl() const
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
LLVM_ABI FPClassTest getParamNoFPClass(unsigned i) const
Extract a test mask for disallowed floating-point value classes for the parameter.
bool isInlineAsm() const
Check if this call is an inline asm statement.
LLVM_ABI BundleOpInfo & getBundleOpInfoForOperand(unsigned OpIdx)
Return the BundleOpInfo for the operand at index OpIdx.
void setCallingConv(CallingConv::ID CC)
LLVM_ABI FPClassTest getRetNoFPClass() const
Extract a test mask for disallowed floating-point value classes for the return value.
bundle_op_iterator bundle_op_info_begin()
Return the start of the list of BundleOpInfo instances associated with this OperandBundleUser.
LLVM_ABI bool paramHasNonNullAttr(unsigned ArgNo, bool AllowUndefOrPoison) const
Return true if this argument has the nonnull attribute on either the CallBase instruction or the call...
LLVM_ABI MemoryEffects getMemoryEffects() const
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
LLVM_ABI bool doesNotAccessMemory() const
Determine if the call does not access memory.
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
LLVM_ABI void setOnlyAccessesArgMemory()
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
OperandBundleUse operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const
Simple helper function to map a BundleOpInfo to an OperandBundleUse.
LLVM_ABI void setOnlyAccessesInaccessibleMemOrArgMem()
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI void setDoesNotAccessMemory()
AttributeSet getParamAttributes(unsigned ArgNo) const
Return the param attributes for this call.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
LLVM_ABI bool onlyAccessesInaccessibleMemory() const
Determine if the function may only access memory that is inaccessible from the IR.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
CallingConv::ID getCallingConv() const
bundle_op_iterator bundle_op_info_end()
Return the end of the list of BundleOpInfo instances associated with this OperandBundleUser.
LLVM_ABI unsigned getNumSubclassExtraOperandsDynamic() const
Get the number of extra operands for instructions that don't have a fixed number of extra operands.
BundleOpInfo * bundle_op_iterator
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
LLVM_ABI bool onlyReadsMemory() const
Determine if the call does not access or only reads memory.
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
iterator_range< bundle_op_iterator > bundle_op_infos()
Return the range [bundle_op_info_begin, bundle_op_info_end).
LLVM_ABI void setOnlyReadsMemory()
static LLVM_ABI CallBase * addOperandBundle(CallBase *CB, uint32_t ID, OperandBundleDef OB, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle OB added.
LLVM_ABI bool onlyAccessesInaccessibleMemOrArgMem() const
Determine if the function may only access memory that is either inaccessible from the IR or pointed t...
LLVM_ABI CaptureInfo getCaptureInfo(unsigned OpNo) const
Return which pointer components this operand may capture.
LLVM_ABI bool hasArgumentWithAdditionalReturnCaptureComponents() const
Returns whether the call has an argument that has an attribute like captures(ret: address,...
CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
Value * getCalledOperand() const
LLVM_ABI void setOnlyWritesMemory()
LLVM_ABI op_iterator populateBundleOperandInfos(ArrayRef< OperandBundleDef > Bundles, const unsigned BeginIndex)
Populate the BundleOpInfo instances and the Use& vector from Bundles.
AttributeList Attrs
parameter attributes for callable
bool hasOperandBundlesOtherThan(ArrayRef< uint32_t > IDs) const
Return true if this operand bundle user contains operand bundles with tags other than those specified...
LLVM_ABI std::optional< ConstantRange > getRange() const
If this return value has a range attribute, return the value range of the argument.
LLVM_ABI bool isReturnNonNull() const
Return true if the return value is known to be not null.
Value * getArgOperand(unsigned i) const
uint64_t getRetDereferenceableBytes() const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
static unsigned CountBundleInputs(ArrayRef< OperandBundleDef > Bundles)
Return the total number of values used in Bundles.
LLVM_ABI Value * getArgOperandWithAttribute(Attribute::AttrKind Kind) const
If one of the arguments has the specified attribute, returns its operand value.
LLVM_ABI void setOnlyAccessesInaccessibleMemory()
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
LLVM_ABI bool onlyWritesMemory() const
Determine if the call does not access or only writes memory.
LLVM_ABI bool hasClobberingOperandBundles() const
Return true if this operand bundle user has operand bundles that may write to the heap.
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
LLVM_ABI bool hasReadingOperandBundles() const
Return true if this operand bundle user has operand bundles that may read from the heap.
LLVM_ABI bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI void setMemoryEffects(MemoryEffects ME)
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
SmallVector< BasicBlock *, 16 > getIndirectDests() const
void setDefaultDest(BasicBlock *B)
void setIndirectDest(unsigned i, BasicBlock *B)
BasicBlock * getDefaultDest() const
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
LLVM_ABI CallBrInst * cloneImpl() const
This class represents a function call, abstracting a target machine's calling convention.
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
TailCallKind getTailCallKind() const
LLVM_ABI CallInst * cloneImpl() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Represents which components of the pointer may be captured in which location.
CaptureComponents getOtherComponents() const
Get components potentially captured through locations other than the return value.
static CaptureInfo none()
Create CaptureInfo that does not capture any components of the pointer.
static CaptureInfo all()
Create CaptureInfo that may capture all components of the pointer.
CaptureComponents getRetComponents() const
Get components potentially captured by the return value.
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast or an AddrSpaceCast cast instruction.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static LLVM_ABI CastInst * CreateFPCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create an FPExt, BitCast, or FPTrunc for fp -> fp casts.
CastInst(Type *Ty, unsigned iType, Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics for subclasses.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static LLVM_ABI bool isBitCastable(Type *SrcTy, Type *DestTy)
Check whether a bitcast between these types is valid.
static LLVM_ABI CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static LLVM_ABI CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, const DataLayout &DL)
A no-op cast is one that can be effected without changing any bits.
static LLVM_ABI CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
LLVM_ABI bool isIntegerCast() const
There are several places where we need to know if a cast instruction only deals with integer source a...
static LLVM_ABI CastInst * CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a SExt or BitCast cast instruction.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
LLVM_ABI CatchReturnInst * cloneImpl() const
void setUnwindDest(BasicBlock *UnwindDest)
LLVM_ABI void addHandler(BasicBlock *Dest)
Add an entry to the switch instruction... Note: This action invalidates handler_end().
LLVM_ABI CatchSwitchInst * cloneImpl() const
mapped_iterator< op_iterator, DerefFnTy > handler_iterator
Value * getParentPad() const
void setParentPad(Value *ParentPad)
BasicBlock * getUnwindDest() const
LLVM_ABI void removeHandler(handler_iterator HI)
bool hasUnwindDest() const
LLVM_ABI CleanupReturnInst * cloneImpl() const
This class is the base class for the comparison instructions.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isEquality() const
Determine if this is an equals/not equals predicate.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
LLVM_ABI bool isEquivalence(bool Invert=false) const
Determine if one operand of this compare can always be replaced by the other operand,...
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static LLVM_ABI CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
static bool isFPPredicate(Predicate P)
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static LLVM_ABI CmpInst * CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Instruction *FlagsSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate, the two operands and the instructio...
bool isNonStrictPredicate() const
LLVM_ABI void swapOperands()
This is just a convenience that dispatches to the subclasses.
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
static LLVM_ABI StringRef getPredicateName(Predicate P)
Predicate getPredicate() const
Return the predicate for this instruction.
bool isStrictPredicate() const
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
LLVM_ABI CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, Value *LHS, Value *RHS, const Twine &Name="", InsertPosition InsertBefore=nullptr, Instruction *FlagsSource=nullptr)
LLVM_ABI bool isCommutative() const
This is just a convenience that dispatches to the subclasses.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
CmpPredicate()
Default constructor.
static LLVM_ABI CmpPredicate get(const CmpInst *Cmp)
Do a ICmpInst::getCmpPredicate() or CmpInst::getPredicate(), as appropriate.
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
bool hasSameSign() const
Query samesign information, for optimizations.
static LLVM_ABI CmpPredicate getSwapped(CmpPredicate P)
Get the swapped predicate of a CmpPredicate.
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
This is the shared class of boolean and integer constants.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount getFixed(ScalarTy MinVal)
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
LLVM_ABI FCmpInst * cloneImpl() const
Clone an identical FCmpInst.
FCmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
This class represents an extension of floating point types.
LLVM_ABI FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
LLVM_ABI FPExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
This class represents a cast from floating point to signed integer.
LLVM_ABI FPToSIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI FPToSIInst * cloneImpl() const
Clone an identical FPToSIInst.
This class represents a cast from floating point to unsigned integer.
LLVM_ABI FPToUIInst * cloneImpl() const
Clone an identical FPToUIInst.
LLVM_ABI FPToUIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a truncation of floating point types.
LLVM_ABI FPTruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI FPTruncInst * cloneImpl() const
Clone an identical FPTruncInst.
LLVM_ABI FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
LLVM_ABI FenceInst * cloneImpl() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
LLVM_ABI FreezeInst(Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI FreezeInst * cloneImpl() const
Clone an identical FreezeInst.
void setParentPad(Value *ParentPad)
Value * getParentPad() const
Convenience accessors.
LLVM_ABI FuncletPadInst * cloneImpl() const
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
LLVM_ABI bool isInBounds() const
Determine whether the GEP has the inbounds flag.
LLVM_ABI bool hasNoUnsignedSignedWrap() const
Determine whether the GEP has the nusw flag.
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
LLVM_ABI bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
LLVM_ABI bool hasNoUnsignedWrap() const
Determine whether the GEP has the nuw flag.
LLVM_ABI bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
LLVM_ABI void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
LLVM_ABI bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
LLVM_ABI GetElementPtrInst * cloneImpl() const
LLVM_ABI bool collectOffset(const DataLayout &DL, unsigned BitWidth, SmallMapVector< Value *, APInt, 4 > &VariableOffsets, APInt &ConstantOffset) const
LLVM_ABI void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
ICmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
LLVM_ABI ICmpInst * cloneImpl() const
Clone an identical ICmpInst.
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
bool isEquality() const
Return true if this predicate is either EQ or NE.
static LLVM_ABI Predicate getFlippedSignednessPredicate(Predicate Pred)
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
Indirect Branch Instruction.
LLVM_ABI void addDestination(BasicBlock *Dest)
Add a destination.
LLVM_ABI void removeDestination(unsigned i)
This method removes the specified successor from the indirectbr instruction.
LLVM_ABI IndirectBrInst * cloneImpl() const
LLVM_ABI InsertElementInst * cloneImpl() const
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
BasicBlock * getBasicBlock()
This instruction inserts a struct field of array element value into an aggregate value.
LLVM_ABI InsertValueInst * cloneImpl() const
BitfieldElement::Type getSubclassData() const
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI bool isVolatile() const LLVM_READONLY
Return true if this instruction has a volatile memory access.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Bitfield::Element< uint16_t, 0, 15 > OpaqueField
Instruction(const Instruction &)=delete
friend class BasicBlock
Various leaf nodes.
void setSubclassData(typename BitfieldElement::Type Value)
This class represents a cast from an integer to a pointer.
LLVM_ABI IntToPtrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
BasicBlock * getUnwindDest() const
void setNormalDest(BasicBlock *B)
LLVM_ABI InvokeInst * cloneImpl() const
LLVM_ABI LandingPadInst * getLandingPadInst() const
Get the landingpad instruction from the landing pad block (the unwind destination).
void setUnwindDest(BasicBlock *B)
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
LLVMContextImpl *const pImpl
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
LLVM_ABI LandingPadInst * cloneImpl() const
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
void setAlignment(Align Align)
bool isVolatile() const
Return true if this is a load from a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst * cloneImpl() const
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
void setVolatile(bool V)
Specify whether this is a volatile load or not.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, InsertPosition InsertBefore)
Align getAlign() const
Return the alignment of the access that is being performed.
const MDOperand & getOperand(unsigned I) const
static MemoryEffectsBase readOnly()
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
static MemoryEffectsBase argMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
static MemoryEffectsBase inaccessibleMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
bool onlyAccessesInaccessibleMem() const
Whether this function only (at most) accesses inaccessible memory.
bool onlyAccessesArgPointees() const
Whether this function only (at most) accesses argument memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
static MemoryEffectsBase writeOnly()
static MemoryEffectsBase inaccessibleOrArgMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
static MemoryEffectsBase none()
bool onlyAccessesInaccessibleOrArgMem() const
Whether this function only (at most) accesses argument and inaccessible memory.
void allocHungoffUses(unsigned N)
const_block_iterator block_begin() const
LLVM_ABI void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
void setIncomingBlock(unsigned i, BasicBlock *BB)
LLVM_ABI Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
LLVM_ABI bool hasConstantOrUndefValue() const
Whether the specified PHI node always merges together the same value, assuming undefs are equal to a ...
void setIncomingValue(unsigned i, Value *V)
const_block_iterator block_end() const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
LLVM_ABI Value * hasConstantValue() const
If the specified PHI node always merges together the same value, return the value,...
LLVM_ABI PHINode * cloneImpl() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an address (non-capturing ptrtoint).
PtrToAddrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
PtrToAddrInst * cloneImpl() const
Clone an identical PtrToAddrInst.
This class represents a cast from a pointer to an integer.
LLVM_ABI PtrToIntInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
Resume the propagation of an exception.
LLVM_ABI ResumeInst * cloneImpl() const
Return a value (possibly void), from a function.
LLVM_ABI ReturnInst * cloneImpl() const
This class represents a sign extension of integer types.
LLVM_ABI SExtInst * cloneImpl() const
Clone an identical SExtInst.
LLVM_ABI SExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a cast from signed integer to floating point.
LLVM_ABI SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
LLVM_ABI SIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Class to represent scalable SIMD vectors.
LLVM_ABI SelectInst * cloneImpl() const
static LLVM_ABI const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
static LLVM_ABI bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
ArrayRef< int > getShuffleMask() const
static LLVM_ABI bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
LLVM_ABI ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
static LLVM_ABI bool isBitRotateMask(ArrayRef< int > Mask, unsigned EltSizeInBits, unsigned MinSubElts, unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt)
Checks if the shuffle is a bit rotation of the first operand across multiple subelements,...
VectorType * getType() const
Overload to return most specific vector type.
LLVM_ABI bool isIdentityWithExtract() const
Return true if this shuffle extracts the first N elements of exactly one source vector.
static LLVM_ABI bool isOneUseSingleSourceMask(ArrayRef< int > Mask, int VF)
Return true if this shuffle mask represents "clustered" mask of size VF, i.e.
LLVM_ABI bool isIdentityWithPadding() const
Return true if this shuffle lengthens exactly one source vector with undefs in the high elements.
static LLVM_ABI bool isSingleSourceMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector.
LLVM_ABI bool isConcat() const
Return true if this shuffle concatenates its 2 source vectors.
static LLVM_ABI bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
LLVM_ABI ShuffleVectorInst * cloneImpl() const
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static LLVM_ABI bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
LLVM_ABI void setShuffleMask(ArrayRef< int > Mask)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI bool isInterleave(unsigned Factor)
Return if this shuffle interleaves its two input vectors together.
static LLVM_ABI bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
static LLVM_ABI bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
LLVM_ABI void commute()
Swap the operands and adjust the mask to preserve the semantics of the instruction.
static LLVM_ABI bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
static LLVM_ABI Constant * convertShuffleMaskForBitcode(ArrayRef< int > Mask, Type *ResultTy)
static LLVM_ABI bool isReplicationMask(ArrayRef< int > Mask, int &ReplicationFactor, int &VF)
Return true if this shuffle mask replicates each of the VF elements in a vector ReplicationFactor tim...
static LLVM_ABI bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this store instruction.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI StoreInst * cloneImpl() const
LLVM_ABI StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Class to represent struct types.
LLVM_ABI void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
LLVM_ABI Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
LLVM_ABI CaseWeightOpt getSuccessorWeight(unsigned idx)
LLVM_ABI void replaceDefaultDest(SwitchInst::CaseIt I)
Replace the default destination by given case.
std::optional< uint32_t > CaseWeightOpt
LLVM_ABI SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
void setValue(ConstantInt *V) const
Sets the new value for current case.
void setSuccessor(BasicBlock *S) const
Sets the new successor for current case.
void allocHungoffUses(unsigned N)
LLVM_ABI SwitchInst * cloneImpl() const
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Add an entry to the switch instruction.
CaseIteratorImpl< CaseHandle > CaseIt
ConstantInt *const * case_values() const
unsigned getNumCases() const
Return the number of 'cases' in this switch instruction, excluding the default case.
LLVM_ABI CaseIt removeCase(CaseIt I)
This method removes the specified case and its successor from the switch instruction.
This class represents a truncation of integer types.
LLVM_ABI TruncInst * cloneImpl() const
Clone an identical TruncInst.
LLVM_ABI TruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize get(ScalarTy Quantity, bool Scalable)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isAggregateType() const
Return true if the type is an aggregate type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
This class represents a cast unsigned integer to floating point.
LLVM_ABI UIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
UnaryInstruction(Type *Ty, unsigned iType, Value *V, InsertPosition InsertBefore=nullptr)
static LLVM_ABI UnaryOperator * Create(UnaryOps Op, Value *S, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a unary instruction, given the opcode and an operand.
LLVM_ABI UnaryOperator(UnaryOps iType, Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
LLVM_ABI UnaryOperator * cloneImpl() const
UnaryOps getOpcode() const
LLVM_ABI UnreachableInst(LLVMContext &C, InsertPosition InsertBefore=nullptr)
LLVM_ABI bool shouldLowerToTrap(bool TrapUnreachable, bool NoTrapAfterNoreturn) const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI UnreachableInst * cloneImpl() const
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
const Use * getOperandList() const
LLVM_ABI void allocHungoffUses(unsigned N, bool WithExtraValues=false)
Allocate the array of Uses, followed by a pointer (with bottom bit set) to the User.
const Use & getOperandUse(unsigned i) const
void setNumHungOffUseOperands(unsigned NumOps)
Subclasses with hung off uses need to manage the operand count themselves.
LLVM_ABI void growHungoffUses(unsigned N, bool WithExtraValues=false)
Grow the number of hung off uses.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
VAArgInst(Value *List, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI VAArgInst * cloneImpl() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI Value(Type *Ty, unsigned scid)
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
LLVM_ABI ZExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
constexpr ScalarTy getFixedValue() const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ilist_detail::compute_node_options< Instruction, Options... >::type::parent_ty * getParent() const
Instruction * getPrevNode()
typename base_list_type::iterator iterator
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_non_zero_not_denormal_fp > m_NonZeroNotDenormalFP()
Match a floating-point non-zero that is not a denormal.
initializer< Ty > init(const Ty &Val)
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< UseNode * > Use
Context & getContext() const
This is an optimization pass for GlobalISel generic memory operations.
auto seq_inclusive(T Begin, T End)
Iterate over an integral type from Begin to End inclusive.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI MDNode * getBranchWeightMDNode(const Instruction &I)
Get the branch weights metadata node.
MemoryEffectsBase< IRMemLocation > MemoryEffects
Summary of how a function affects memory in the program.
std::enable_if_t< std::is_unsigned_v< T >, std::optional< T > > checkedMulUnsigned(T LHS, T RHS)
Multiply two unsigned integers LHS and RHS.
auto dyn_cast_or_null(const Y &Val)
auto reverse(ContainerTy &&C)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isPointerTy(const Type *T)
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
LLVM_ABI unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
OperandBundleDefT< Value * > OperandBundleDef
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool capturesAnything(CaptureComponents CC)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI void scaleProfData(Instruction &I, uint64_t S, uint64_t T)
Scaling the profile data attached to 'I' using the ratio of S/T.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Summary of memprof metadata on allocations.
Used to keep track of an operand bundle.
uint32_t End
The index in the Use& vector where operands for this operand bundle ends.
uint32_t Begin
The index in the Use& vector where operands for this operand bundle starts.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
A MapVector that performs no allocations if smaller than a certain size.
Indicates this User has operands co-allocated.
Indicates this User has operands and a descriptor co-allocated .