36#include "llvm/IR/IntrinsicsAMDGPU.h"
37#include "llvm/IR/IntrinsicsR600.h"
39#define DEBUG_TYPE "amdgpu-legalinfo"
49 "amdgpu-global-isel-new-legality",
50 cl::desc(
"Use GlobalISel desired legality, rather than try to use"
51 "rules compatible with selection patterns"),
66 unsigned Bits = Ty.getSizeInBits();
76 const LLT Ty = Query.Types[TypeIdx];
82 return Ty.getNumElements() % 2 != 0 &&
83 EltSize > 1 && EltSize < 32 &&
84 Ty.getSizeInBits() % 32 != 0;
90 const LLT Ty = Query.Types[TypeIdx];
97 const LLT Ty = Query.Types[TypeIdx];
99 return EltTy.
getSizeInBits() == 16 && Ty.getNumElements() > 2;
105 const LLT Ty = Query.Types[TypeIdx];
107 return std::pair(TypeIdx,
114 const LLT Ty = Query.Types[TypeIdx];
116 unsigned Size = Ty.getSizeInBits();
117 unsigned Pieces = (
Size + 63) / 64;
118 unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
128 const LLT Ty = Query.Types[TypeIdx];
131 const int Size = Ty.getSizeInBits();
133 const int NextMul32 = (
Size + 31) / 32;
137 const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
145 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
146 return std::make_pair(TypeIdx,
LLT::scalar(MemSize));
153 const LLT Ty = Query.Types[TypeIdx];
155 const unsigned EltSize = Ty.getElementType().getSizeInBits();
158 assert(EltSize == 32 || EltSize == 64);
163 for (NewNumElts = NumElts; NewNumElts < MaxNumElts; ++NewNumElts) {
167 return std::pair(TypeIdx,
182 const unsigned NumElems = Ty.getElementCount().getFixedValue();
187 const unsigned Size = Ty.getSizeInBits();
200 const LLT Ty = Query.Types[TypeIdx];
207 const LLT Ty = Query.Types[TypeIdx];
208 unsigned Size = Ty.getSizeInBits();
217 const LLT QueryTy = Query.Types[TypeIdx];
224 const LLT QueryTy = Query.Types[TypeIdx];
231 const LLT QueryTy = Query.Types[TypeIdx];
237 return ((ST.useRealTrue16Insts() &&
Size == 16) ||
Size % 32 == 0) &&
243 return EltSize == 16 || EltSize % 32 == 0;
247 const int EltSize = Ty.getElementType().getSizeInBits();
248 return EltSize == 32 || EltSize == 64 ||
249 (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
250 EltSize == 128 || EltSize == 256;
279 LLT Ty = Query.Types[TypeIdx];
287 const LLT QueryTy = Query.Types[TypeIdx];
371 if (Ty.isPointerOrPointerVector())
372 Ty = Ty.changeElementType(
LLT::scalar(Ty.getScalarSizeInBits()));
376 (ST.useRealTrue16Insts() && Ty ==
S16) ||
391 const LLT Ty = Query.Types[TypeIdx];
392 return !Ty.
isVector() && Ty.getSizeInBits() > 32 &&
393 Query.MMODescrs[0].MemoryTy.getSizeInBits() < Ty.getSizeInBits();
401 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
411 bool IsLoad,
bool IsAtomic) {
415 return ST.enableFlatScratch() ? 128 : 32;
417 return ST.useDS128() ? 128 : 64;
428 return IsLoad ? 512 : 128;
433 return ST.hasMultiDwordFlatScratchAddressing() || IsAtomic ? 128 : 32;
442 const bool IsLoad = Query.
Opcode != AMDGPU::G_STORE;
444 unsigned RegSize = Ty.getSizeInBits();
447 unsigned AS = Query.
Types[1].getAddressSpace();
454 if (Ty.isVector() && MemSize !=
RegSize)
461 if (IsLoad && MemSize <
Size)
462 MemSize = std::max(MemSize,
Align);
482 if (!ST.hasDwordx3LoadStores())
495 if (AlignBits < MemSize) {
498 Align(AlignBits / 8)))
528 const unsigned Size = Ty.getSizeInBits();
529 if (Ty.isPointerVector())
539 unsigned EltSize = Ty.getScalarSizeInBits();
540 return EltSize != 32 && EltSize != 64;
554 const unsigned Size = Ty.getSizeInBits();
555 if (
Size != MemSizeInBits)
556 return Size <= 32 && Ty.isVector();
562 return Ty.isVector() && (!MemTy.
isVector() || MemTy == Ty) &&
571 uint64_t AlignInBits,
unsigned AddrSpace,
581 if (SizeInBits == 96 && ST.hasDwordx3LoadStores())
592 if (AlignInBits < RoundedSize)
599 RoundedSize, AddrSpace,
Align(AlignInBits / 8),
611 Query.
Types[1].getAddressSpace(), Opcode);
631 const unsigned NumParts =
PointerTy.getSizeInBits() / 32;
634 Register VectorReg =
MRI.createGenericVirtualRegister(VectorTy);
635 std::array<Register, 4> VectorElems;
636 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
637 for (
unsigned I = 0;
I < NumParts; ++
I)
639 B.buildExtractVectorElementConstant(
S32, VectorReg,
I).getReg(0);
640 B.buildMergeValues(MO, VectorElems);
644 Register BitcastReg =
MRI.createGenericVirtualRegister(VectorTy);
645 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
646 auto Scalar =
B.buildBitcast(ScalarTy, BitcastReg);
647 B.buildIntToPtr(MO, Scalar);
667 const unsigned NumParts =
PointerTy.getSizeInBits() / 32;
668 auto Unmerged =
B.buildUnmerge(
LLT::scalar(32), Pointer);
669 for (
unsigned I = 0;
I < NumParts; ++
I)
671 return B.buildBuildVector(VectorTy, PointerParts).getReg(0);
673 Register Scalar =
B.buildPtrToInt(ScalarTy, Pointer).getReg(0);
674 return B.buildBitcast(VectorTy, Scalar).getReg(0);
693 auto GetAddrSpacePtr = [&TM](
unsigned AS) {
706 const LLT BufferStridedPtr =
709 const LLT CodePtr = FlatPtr;
711 const std::initializer_list<LLT> AddrSpaces64 = {
712 GlobalPtr, ConstantPtr, FlatPtr
715 const std::initializer_list<LLT> AddrSpaces32 = {
716 LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
719 const std::initializer_list<LLT> AddrSpaces128 = {RsrcPtr};
721 const std::initializer_list<LLT> FPTypesBase = {
725 const std::initializer_list<LLT> FPTypes16 = {
729 const std::initializer_list<LLT> FPTypesPK16 = {
733 const LLT MinScalarFPTy = ST.has16BitInsts() ?
S16 :
S32;
754 if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) {
756 if (ST.hasScalarAddSub64()) {
759 .clampMaxNumElementsStrict(0,
S16, 2)
767 .clampMaxNumElementsStrict(0,
S16, 2)
774 if (ST.hasScalarSMulU64()) {
777 .clampMaxNumElementsStrict(0,
S16, 2)
785 .clampMaxNumElementsStrict(0,
S16, 2)
795 .minScalarOrElt(0,
S16)
800 }
else if (ST.has16BitInsts()) {
834 .widenScalarToNextMultipleOf(0, 32)
844 if (ST.hasMad64_32())
849 if (ST.hasIntClamp()) {
872 {G_SDIV, G_UDIV, G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
882 if (ST.hasVOP3PInsts()) {
884 .clampMaxNumElements(0,
S8, 2)
905 {G_UADDO, G_USUBO, G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
917 LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
924 .clampScalar(0,
S16,
S64);
957 { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE,
958 G_STRICT_FADD, G_STRICT_FMUL, G_STRICT_FMA})
965 if (ST.has16BitInsts()) {
966 if (ST.hasVOP3PInsts())
969 FPOpActions.legalFor({
S16});
971 TrigActions.customFor({
S16});
972 FDIVActions.customFor({
S16});
975 if (ST.hasPackedFP32Ops()) {
976 FPOpActions.legalFor({
V2S32});
977 FPOpActions.clampMaxNumElementsStrict(0,
S32, 2);
980 auto &MinNumMaxNumIeee =
983 if (ST.hasVOP3PInsts()) {
984 MinNumMaxNumIeee.legalFor(FPTypesPK16)
986 .clampMaxNumElements(0,
S16, 2)
989 }
else if (ST.has16BitInsts()) {
990 MinNumMaxNumIeee.legalFor(FPTypes16).clampScalar(0,
S16,
S64).scalarize(0);
992 MinNumMaxNumIeee.legalFor(FPTypesBase)
998 {G_FMINNUM, G_FMAXNUM, G_FMINIMUMNUM, G_FMAXIMUMNUM});
1000 if (ST.hasVOP3PInsts()) {
1001 MinNumMaxNum.customFor(FPTypesPK16)
1003 .clampMaxNumElements(0,
S16, 2)
1004 .clampScalar(0,
S16,
S64)
1006 }
else if (ST.has16BitInsts()) {
1007 MinNumMaxNum.customFor(FPTypes16)
1008 .clampScalar(0,
S16,
S64)
1011 MinNumMaxNum.customFor(FPTypesBase)
1012 .clampScalar(0,
S32,
S64)
1016 if (ST.hasVOP3PInsts())
1032 .legalFor(FPTypesPK16)
1037 if (ST.has16BitInsts()) {
1066 if (ST.hasFractBug()) {
1095 if (ST.hasCvtPkF16F32Inst()) {
1097 .clampMaxNumElements(0,
S16, 2);
1101 FPTruncActions.scalarize(0).lower();
1109 if (ST.has16BitInsts()) {
1129 if (ST.hasMadF16() && ST.hasMadMacF32Insts())
1130 FMad.customFor({
S32,
S16});
1131 else if (ST.hasMadMacF32Insts())
1132 FMad.customFor({
S32});
1133 else if (ST.hasMadF16())
1134 FMad.customFor({
S16});
1139 if (ST.has16BitInsts()) {
1142 FRem.minScalar(0,
S32)
1151 .clampMaxNumElements(0,
S16, 2)
1170 if (ST.has16BitInsts())
1181 if (ST.has16BitInsts())
1192 .clampScalar(0,
S16,
S64)
1207 .clampScalar(0,
S16,
S64)
1211 if (ST.has16BitInsts()) {
1213 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1215 .clampScalar(0,
S16,
S64)
1219 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1221 .clampScalar(0,
S32,
S64)
1225 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1228 .clampScalar(0,
S32,
S64)
1240 .scalarSameSizeAs(1, 0)
1256 {
S1}, {
S32,
S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
1257 .legalForCartesianProduct(
1258 {
S32}, {
S32,
S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
1259 if (ST.has16BitInsts()) {
1260 CmpBuilder.legalFor({{
S1,
S16}});
1271 {
S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase);
1273 if (ST.hasSALUFloatInsts())
1283 if (ST.has16BitInsts())
1284 ExpOps.customFor({{
S32}, {
S16}});
1286 ExpOps.customFor({
S32});
1287 ExpOps.clampScalar(0, MinScalarFPTy,
S32)
1296 if (ST.has16BitInsts())
1312 .clampScalar(0,
S32,
S32)
1319 if (ST.has16BitInsts())
1322 .widenScalarToNextPow2(1)
1328 .lowerFor({
S1,
S16})
1329 .widenScalarToNextPow2(1)
1356 .clampScalar(0,
S32,
S32)
1366 .clampScalar(0,
S32,
S64)
1370 if (ST.has16BitInsts()) {
1373 .clampMaxNumElementsStrict(0,
S16, 2)
1380 if (ST.hasVOP3PInsts()) {
1383 .clampMaxNumElements(0,
S16, 2)
1388 if (ST.hasIntMinMax64()) {
1391 .clampMaxNumElements(0,
S16, 2)
1399 .clampMaxNumElements(0,
S16, 2)
1408 .widenScalarToNextPow2(0)
1436 .legalForCartesianProduct(AddrSpaces32, {
S32})
1452 .legalForCartesianProduct(AddrSpaces32, {
S32})
1469 const auto needToSplitMemOp = [=](
const LegalityQuery &Query,
1470 bool IsLoad) ->
bool {
1474 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1488 unsigned NumRegs = (MemSize + 31) / 32;
1490 if (!ST.hasDwordx3LoadStores())
1501 unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32;
1502 unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16;
1503 unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8;
1509 for (
unsigned Op : {G_LOAD, G_STORE}) {
1510 const bool IsStore =
Op == G_STORE;
1515 Actions.legalForTypesWithMemDesc({{
S32, GlobalPtr,
S32, GlobalAlign32},
1518 {
S64, GlobalPtr,
S64, GlobalAlign32},
1521 {
S32, GlobalPtr,
S8, GlobalAlign8},
1522 {
S32, GlobalPtr,
S16, GlobalAlign16},
1524 {
S32, LocalPtr,
S32, 32},
1525 {
S64, LocalPtr,
S64, 32},
1527 {
S32, LocalPtr,
S8, 8},
1528 {
S32, LocalPtr,
S16, 16},
1531 {
S32, PrivatePtr,
S32, 32},
1532 {
S32, PrivatePtr,
S8, 8},
1533 {
S32, PrivatePtr,
S16, 16},
1536 {
S32, ConstantPtr,
S32, GlobalAlign32},
1539 {
S64, ConstantPtr,
S64, GlobalAlign32},
1540 {
V2S32, ConstantPtr,
V2S32, GlobalAlign32}});
1549 Actions.unsupportedIf(
1550 typeInSet(1, {BufferFatPtr, BufferStridedPtr, RsrcPtr}));
1564 Actions.customIf(
typeIs(1, Constant32Ptr));
1590 return !Query.
Types[0].isVector() &&
1591 needToSplitMemOp(Query,
Op == G_LOAD);
1593 [=](
const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1598 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1601 if (DstSize > MemSize)
1607 if (MemSize > MaxSize)
1615 return Query.
Types[0].isVector() &&
1616 needToSplitMemOp(Query,
Op == G_LOAD);
1618 [=](
const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1632 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1633 if (MemSize > MaxSize) {
1637 if (MaxSize % EltSize == 0) {
1643 unsigned NumPieces = MemSize / MaxSize;
1647 if (NumPieces == 1 || NumPieces >= NumElts ||
1648 NumElts % NumPieces != 0)
1649 return std::pair(0, EltTy);
1657 return std::pair(0, EltTy);
1672 return std::pair(0, EltTy);
1677 .widenScalarToNextPow2(0)
1684 .legalForTypesWithMemDesc({{
S32, GlobalPtr,
S8, 8},
1685 {
S32, GlobalPtr,
S16, 2 * 8},
1686 {
S32, LocalPtr,
S8, 8},
1687 {
S32, LocalPtr,
S16, 16},
1688 {
S32, PrivatePtr,
S8, 8},
1689 {
S32, PrivatePtr,
S16, 16},
1690 {
S32, ConstantPtr,
S8, 8},
1691 {
S32, ConstantPtr,
S16, 2 * 8}})
1697 if (ST.hasFlatAddressSpace()) {
1698 ExtLoads.legalForTypesWithMemDesc(
1699 {{
S32, FlatPtr,
S8, 8}, {
S32, FlatPtr,
S16, 16}});
1714 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
1715 G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
1716 G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
1717 G_ATOMICRMW_UMIN, G_ATOMICRMW_UINC_WRAP, G_ATOMICRMW_UDEC_WRAP})
1718 .legalFor({{
S32, GlobalPtr}, {
S32, LocalPtr},
1719 {
S64, GlobalPtr}, {
S64, LocalPtr},
1720 {
S32, RegionPtr}, {
S64, RegionPtr}});
1721 if (ST.hasFlatAddressSpace()) {
1722 Atomics.legalFor({{
S32, FlatPtr}, {
S64, FlatPtr}});
1727 .legalFor({{
S32, GlobalPtr}, {
S32, LocalPtr}, {
S32, RegionPtr}});
1728 if (ST.hasFlatAddressSpace()) {
1729 Atomics32.legalFor({{
S32, FlatPtr}});
1734 if (ST.hasLDSFPAtomicAddF32()) {
1735 Atomic.legalFor({{
S32, LocalPtr}, {
S32, RegionPtr}});
1736 if (ST.hasLdsAtomicAddF64())
1737 Atomic.legalFor({{
S64, LocalPtr}});
1738 if (ST.hasAtomicDsPkAdd16Insts())
1739 Atomic.legalFor({{
V2F16, LocalPtr}, {
V2BF16, LocalPtr}});
1741 if (ST.hasAtomicFaddInsts())
1742 Atomic.legalFor({{
S32, GlobalPtr}});
1743 if (ST.hasFlatAtomicFaddF32Inst())
1744 Atomic.legalFor({{
S32, FlatPtr}});
1746 if (ST.hasGFX90AInsts() || ST.hasGFX1250Insts()) {
1757 if (ST.hasAtomicBufferGlobalPkAddF16NoRtnInsts() ||
1758 ST.hasAtomicBufferGlobalPkAddF16Insts())
1759 Atomic.legalFor({{
V2F16, GlobalPtr}, {
V2F16, BufferFatPtr}});
1760 if (ST.hasAtomicGlobalPkAddBF16Inst())
1761 Atomic.legalFor({{
V2BF16, GlobalPtr}});
1762 if (ST.hasAtomicFlatPkAdd16Insts())
1763 Atomic.legalFor({{
V2F16, FlatPtr}, {
V2BF16, FlatPtr}});
1768 auto &AtomicFMinFMax =
1770 .legalFor({{
F32, LocalPtr}, {
F64, LocalPtr}});
1772 if (ST.hasAtomicFMinFMaxF32GlobalInsts())
1774 if (ST.hasAtomicFMinFMaxF64GlobalInsts())
1775 AtomicFMinFMax.
legalFor({{
F64, GlobalPtr}, {
F64, BufferFatPtr}});
1776 if (ST.hasAtomicFMinFMaxF32FlatInsts())
1778 if (ST.hasAtomicFMinFMaxF64FlatInsts())
1785 {
S32, FlatPtr}, {
S64, FlatPtr}})
1786 .legalFor({{
S32, LocalPtr}, {
S64, LocalPtr},
1787 {
S32, RegionPtr}, {
S64, RegionPtr}});
1793 LocalPtr, FlatPtr, PrivatePtr,
1797 .clampScalar(0,
S16,
S64)
1812 if (ST.has16BitInsts()) {
1813 if (ST.hasVOP3PInsts()) {
1815 .clampMaxNumElements(0,
S16, 2);
1817 Shifts.legalFor({{
S16,
S16}});
1820 Shifts.widenScalarIf(
1825 const LLT AmountTy = Query.
Types[1];
1826 return ValTy.isScalar() && ValTy.getSizeInBits() <= 16 &&
1830 Shifts.clampScalar(1,
S32,
S32);
1831 Shifts.widenScalarToNextPow2(0, 16);
1832 Shifts.clampScalar(0,
S16,
S64);
1842 Shifts.clampScalar(1,
S32,
S32);
1843 Shifts.widenScalarToNextPow2(0, 32);
1844 Shifts.clampScalar(0,
S32,
S64);
1853 for (
unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
1854 unsigned VecTypeIdx =
Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
1855 unsigned EltTypeIdx =
Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
1856 unsigned IdxTypeIdx = 2;
1860 const LLT EltTy = Query.
Types[EltTypeIdx];
1861 const LLT VecTy = Query.
Types[VecTypeIdx];
1862 const LLT IdxTy = Query.
Types[IdxTypeIdx];
1864 const bool isLegalVecType =
1874 return (EltSize == 32 || EltSize == 64) &&
1890 const LLT EltTy = Query.
Types[EltTypeIdx];
1891 const LLT VecTy = Query.
Types[VecTypeIdx];
1895 const unsigned TargetEltSize =
1896 DstEltSize % 64 == 0 ? 64 : 32;
1897 return std::pair(VecTypeIdx,
1901 .clampScalar(EltTypeIdx,
S32,
S64)
1915 const LLT &EltTy = Query.
Types[1].getElementType();
1916 return Query.
Types[0] != EltTy;
1919 for (
unsigned Op : {G_EXTRACT, G_INSERT}) {
1920 unsigned BigTyIdx =
Op == G_EXTRACT ? 1 : 0;
1921 unsigned LitTyIdx =
Op == G_EXTRACT ? 0 : 1;
1930 const LLT BigTy = Query.
Types[BigTyIdx];
1935 const LLT BigTy = Query.
Types[BigTyIdx];
1936 const LLT LitTy = Query.
Types[LitTyIdx];
1942 const LLT BigTy = Query.
Types[BigTyIdx];
1948 const LLT LitTy = Query.
Types[LitTyIdx];
1967 if (ST.hasScalarPackInsts()) {
1970 .minScalarOrElt(0,
S16)
1977 BuildVector.customFor({
V2S16,
S16});
1978 BuildVector.minScalarOrElt(0,
S32);
1997 for (
unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1998 unsigned BigTyIdx =
Op == G_MERGE_VALUES ? 0 : 1;
1999 unsigned LitTyIdx =
Op == G_MERGE_VALUES ? 1 : 0;
2001 auto notValidElt = [=](
const LegalityQuery &Query,
unsigned TypeIdx) {
2002 const LLT Ty = Query.
Types[TypeIdx];
2003 if (Ty.isVector()) {
2018 const LLT BigTy = Query.
Types[BigTyIdx];
2038 return notValidElt(Query, LitTyIdx);
2043 return notValidElt(Query, BigTyIdx);
2048 if (
Op == G_MERGE_VALUES) {
2049 Builder.widenScalarIf(
2052 const LLT Ty = Query.
Types[LitTyIdx];
2053 return Ty.getSizeInBits() < 32;
2060 const LLT Ty = Query.
Types[BigTyIdx];
2061 return Ty.getSizeInBits() % 16 != 0;
2066 const LLT &Ty = Query.
Types[BigTyIdx];
2067 unsigned NewSizeInBits = 1 <<
Log2_32_Ceil(Ty.getSizeInBits() + 1);
2068 if (NewSizeInBits >= 256) {
2069 unsigned RoundedTo =
alignTo<64>(Ty.getSizeInBits() + 1);
2070 if (RoundedTo < NewSizeInBits)
2071 NewSizeInBits = RoundedTo;
2073 return std::pair(BigTyIdx,
LLT::scalar(NewSizeInBits));
2084 .clampScalar(0,
S32,
S64);
2086 if (ST.hasVOP3PInsts()) {
2087 SextInReg.lowerFor({{
V2S16}})
2091 .clampMaxNumElementsStrict(0,
S16, 2);
2092 }
else if (ST.has16BitInsts()) {
2093 SextInReg.lowerFor({{
S32}, {
S64}, {
S16}});
2097 SextInReg.lowerFor({{
S32}, {
S64}});
2110 FSHRActionDefs.legalFor({{
S32,
S32}})
2111 .clampMaxNumElementsStrict(0,
S16, 2);
2112 if (ST.hasVOP3PInsts())
2114 FSHRActionDefs.scalarize(0).lower();
2116 if (ST.hasVOP3PInsts()) {
2119 .clampMaxNumElementsStrict(0,
S16, 2)
2143 .clampScalar(1,
S32,
S32)
2152 G_ATOMIC_CMPXCHG_WITH_SUCCESS, G_ATOMICRMW_NAND, G_ATOMICRMW_FSUB,
2153 G_READ_REGISTER, G_WRITE_REGISTER,
2158 if (ST.hasIEEEMinimumMaximumInsts()) {
2160 .legalFor(FPTypesPK16)
2163 }
else if (ST.hasVOP3PInsts()) {
2166 .clampMaxNumElementsStrict(0,
S16, 2)
2182 G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
2183 G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
2189 {G_VECREDUCE_SMIN, G_VECREDUCE_SMAX, G_VECREDUCE_UMIN, G_VECREDUCE_UMAX,
2190 G_VECREDUCE_ADD, G_VECREDUCE_MUL, G_VECREDUCE_FMUL, G_VECREDUCE_FMIN,
2191 G_VECREDUCE_FMAX, G_VECREDUCE_FMINIMUM, G_VECREDUCE_FMAXIMUM,
2192 G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
2198 verify(*ST.getInstrInfo());
2207 switch (
MI.getOpcode()) {
2208 case TargetOpcode::G_ADDRSPACE_CAST:
2210 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2212 case TargetOpcode::G_FCEIL:
2214 case TargetOpcode::G_FREM:
2216 case TargetOpcode::G_INTRINSIC_TRUNC:
2218 case TargetOpcode::G_SITOFP:
2220 case TargetOpcode::G_UITOFP:
2222 case TargetOpcode::G_FPTOSI:
2224 case TargetOpcode::G_FPTOUI:
2226 case TargetOpcode::G_FMINNUM:
2227 case TargetOpcode::G_FMAXNUM:
2228 case TargetOpcode::G_FMINIMUMNUM:
2229 case TargetOpcode::G_FMAXIMUMNUM:
2231 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2233 case TargetOpcode::G_INSERT_VECTOR_ELT:
2235 case TargetOpcode::G_FSIN:
2236 case TargetOpcode::G_FCOS:
2238 case TargetOpcode::G_GLOBAL_VALUE:
2240 case TargetOpcode::G_LOAD:
2241 case TargetOpcode::G_SEXTLOAD:
2242 case TargetOpcode::G_ZEXTLOAD:
2244 case TargetOpcode::G_STORE:
2246 case TargetOpcode::G_FMAD:
2248 case TargetOpcode::G_FDIV:
2250 case TargetOpcode::G_FFREXP:
2252 case TargetOpcode::G_FSQRT:
2254 case TargetOpcode::G_UDIV:
2255 case TargetOpcode::G_UREM:
2256 case TargetOpcode::G_UDIVREM:
2258 case TargetOpcode::G_SDIV:
2259 case TargetOpcode::G_SREM:
2260 case TargetOpcode::G_SDIVREM:
2262 case TargetOpcode::G_ATOMIC_CMPXCHG:
2264 case TargetOpcode::G_FLOG2:
2266 case TargetOpcode::G_FLOG:
2267 case TargetOpcode::G_FLOG10:
2269 case TargetOpcode::G_FEXP2:
2271 case TargetOpcode::G_FEXP:
2272 case TargetOpcode::G_FEXP10:
2274 case TargetOpcode::G_FPOW:
2276 case TargetOpcode::G_FFLOOR:
2278 case TargetOpcode::G_BUILD_VECTOR:
2279 case TargetOpcode::G_BUILD_VECTOR_TRUNC:
2281 case TargetOpcode::G_MUL:
2283 case TargetOpcode::G_CTLZ:
2284 case TargetOpcode::G_CTTZ:
2286 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2288 case TargetOpcode::G_STACKSAVE:
2290 case TargetOpcode::G_GET_FPENV:
2292 case TargetOpcode::G_SET_FPENV:
2294 case TargetOpcode::G_TRAP:
2296 case TargetOpcode::G_DEBUGTRAP:
2316 if (ST.hasApertureRegs()) {
2321 ? AMDGPU::SRC_SHARED_BASE
2322 : AMDGPU::SRC_PRIVATE_BASE;
2323 assert((ApertureRegNo != AMDGPU::SRC_PRIVATE_BASE ||
2324 !ST.hasGloballyAddressableScratch()) &&
2325 "Cannot use src_private_base with globally addressable scratch!");
2327 MRI.setRegClass(Dst, &AMDGPU::SReg_64RegClass);
2328 B.buildCopy({Dst}, {
Register(ApertureRegNo)});
2329 return B.buildUnmerge(
S32, Dst).getReg(1);
2332 Register LoadAddr =
MRI.createGenericVirtualRegister(
2344 ST.getTargetLowering()->getImplicitParameterOffset(
B.getMF(), Param);
2346 Register KernargPtrReg =
MRI.createGenericVirtualRegister(
2360 B.buildObjectPtrOffset(LoadAddr, KernargPtrReg,
2363 return B.buildLoad(
S32, LoadAddr, *MMO).getReg(0);
2366 Register QueuePtr =
MRI.createGenericVirtualRegister(
2385 B.buildObjectPtrOffset(
2387 B.buildConstant(
LLT::scalar(64), StructOffset).getReg(0));
2388 return B.buildLoad(
S32, LoadAddr, *MMO).getReg(0);
2396 switch (Def->getOpcode()) {
2397 case AMDGPU::G_FRAME_INDEX:
2398 case AMDGPU::G_GLOBAL_VALUE:
2399 case AMDGPU::G_BLOCK_ADDR:
2401 case AMDGPU::G_CONSTANT: {
2402 const ConstantInt *CI = Def->getOperand(1).getCImm();
2419 assert(
MI.getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
2421 Intrinsic::amdgcn_addrspacecast_nonnull));
2426 :
MI.getOperand(1).getReg();
2427 LLT DstTy =
MRI.getType(Dst);
2428 LLT SrcTy =
MRI.getType(Src);
2430 unsigned SrcAS = SrcTy.getAddressSpace();
2440 MI.setDesc(
B.getTII().get(TargetOpcode::G_BITCAST));
2447 auto castFlatToLocalOrPrivate = [&](
const DstOp &Dst) ->
Register {
2449 ST.hasGloballyAddressableScratch()) {
2453 Register SrcLo =
B.buildExtract(
S32, Src, 0).getReg(0);
2455 B.buildInstr(AMDGPU::S_MOV_B32, {
S32},
2456 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE_LO)})
2458 MRI.setRegClass(FlatScratchBaseLo, &AMDGPU::SReg_32RegClass);
2460 return B.buildIntToPtr(Dst,
Sub).getReg(0);
2464 return B.buildExtract(Dst, Src, 0).getReg(0);
2470 castFlatToLocalOrPrivate(Dst);
2471 MI.eraseFromParent();
2477 auto SegmentNull =
B.buildConstant(DstTy, NullVal);
2478 auto FlatNull =
B.buildConstant(SrcTy, 0);
2481 auto PtrLo32 = castFlatToLocalOrPrivate(DstTy);
2485 B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
2487 MI.eraseFromParent();
2494 auto castLocalOrPrivateToFlat = [&](
const DstOp &Dst) ->
Register {
2497 Register SrcAsInt =
B.buildPtrToInt(
S32, Src).getReg(0);
2500 ST.hasGloballyAddressableScratch()) {
2505 ThreadID =
B.buildIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {
S32})
2509 if (ST.isWave64()) {
2510 ThreadID =
B.buildIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {
S32})
2516 B.buildConstant(
S32, 57 - 32 - ST.getWavefrontSizeLog2()).getReg(0);
2517 Register SrcHi =
B.buildShl(
S32, ThreadID, ShAmt).getReg(0);
2519 B.buildMergeLikeInstr(DstTy, {SrcAsInt, SrcHi}).
getReg(0);
2523 B.buildInstr(AMDGPU::S_MOV_B64, {
S64},
2524 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE)})
2526 MRI.setRegClass(FlatScratchBase, &AMDGPU::SReg_64RegClass);
2527 return B.buildPtrAdd(Dst, CvtPtr, FlatScratchBase).getReg(0);
2536 return B.buildMergeLikeInstr(Dst, {SrcAsInt, ApertureReg}).
getReg(0);
2542 castLocalOrPrivateToFlat(Dst);
2543 MI.eraseFromParent();
2547 Register BuildPtr = castLocalOrPrivateToFlat(DstTy);
2553 SegmentNull.getReg(0));
2555 B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);
2557 MI.eraseFromParent();
2562 SrcTy.getSizeInBits() == 64) {
2564 B.buildExtract(Dst, Src, 0);
2565 MI.eraseFromParent();
2572 uint32_t AddrHiVal = Info->get32BitAddressHighBits();
2573 auto PtrLo =
B.buildPtrToInt(
S32, Src);
2574 if (AddrHiVal == 0) {
2576 B.buildIntToPtr(Dst, Zext);
2578 auto HighAddr =
B.buildConstant(
S32, AddrHiVal);
2579 B.buildMergeLikeInstr(Dst, {PtrLo, HighAddr});
2582 MI.eraseFromParent();
2589 MI.eraseFromParent();
2597 LLT Ty =
MRI.getType(Src);
2598 assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
2603 auto C1 =
B.buildFConstant(Ty, C1Val);
2604 auto CopySign =
B.buildFCopysign(Ty, C1, Src);
2607 auto Tmp1 =
B.buildFAdd(Ty, Src, CopySign);
2608 auto Tmp2 =
B.buildFSub(Ty, Tmp1, CopySign);
2610 auto C2 =
B.buildFConstant(Ty, C2Val);
2611 auto Fabs =
B.buildFAbs(Ty, Src);
2614 B.buildSelect(
MI.getOperand(0).getReg(),
Cond, Src, Tmp2);
2615 MI.eraseFromParent();
2633 auto Trunc =
B.buildIntrinsicTrunc(
S64, Src);
2635 const auto Zero =
B.buildFConstant(
S64, 0.0);
2636 const auto One =
B.buildFConstant(
S64, 1.0);
2639 auto And =
B.buildAnd(
S1, Lt0, NeTrunc);
2640 auto Add =
B.buildSelect(
S64,
And, One, Zero);
2643 B.buildFAdd(
MI.getOperand(0).getReg(), Trunc,
Add);
2644 MI.eraseFromParent();
2652 Register Src0Reg =
MI.getOperand(1).getReg();
2653 Register Src1Reg =
MI.getOperand(2).getReg();
2654 auto Flags =
MI.getFlags();
2655 LLT Ty =
MRI.getType(DstReg);
2657 auto Div =
B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags);
2658 auto Trunc =
B.buildIntrinsicTrunc(Ty, Div, Flags);
2659 auto Neg =
B.buildFNeg(Ty, Trunc, Flags);
2660 B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags);
2661 MI.eraseFromParent();
2667 const unsigned FractBits = 52;
2668 const unsigned ExpBits = 11;
2671 auto Const0 =
B.buildConstant(
S32, FractBits - 32);
2672 auto Const1 =
B.buildConstant(
S32, ExpBits);
2674 auto ExpPart =
B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {
S32})
2676 .addUse(Const0.getReg(0))
2677 .addUse(Const1.getReg(0));
2679 return B.buildSub(
S32, ExpPart,
B.buildConstant(
S32, 1023));
2693 auto Unmerge =
B.buildUnmerge({
S32,
S32}, Src);
2700 const unsigned FractBits = 52;
2703 const auto SignBitMask =
B.buildConstant(
S32, UINT32_C(1) << 31);
2704 auto SignBit =
B.buildAnd(
S32,
Hi, SignBitMask);
2706 const auto FractMask =
B.buildConstant(
S64, (UINT64_C(1) << FractBits) - 1);
2708 const auto Zero32 =
B.buildConstant(
S32, 0);
2711 auto SignBit64 =
B.buildMergeLikeInstr(
S64, {Zero32, SignBit});
2713 auto Shr =
B.buildAShr(
S64, FractMask, Exp);
2714 auto Not =
B.buildNot(
S64, Shr);
2715 auto Tmp0 =
B.buildAnd(
S64, Src, Not);
2716 auto FiftyOne =
B.buildConstant(
S32, FractBits - 1);
2721 auto Tmp1 =
B.buildSelect(
S64, ExpLt0, SignBit64, Tmp0);
2722 B.buildSelect(
MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
2723 MI.eraseFromParent();
2739 auto Unmerge =
B.buildUnmerge({
S32,
S32}, Src);
2740 auto ThirtyTwo =
B.buildConstant(
S32, 32);
2742 if (
MRI.getType(Dst) ==
S64) {
2743 auto CvtHi =
Signed ?
B.buildSITOFP(
S64, Unmerge.getReg(1))
2744 :
B.buildUITOFP(
S64, Unmerge.getReg(1));
2746 auto CvtLo =
B.buildUITOFP(
S64, Unmerge.getReg(0));
2747 auto LdExp =
B.buildFLdexp(
S64, CvtHi, ThirtyTwo);
2750 B.buildFAdd(Dst, LdExp, CvtLo);
2751 MI.eraseFromParent();
2757 auto One =
B.buildConstant(
S32, 1);
2761 auto ThirtyOne =
B.buildConstant(
S32, 31);
2762 auto X =
B.buildXor(
S32, Unmerge.getReg(0), Unmerge.getReg(1));
2763 auto OppositeSign =
B.buildAShr(
S32,
X, ThirtyOne);
2764 auto MaxShAmt =
B.buildAdd(
S32, ThirtyTwo, OppositeSign);
2765 auto LS =
B.buildIntrinsic(Intrinsic::amdgcn_sffbh, {
S32})
2766 .addUse(Unmerge.getReg(1));
2767 auto LS2 =
B.buildSub(
S32, LS, One);
2768 ShAmt =
B.buildUMin(
S32, LS2, MaxShAmt);
2770 ShAmt =
B.buildCTLZ(
S32, Unmerge.getReg(1));
2771 auto Norm =
B.buildShl(
S64, Src, ShAmt);
2772 auto Unmerge2 =
B.buildUnmerge({
S32,
S32}, Norm);
2773 auto Adjust =
B.buildUMin(
S32, One, Unmerge2.getReg(0));
2774 auto Norm2 =
B.buildOr(
S32, Unmerge2.getReg(1), Adjust);
2775 auto FVal =
Signed ?
B.buildSITOFP(
S32, Norm2) :
B.buildUITOFP(
S32, Norm2);
2776 auto Scale =
B.buildSub(
S32, ThirtyTwo, ShAmt);
2777 B.buildFLdexp(Dst, FVal, Scale);
2778 MI.eraseFromParent();
2795 const LLT SrcLT =
MRI.getType(Src);
2798 unsigned Flags =
MI.getFlags();
2809 auto Trunc =
B.buildIntrinsicTrunc(SrcLT, Src, Flags);
2817 Sign =
B.buildAShr(
S32, Src,
B.buildConstant(
S32, 31));
2818 Trunc =
B.buildFAbs(
S32, Trunc, Flags);
2822 K0 =
B.buildFConstant(
2824 K1 =
B.buildFConstant(
2827 K0 =
B.buildFConstant(
2829 K1 =
B.buildFConstant(
2833 auto Mul =
B.buildFMul(SrcLT, Trunc, K0, Flags);
2834 auto FloorMul =
B.buildFFloor(SrcLT,
Mul, Flags);
2835 auto Fma =
B.buildFMA(SrcLT, FloorMul, K1, Trunc, Flags);
2838 :
B.buildFPTOUI(
S32, FloorMul);
2839 auto Lo =
B.buildFPTOUI(
S32, Fma);
2843 Sign =
B.buildMergeLikeInstr(
S64, {Sign, Sign});
2845 B.buildSub(Dst,
B.buildXor(
S64,
B.buildMergeLikeInstr(
S64, {Lo, Hi}), Sign),
2848 B.buildMergeLikeInstr(Dst, {
Lo,
Hi});
2849 MI.eraseFromParent();
2876 LLT VecTy =
MRI.getType(Vec);
2889 auto IntVec =
B.buildPtrToInt(IntVecTy, Vec);
2890 auto IntElt =
B.buildExtractVectorElement(IntTy, IntVec,
MI.getOperand(2));
2891 B.buildIntToPtr(Dst, IntElt);
2893 MI.eraseFromParent();
2900 std::optional<ValueAndVReg> MaybeIdxVal =
2904 const uint64_t IdxVal = MaybeIdxVal->Value.getZExtValue();
2907 auto Unmerge =
B.buildUnmerge(EltTy, Vec);
2908 B.buildCopy(Dst, Unmerge.getReg(IdxVal));
2913 MI.eraseFromParent();
2928 LLT VecTy =
MRI.getType(Vec);
2942 auto IntVecSource =
B.buildPtrToInt(IntVecTy, Vec);
2943 auto IntIns =
B.buildPtrToInt(IntTy, Ins);
2944 auto IntVecDest =
B.buildInsertVectorElement(IntVecTy, IntVecSource, IntIns,
2946 B.buildIntToPtr(Dst, IntVecDest);
2947 MI.eraseFromParent();
2954 std::optional<ValueAndVReg> MaybeIdxVal =
2959 const uint64_t IdxVal = MaybeIdxVal->Value.getZExtValue();
2962 if (IdxVal < NumElts) {
2964 for (
unsigned i = 0; i < NumElts; ++i)
2965 SrcRegs.
push_back(
MRI.createGenericVirtualRegister(EltTy));
2966 B.buildUnmerge(SrcRegs, Vec);
2968 SrcRegs[IdxVal] =
MI.getOperand(2).getReg();
2969 B.buildMergeLikeInstr(Dst, SrcRegs);
2974 MI.eraseFromParent();
2984 LLT Ty =
MRI.getType(DstReg);
2985 unsigned Flags =
MI.getFlags();
2989 if (ST.hasTrigReducedRange()) {
2990 auto MulVal =
B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
2991 TrigVal =
B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty})
2992 .addUse(MulVal.getReg(0))
2996 TrigVal =
B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
2999 Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
3003 MI.eraseFromParent();
3011 unsigned GAFlags)
const {
3040 B.getMRI()->createGenericVirtualRegister(ConstPtrTy);
3042 if (ST.has64BitLiterals()) {
3046 B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET64).addDef(PCReg);
3050 B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET).addDef(PCReg);
3059 if (!
B.getMRI()->getRegClassOrNull(PCReg))
3060 B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);
3063 B.buildExtract(DstReg, PCReg, 0);
3073 if (RequiresHighHalf && ST.has64BitLiterals()) {
3074 if (!
MRI.getRegClassOrNull(DstReg))
3075 MRI.setRegClass(DstReg, &AMDGPU::SReg_64RegClass);
3076 B.buildInstr(AMDGPU::S_MOV_B64)
3086 Register AddrLo = !RequiresHighHalf && !
MRI.getRegClassOrNull(DstReg)
3088 :
MRI.createGenericVirtualRegister(
S32);
3090 if (!
MRI.getRegClassOrNull(AddrLo))
3091 MRI.setRegClass(AddrLo, &AMDGPU::SReg_32RegClass);
3094 B.buildInstr(AMDGPU::S_MOV_B32)
3099 if (RequiresHighHalf) {
3101 "Must provide a 64-bit pointer type!");
3104 MRI.setRegClass(AddrHi, &AMDGPU::SReg_32RegClass);
3106 B.buildInstr(AMDGPU::S_MOV_B32)
3116 if (!
MRI.getRegClassOrNull(AddrDst))
3117 MRI.setRegClass(AddrDst, &AMDGPU::SReg_64RegClass);
3119 B.buildMergeValues(AddrDst, {AddrLo, AddrHi});
3123 if (AddrDst != DstReg)
3124 B.buildCast(DstReg, AddrDst);
3125 }
else if (AddrLo != DstReg) {
3128 B.buildCast(DstReg, AddrLo);
3136 LLT Ty =
MRI.getType(DstReg);
3137 unsigned AS = Ty.getAddressSpace();
3145 GV->
getName() !=
"llvm.amdgcn.module.lds" &&
3149 Fn,
"local memory global used by non-kernel function",
3158 B.buildUndef(DstReg);
3159 MI.eraseFromParent();
3179 if (
B.getDataLayout().getTypeAllocSize(Ty).isZero()) {
3183 auto Sz =
B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {
S32});
3184 B.buildIntToPtr(DstReg, Sz);
3185 MI.eraseFromParent();
3192 MI.eraseFromParent();
3196 if (ST.isAmdPalOS() || ST.isMesa3DOS()) {
3198 MI.eraseFromParent();
3206 MI.eraseFromParent();
3212 MI.eraseFromParent();
3217 Register GOTAddr =
MRI.createGenericVirtualRegister(PtrTy);
3228 if (Ty.getSizeInBits() == 32) {
3230 auto Load =
B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
3231 B.buildExtract(DstReg, Load, 0);
3233 B.buildLoad(DstReg, GOTAddr, *GOTMMO);
3235 MI.eraseFromParent();
3253 LLT PtrTy =
MRI.getType(PtrReg);
3258 auto Cast =
B.buildAddrSpaceCast(ConstPtr, PtrReg);
3260 MI.getOperand(1).setReg(Cast.getReg(0));
3265 if (
MI.getOpcode() != AMDGPU::G_LOAD)
3269 LLT ValTy =
MRI.getType(ValReg);
3279 const unsigned ValSize = ValTy.getSizeInBits();
3291 if (WideMemSize == ValSize) {
3297 MI.setMemRefs(MF, {WideMMO});
3303 if (ValSize > WideMemSize)
3310 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3311 B.buildTrunc(ValReg, WideLoad).getReg(0);
3318 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3319 B.buildExtract(ValReg, WideLoad, 0);
3323 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3324 B.buildDeleteTrailingVectorElements(ValReg, WideLoad);
3328 MI.eraseFromParent();
3341 Register DataReg =
MI.getOperand(0).getReg();
3342 LLT DataTy =
MRI.getType(DataReg);
3356 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
3385 "this should not have been custom lowered");
3387 LLT ValTy =
MRI.getType(CmpVal);
3390 Register PackedVal =
B.buildBuildVector(VecTy, { NewVal, CmpVal }).
getReg(0);
3392 B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
3396 .setMemRefs(
MI.memoperands());
3398 MI.eraseFromParent();
3406 switch (
DefMI->getOpcode()) {
3407 case TargetOpcode::G_INTRINSIC: {
3409 case Intrinsic::amdgcn_frexp_mant:
3410 case Intrinsic::amdgcn_log:
3411 case Intrinsic::amdgcn_log_clamp:
3412 case Intrinsic::amdgcn_exp2:
3420 case TargetOpcode::G_FFREXP: {
3421 if (
DefMI->getOperand(0).getReg() == Src)
3425 case TargetOpcode::G_FPEXT: {
3446std::pair<Register, Register>
3448 unsigned Flags)
const {
3453 auto SmallestNormal =
B.buildFConstant(
3455 auto IsLtSmallestNormal =
3458 auto Scale32 =
B.buildFConstant(
F32, 0x1.0p+32);
3459 auto One =
B.buildFConstant(
F32, 1.0);
3461 B.buildSelect(
F32, IsLtSmallestNormal, Scale32, One, Flags);
3462 auto ScaledInput =
B.buildFMul(
F32, Src, ScaleFactor, Flags);
3464 return {ScaledInput.getReg(0), IsLtSmallestNormal.getReg(0)};
3477 LLT Ty =
B.getMRI()->getType(Dst);
3478 unsigned Flags =
MI.getFlags();
3483 auto Ext =
B.buildFPExt(
F32, Src, Flags);
3484 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_log, {
F32})
3485 .addUse(Ext.getReg(0))
3487 B.buildFPTrunc(Dst,
Log2, Flags);
3488 MI.eraseFromParent();
3496 B.buildIntrinsic(Intrinsic::amdgcn_log, {
MI.getOperand(0)})
3499 MI.eraseFromParent();
3503 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3504 .addUse(ScaledInput)
3507 auto ThirtyTwo =
B.buildFConstant(Ty, 32.0);
3508 auto Zero =
B.buildFConstant(Ty, 0.0);
3510 B.buildSelect(Ty, IsLtSmallestNormal, ThirtyTwo, Zero, Flags);
3511 B.buildFSub(Dst,
Log2, ResultOffset, Flags);
3513 MI.eraseFromParent();
3519 auto FMul =
B.buildFMul(Ty,
X,
Y, Flags);
3520 return B.buildFAdd(Ty,
FMul, Z, Flags).getReg(0);
3525 const bool IsLog10 =
MI.getOpcode() == TargetOpcode::G_FLOG10;
3526 assert(IsLog10 ||
MI.getOpcode() == TargetOpcode::G_FLOG);
3531 unsigned Flags =
MI.getFlags();
3532 const LLT Ty =
MRI.getType(
X);
3542 if (Ty == F16 && !ST.has16BitInsts()) {
3544 auto PromoteSrc =
B.buildFPExt(
F32,
X);
3546 B.buildFPTrunc(Dst, LogVal);
3551 MI.eraseFromParent();
3560 B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty}).addUse(
X).setMIFlags(Flags);
3563 if (ST.hasFastFMAF32()) {
3565 const float c_log10 = 0x1.344134p-2f;
3566 const float cc_log10 = 0x1.09f79ep-26f;
3569 const float c_log = 0x1.62e42ep-1f;
3570 const float cc_log = 0x1.efa39ep-25f;
3572 auto C =
B.buildFConstant(Ty, IsLog10 ? c_log10 : c_log);
3573 auto CC =
B.buildFConstant(Ty, IsLog10 ? cc_log10 : cc_log);
3577 R =
B.buildFMul(Ty,
Y,
C, NewFlags).getReg(0);
3578 auto NegR =
B.buildFNeg(Ty, R, NewFlags);
3579 auto FMA0 =
B.buildFMA(Ty,
Y,
C, NegR, NewFlags);
3580 auto FMA1 =
B.buildFMA(Ty,
Y, CC, FMA0, NewFlags);
3581 R =
B.buildFAdd(Ty, R, FMA1, NewFlags).getReg(0);
3584 const float ch_log10 = 0x1.344000p-2f;
3585 const float ct_log10 = 0x1.3509f6p-18f;
3588 const float ch_log = 0x1.62e000p-1f;
3589 const float ct_log = 0x1.0bfbe8p-15f;
3591 auto CH =
B.buildFConstant(Ty, IsLog10 ? ch_log10 : ch_log);
3592 auto CT =
B.buildFConstant(Ty, IsLog10 ? ct_log10 : ct_log);
3594 auto MaskConst =
B.buildConstant(Ty, 0xfffff000);
3595 auto YH =
B.buildAnd(Ty,
Y, MaskConst);
3596 auto YT =
B.buildFSub(Ty,
Y, YH, Flags);
3600 auto YTCT =
B.buildFMul(Ty, YT, CT, NewFlags);
3603 getMad(
B, Ty, YH.getReg(0), CT.getReg(0), YTCT.getReg(0), NewFlags);
3605 R =
getMad(
B, Ty, YH.getReg(0),
CH.getReg(0), Mad1, NewFlags);
3608 const bool IsFiniteOnly =
3612 if (!IsFiniteOnly) {
3615 auto Fabs =
B.buildFAbs(Ty,
Y);
3618 R =
B.buildSelect(Ty, IsFinite, R,
Y, Flags).getReg(0);
3622 auto Zero =
B.buildFConstant(Ty, 0.0);
3624 B.buildFConstant(Ty, IsLog10 ? 0x1.344136p+3f : 0x1.62e430p+4f);
3625 auto Shift =
B.buildSelect(Ty, IsScaled, ShiftK, Zero, Flags);
3626 B.buildFSub(Dst, R, Shift, Flags);
3628 B.buildCopy(Dst, R);
3631 MI.eraseFromParent();
3637 unsigned Flags)
const {
3638 const double Log2BaseInverted =
3641 LLT Ty =
B.getMRI()->getType(Dst);
3646 auto LogSrc =
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3649 auto ScaledResultOffset =
B.buildFConstant(Ty, -32.0 * Log2BaseInverted);
3650 auto Zero =
B.buildFConstant(Ty, 0.0);
3652 B.buildSelect(Ty, IsScaled, ScaledResultOffset, Zero, Flags);
3653 auto Log2Inv =
B.buildFConstant(Ty, Log2BaseInverted);
3655 if (ST.hasFastFMAF32())
3656 B.buildFMA(Dst, LogSrc, Log2Inv, ResultOffset, Flags);
3658 auto Mul =
B.buildFMul(Ty, LogSrc, Log2Inv, Flags);
3659 B.buildFAdd(Dst,
Mul, ResultOffset, Flags);
3667 ?
B.buildFLog2(Ty, Src, Flags)
3668 :
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3671 auto Log2BaseInvertedOperand =
B.buildFConstant(Ty, Log2BaseInverted);
3672 B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
3683 unsigned Flags =
MI.getFlags();
3684 LLT Ty =
B.getMRI()->getType(Dst);
3690 auto Ext =
B.buildFPExt(
F32, Src, Flags);
3691 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {
F32})
3692 .addUse(Ext.getReg(0))
3694 B.buildFPTrunc(Dst,
Log2, Flags);
3695 MI.eraseFromParent();
3705 MI.eraseFromParent();
3713 auto RangeCheckConst =
B.buildFConstant(Ty, -0x1.f80000p+6f);
3715 RangeCheckConst, Flags);
3717 auto SixtyFour =
B.buildFConstant(Ty, 0x1.0p+6f);
3718 auto Zero =
B.buildFConstant(Ty, 0.0);
3719 auto AddOffset =
B.buildSelect(
F32, NeedsScaling, SixtyFour, Zero, Flags);
3720 auto AddInput =
B.buildFAdd(
F32, Src, AddOffset, Flags);
3722 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3723 .addUse(AddInput.getReg(0))
3726 auto TwoExpNeg64 =
B.buildFConstant(Ty, 0x1.0p-64f);
3727 auto One =
B.buildFConstant(Ty, 1.0);
3728 auto ResultScale =
B.buildSelect(
F32, NeedsScaling, TwoExpNeg64, One, Flags);
3729 B.buildFMul(Dst, Exp2, ResultScale, Flags);
3730 MI.eraseFromParent();
3735 const SrcOp &Src,
unsigned Flags) {
3736 LLT Ty = Dst.getLLTTy(*
B.getMRI());
3739 return B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Dst})
3740 .addUse(Src.getReg())
3743 return B.buildFExp2(Dst, Src, Flags);
3749 bool IsExp10)
const {
3750 LLT Ty =
B.getMRI()->getType(
X);
3754 auto Const =
B.buildFConstant(Ty, IsExp10 ? 0x1.a934f0p+1f :
numbers::log2e);
3755 auto Mul =
B.buildFMul(Ty,
X, Const, Flags);
3762 LLT Ty =
B.getMRI()->getType(Dst);
3769 auto Threshold =
B.buildFConstant(Ty, -0x1.5d58a0p+6f);
3772 auto ScaleOffset =
B.buildFConstant(Ty, 0x1.0p+6f);
3773 auto ScaledX =
B.buildFAdd(Ty,
X, ScaleOffset, Flags);
3774 auto AdjustedX =
B.buildSelect(Ty, NeedsScaling, ScaledX,
X, Flags);
3777 auto ExpInput =
B.buildFMul(Ty, AdjustedX, Log2E, Flags);
3779 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3780 .addUse(ExpInput.getReg(0))
3783 auto ResultScaleFactor =
B.buildFConstant(Ty, 0x1.969d48p-93f);
3784 auto AdjustedResult =
B.buildFMul(Ty, Exp2, ResultScaleFactor, Flags);
3785 B.buildSelect(Dst, NeedsScaling, AdjustedResult, Exp2, Flags);
3791 unsigned Flags)
const {
3792 LLT Ty =
B.getMRI()->getType(Dst);
3797 auto K0 =
B.buildFConstant(Ty, 0x1.a92000p+1f);
3798 auto K1 =
B.buildFConstant(Ty, 0x1.4f0978p-11f);
3800 auto Mul1 =
B.buildFMul(Ty,
X, K1, Flags);
3801 auto Exp2_1 =
buildExp(
B, Ty, Mul1, Flags);
3802 auto Mul0 =
B.buildFMul(Ty,
X, K0, Flags);
3803 auto Exp2_0 =
buildExp(
B, Ty, Mul0, Flags);
3804 B.buildFMul(Dst, Exp2_0, Exp2_1, Flags);
3814 auto Threshold =
B.buildFConstant(Ty, -0x1.2f7030p+5f);
3818 auto ScaleOffset =
B.buildFConstant(Ty, 0x1.0p+5f);
3819 auto ScaledX =
B.buildFAdd(Ty,
X, ScaleOffset, Flags);
3820 auto AdjustedX =
B.buildSelect(Ty, NeedsScaling, ScaledX,
X);
3822 auto K0 =
B.buildFConstant(Ty, 0x1.a92000p+1f);
3823 auto K1 =
B.buildFConstant(Ty, 0x1.4f0978p-11f);
3825 auto Mul1 =
B.buildFMul(Ty, AdjustedX, K1, Flags);
3826 auto Exp2_1 =
buildExp(
B, Ty, Mul1, Flags);
3827 auto Mul0 =
B.buildFMul(Ty, AdjustedX, K0, Flags);
3828 auto Exp2_0 =
buildExp(
B, Ty, Mul0, Flags);
3830 auto MulExps =
B.buildFMul(Ty, Exp2_0, Exp2_1, Flags);
3831 auto ResultScaleFactor =
B.buildFConstant(Ty, 0x1.9f623ep-107f);
3832 auto AdjustedResult =
B.buildFMul(Ty, MulExps, ResultScaleFactor, Flags);
3834 B.buildSelect(Dst, NeedsScaling, AdjustedResult, MulExps);
3842 const unsigned Flags =
MI.getFlags();
3845 LLT Ty =
MRI.getType(Dst);
3848 const bool IsExp10 =
MI.getOpcode() == TargetOpcode::G_FEXP10;
3856 MI.eraseFromParent();
3867 auto Ext =
B.buildFPExt(
F32,
X, Flags);
3870 B.buildFPTrunc(Dst, Lowered, Flags);
3871 MI.eraseFromParent();
3882 MI.eraseFromParent();
3910 const unsigned FlagsNoContract = Flags &
~MachineInstr::FmContract;
3913 if (ST.hasFastFMAF32()) {
3915 const float cc_exp = 0x1.4ae0bep-26f;
3916 const float c_exp10 = 0x1.a934f0p+1f;
3917 const float cc_exp10 = 0x1.2f346ep-24f;
3919 auto C =
B.buildFConstant(Ty, IsExp10 ? c_exp10 : c_exp);
3920 PH =
B.buildFMul(Ty,
X,
C, Flags).getReg(0);
3921 auto NegPH =
B.buildFNeg(Ty, PH, Flags);
3922 auto FMA0 =
B.buildFMA(Ty,
X,
C, NegPH, Flags);
3924 auto CC =
B.buildFConstant(Ty, IsExp10 ? cc_exp10 : cc_exp);
3925 PL =
B.buildFMA(Ty,
X, CC, FMA0, Flags).getReg(0);
3927 const float ch_exp = 0x1.714000p+0f;
3928 const float cl_exp = 0x1.47652ap-12f;
3930 const float ch_exp10 = 0x1.a92000p+1f;
3931 const float cl_exp10 = 0x1.4f0978p-11f;
3933 auto MaskConst =
B.buildConstant(Ty, 0xfffff000);
3934 auto XH =
B.buildAnd(Ty,
X, MaskConst);
3935 auto XL =
B.buildFSub(Ty,
X, XH, Flags);
3937 auto CH =
B.buildFConstant(Ty, IsExp10 ? ch_exp10 : ch_exp);
3938 PH =
B.buildFMul(Ty, XH,
CH, Flags).getReg(0);
3940 auto CL =
B.buildFConstant(Ty, IsExp10 ? cl_exp10 : cl_exp);
3941 auto XLCL =
B.buildFMul(Ty, XL, CL, Flags);
3944 getMad(
B, Ty, XL.getReg(0),
CH.getReg(0), XLCL.getReg(0), Flags);
3945 PL =
getMad(
B, Ty, XH.getReg(0), CL.getReg(0), Mad0, Flags);
3948 auto E =
B.buildIntrinsicRoundeven(Ty, PH, Flags);
3951 auto PHSubE =
B.buildFSub(Ty, PH, E, FlagsNoContract);
3952 auto A =
B.buildFAdd(Ty, PHSubE, PL, Flags);
3955 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3956 .addUse(
A.getReg(0))
3958 auto R =
B.buildFLdexp(Ty, Exp2, IntE, Flags);
3960 auto UnderflowCheckConst =
3961 B.buildFConstant(Ty, IsExp10 ? -0x1.66d3e8p+5f : -0x1.9d1da0p+6f);
3962 auto Zero =
B.buildFConstant(Ty, 0.0);
3966 R =
B.buildSelect(Ty, Underflow, Zero, R);
3969 auto OverflowCheckConst =
3970 B.buildFConstant(Ty, IsExp10 ? 0x1.344136p+5f : 0x1.62e430p+6f);
3975 R =
B.buildSelect(Ty, Overflow, Inf, R, Flags);
3978 B.buildCopy(Dst, R);
3979 MI.eraseFromParent();
3988 unsigned Flags =
MI.getFlags();
3989 LLT Ty =
B.getMRI()->getType(Dst);
3994 auto Log =
B.buildFLog2(
F32, Src0, Flags);
3995 auto Mul =
B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {
F32})
3996 .addUse(Log.getReg(0))
3999 B.buildFExp2(Dst,
Mul, Flags);
4000 }
else if (Ty == F16) {
4002 auto Log =
B.buildFLog2(F16, Src0, Flags);
4003 auto Ext0 =
B.buildFPExt(
F32, Log, Flags);
4004 auto Ext1 =
B.buildFPExt(
F32, Src1, Flags);
4005 auto Mul =
B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {
F32})
4006 .addUse(Ext0.getReg(0))
4007 .addUse(Ext1.getReg(0))
4009 B.buildFExp2(Dst,
B.buildFPTrunc(F16,
Mul), Flags);
4013 MI.eraseFromParent();
4021 ModSrc = SrcFNeg->getOperand(1).getReg();
4023 ModSrc = SrcFAbs->getOperand(1).getReg();
4025 ModSrc = SrcFAbs->getOperand(1).getReg();
4036 Register OrigSrc =
MI.getOperand(1).getReg();
4037 unsigned Flags =
MI.getFlags();
4039 "this should not have been custom lowered");
4049 auto Fract =
B.buildIntrinsic(Intrinsic::amdgcn_fract, {
F64})
4069 B.buildFMinNumIEEE(Min, Fract, Const, Flags);
4071 B.buildFMinNum(Min, Fract, Const, Flags);
4076 CorrectedFract =
B.buildSelect(
F64, IsNan, ModSrc, Min, Flags).getReg(0);
4079 auto NegFract =
B.buildFNeg(
F64, CorrectedFract, Flags);
4080 B.buildFAdd(Dst, OrigSrc, NegFract, Flags);
4082 MI.eraseFromParent();
4098 if (
MI.getOpcode() == AMDGPU::G_BUILD_VECTOR_TRUNC) {
4100 Src0 =
B.buildTrunc(
S16,
MI.getOperand(1).getReg()).getReg(0);
4101 Src1 =
B.buildTrunc(
S16,
MI.getOperand(2).getReg()).getReg(0);
4104 auto Merge =
B.buildMergeLikeInstr(
S32, {Src0, Src1});
4105 B.buildBitcast(Dst,
Merge);
4107 MI.eraseFromParent();
4124 bool UsePartialMad64_32,
4125 bool SeparateOddAlignedProducts)
const {
4140 auto getZero32 = [&]() ->
Register {
4142 Zero32 =
B.buildConstant(
S32, 0).getReg(0);
4145 auto getZero64 = [&]() ->
Register {
4147 Zero64 =
B.buildConstant(
S64, 0).getReg(0);
4152 for (
unsigned i = 0; i < Src0.
size(); ++i) {
4163 if (CarryIn.empty())
4166 bool HaveCarryOut =
true;
4168 if (CarryIn.size() == 1) {
4170 LocalAccum =
B.buildZExt(
S32, CarryIn[0]).getReg(0);
4174 CarryAccum = getZero32();
4176 CarryAccum =
B.buildZExt(
S32, CarryIn[0]).getReg(0);
4177 for (
unsigned i = 1; i + 1 < CarryIn.size(); ++i) {
4179 B.buildUAdde(
S32,
S1, CarryAccum, getZero32(), CarryIn[i])
4184 LocalAccum = getZero32();
4185 HaveCarryOut =
false;
4190 B.buildUAdde(
S32,
S1, CarryAccum, LocalAccum, CarryIn.back());
4191 LocalAccum =
Add.getReg(0);
4205 auto buildMadChain =
4208 assert((DstIndex + 1 < Accum.
size() && LocalAccum.size() == 2) ||
4209 (DstIndex + 1 >= Accum.
size() && LocalAccum.size() == 1));
4216 if (LocalAccum.size() == 1 &&
4217 (!UsePartialMad64_32 || !CarryIn.empty())) {
4220 unsigned j1 = DstIndex - j0;
4221 if (Src0KnownZeros[j0] || Src1KnownZeros[j1]) {
4225 auto Mul =
B.buildMul(
S32, Src0[j0], Src1[j1]);
4227 LocalAccum[0] =
Mul.getReg(0);
4229 if (CarryIn.empty()) {
4230 LocalAccum[0] =
B.buildAdd(
S32, LocalAccum[0],
Mul).getReg(0);
4233 B.buildUAdde(
S32,
S1, LocalAccum[0],
Mul, CarryIn.back())
4239 }
while (j0 <= DstIndex && (!UsePartialMad64_32 || !CarryIn.empty()));
4243 if (j0 <= DstIndex) {
4244 bool HaveSmallAccum =
false;
4247 if (LocalAccum[0]) {
4248 if (LocalAccum.size() == 1) {
4249 Tmp =
B.buildAnyExt(
S64, LocalAccum[0]).getReg(0);
4250 HaveSmallAccum =
true;
4251 }
else if (LocalAccum[1]) {
4252 Tmp =
B.buildMergeLikeInstr(
S64, LocalAccum).getReg(0);
4253 HaveSmallAccum =
false;
4255 Tmp =
B.buildZExt(
S64, LocalAccum[0]).getReg(0);
4256 HaveSmallAccum =
true;
4259 assert(LocalAccum.size() == 1 || !LocalAccum[1]);
4261 HaveSmallAccum =
true;
4265 unsigned j1 = DstIndex - j0;
4266 if (Src0KnownZeros[j0] || Src1KnownZeros[j1]) {
4270 auto Mad =
B.buildInstr(AMDGPU::G_AMDGPU_MAD_U64_U32, {
S64,
S1},
4271 {Src0[j0], Src1[j1], Tmp});
4272 Tmp = Mad.getReg(0);
4273 if (!HaveSmallAccum)
4274 CarryOut.push_back(Mad.getReg(1));
4275 HaveSmallAccum =
false;
4278 }
while (j0 <= DstIndex);
4280 auto Unmerge =
B.buildUnmerge(
S32, Tmp);
4281 LocalAccum[0] = Unmerge.getReg(0);
4282 if (LocalAccum.size() > 1)
4283 LocalAccum[1] = Unmerge.getReg(1);
4310 for (
unsigned i = 0; i <= Accum.
size() / 2; ++i) {
4311 Carry OddCarryIn = std::move(OddCarry);
4312 Carry EvenCarryIn = std::move(EvenCarry);
4317 if (2 * i < Accum.
size()) {
4318 auto LocalAccum = Accum.
drop_front(2 * i).take_front(2);
4319 EvenCarry = buildMadChain(LocalAccum, 2 * i, EvenCarryIn);
4324 if (!SeparateOddAlignedProducts) {
4325 auto LocalAccum = Accum.
drop_front(2 * i - 1).take_front(2);
4326 OddCarry = buildMadChain(LocalAccum, 2 * i - 1, OddCarryIn);
4328 bool IsHighest = 2 * i >= Accum.
size();
4331 .take_front(IsHighest ? 1 : 2);
4332 OddCarry = buildMadChain(LocalAccum, 2 * i - 1, OddCarryIn);
4338 Lo =
B.buildUAddo(
S32,
S1, Accum[2 * i - 1], SeparateOddOut[0]);
4340 Lo =
B.buildAdd(
S32, Accum[2 * i - 1], SeparateOddOut[0]);
4342 Lo =
B.buildUAdde(
S32,
S1, Accum[2 * i - 1], SeparateOddOut[0],
4345 Accum[2 * i - 1] =
Lo->getOperand(0).getReg();
4348 auto Hi =
B.buildUAdde(
S32,
S1, Accum[2 * i], SeparateOddOut[1],
4349 Lo->getOperand(1).getReg());
4350 Accum[2 * i] =
Hi.getReg(0);
4351 SeparateOddCarry =
Hi.getReg(1);
4358 if (
Register CarryOut = mergeCarry(Accum[2 * i - 1], OddCarryIn))
4359 EvenCarryIn.push_back(CarryOut);
4361 if (2 * i < Accum.
size()) {
4362 if (
Register CarryOut = mergeCarry(Accum[2 * i], EvenCarryIn))
4363 OddCarry.push_back(CarryOut);
4375 assert(ST.hasMad64_32());
4376 assert(
MI.getOpcode() == TargetOpcode::G_MUL);
4385 LLT Ty =
MRI.getType(DstReg);
4388 unsigned Size = Ty.getSizeInBits();
4389 if (ST.hasVectorMulU64() &&
Size == 64)
4392 unsigned NumParts =
Size / 32;
4404 const bool SeparateOddAlignedProducts = ST.hasFullRate64Ops();
4408 for (
unsigned i = 0; i < NumParts; ++i) {
4412 B.buildUnmerge(Src0Parts, Src0);
4413 B.buildUnmerge(Src1Parts, Src1);
4416 buildMultiply(Helper, AccumRegs, Src0Parts, Src1Parts, UsePartialMad64_32,
4417 SeparateOddAlignedProducts);
4419 B.buildMergeLikeInstr(DstReg, AccumRegs);
4420 MI.eraseFromParent();
4432 LLT DstTy =
MRI.getType(Dst);
4433 LLT SrcTy =
MRI.getType(Src);
4435 unsigned NewOpc =
MI.getOpcode() == AMDGPU::G_CTLZ
4436 ? AMDGPU::G_AMDGPU_FFBH_U32
4437 : AMDGPU::G_AMDGPU_FFBL_B32;
4438 auto Tmp =
B.buildInstr(NewOpc, {DstTy}, {Src});
4441 MI.eraseFromParent();
4450 LLT SrcTy =
MRI.getType(Src);
4451 TypeSize NumBits = SrcTy.getSizeInBits();
4455 auto ShiftAmt =
B.buildConstant(
S32, 32u - NumBits);
4456 auto Extend =
B.buildAnyExt(
S32, {Src}).
getReg(0u);
4457 auto Shift =
B.buildShl(
S32, Extend, ShiftAmt);
4458 auto Ctlz =
B.buildInstr(AMDGPU::G_AMDGPU_FFBH_U32, {
S32}, {Shift});
4459 B.buildTrunc(Dst, Ctlz);
4460 MI.eraseFromParent();
4466 if (
MI.getOpcode() != TargetOpcode::G_XOR)
4469 return ConstVal == -1;
4476 Register CondDef =
MI.getOperand(0).getReg();
4477 if (!
MRI.hasOneNonDBGUse(CondDef))
4485 if (!
MRI.hasOneNonDBGUse(NegatedCond))
4491 UseMI = &*
MRI.use_instr_nodbg_begin(NegatedCond);
4495 if (
UseMI->getParent() != Parent ||
UseMI->getOpcode() != AMDGPU::G_BRCOND)
4504 UncondBrTarget = &*NextMBB;
4506 if (
Next->getOpcode() != AMDGPU::G_BR)
4525 *ArgRC,
B.getDebugLoc(), ArgTy);
4529 const unsigned Mask = Arg->
getMask();
4537 auto ShiftAmt =
B.buildConstant(
S32, Shift);
4538 AndMaskSrc =
B.buildLShr(
S32, LiveIn, ShiftAmt).getReg(0);
4541 B.buildAnd(DstReg, AndMaskSrc,
B.buildConstant(
S32, Mask >> Shift));
4543 B.buildCopy(DstReg, LiveIn);
4553 if (!ST.hasClusters()) {
4556 MI.eraseFromParent();
4569 Register ClusterMaxIdXYZ =
MRI.createGenericVirtualRegister(
S32);
4570 Register ClusterWorkGroupIdXYZ =
MRI.createGenericVirtualRegister(
S32);
4576 auto One =
B.buildConstant(
S32, 1);
4577 auto ClusterSizeXYZ =
B.buildAdd(
S32, ClusterMaxIdXYZ, One);
4578 auto GlobalIdXYZ =
B.buildAdd(
S32, ClusterWorkGroupIdXYZ,
4579 B.buildMul(
S32, ClusterIdXYZ, ClusterSizeXYZ));
4586 B.buildCopy(DstReg, GlobalIdXYZ);
4587 MI.eraseFromParent();
4591 B.buildCopy(DstReg, ClusterIdXYZ);
4592 MI.eraseFromParent();
4597 unsigned ClusterIdField = HwregEncoding::encode(ID_IB_STS2, 6, 4);
4599 MRI.setRegClass(ClusterId, &AMDGPU::SReg_32RegClass);
4600 B.buildInstr(AMDGPU::S_GETREG_B32_const)
4602 .addImm(ClusterIdField);
4603 auto Zero =
B.buildConstant(
S32, 0);
4606 B.buildSelect(DstReg, NoClusters, ClusterIdXYZ, GlobalIdXYZ);
4607 MI.eraseFromParent();
4649 auto LoadConstant = [&](
unsigned N) {
4650 B.buildConstant(DstReg,
N);
4654 if (ST.hasArchitectedSGPRs() &&
4661 Arg = &WorkGroupIDX;
4662 ArgRC = &AMDGPU::SReg_32RegClass;
4666 Arg = &WorkGroupIDY;
4667 ArgRC = &AMDGPU::SReg_32RegClass;
4671 Arg = &WorkGroupIDZ;
4672 ArgRC = &AMDGPU::SReg_32RegClass;
4676 if (HasFixedDims && ClusterDims.
getDims()[0] == 1)
4677 return LoadConstant(0);
4678 Arg = &ClusterWorkGroupIDX;
4679 ArgRC = &AMDGPU::SReg_32RegClass;
4683 if (HasFixedDims && ClusterDims.
getDims()[1] == 1)
4684 return LoadConstant(0);
4685 Arg = &ClusterWorkGroupIDY;
4686 ArgRC = &AMDGPU::SReg_32RegClass;
4690 if (HasFixedDims && ClusterDims.
getDims()[2] == 1)
4691 return LoadConstant(0);
4692 Arg = &ClusterWorkGroupIDZ;
4693 ArgRC = &AMDGPU::SReg_32RegClass;
4698 return LoadConstant(ClusterDims.
getDims()[0] - 1);
4699 Arg = &ClusterWorkGroupMaxIDX;
4700 ArgRC = &AMDGPU::SReg_32RegClass;
4705 return LoadConstant(ClusterDims.
getDims()[1] - 1);
4706 Arg = &ClusterWorkGroupMaxIDY;
4707 ArgRC = &AMDGPU::SReg_32RegClass;
4712 return LoadConstant(ClusterDims.
getDims()[2] - 1);
4713 Arg = &ClusterWorkGroupMaxIDZ;
4714 ArgRC = &AMDGPU::SReg_32RegClass;
4718 Arg = &ClusterWorkGroupMaxFlatID;
4719 ArgRC = &AMDGPU::SReg_32RegClass;
4734 return LoadConstant(0);
4739 B.buildUndef(DstReg);
4743 if (!Arg->isRegister() || !Arg->getRegister().isValid())
4755 MI.eraseFromParent();
4761 B.buildConstant(
MI.getOperand(0).getReg(),
C);
4762 MI.eraseFromParent();
4769 unsigned MaxID = ST.getMaxWorkitemID(
B.getMF().getFunction(), Dim);
4783 B.buildUndef(DstReg);
4784 MI.eraseFromParent();
4788 if (Arg->isMasked()) {
4802 MI.eraseFromParent();
4817 Register KernArgReg =
B.getMRI()->createGenericVirtualRegister(PtrTy);
4826 return B.buildObjectPtrOffset(PtrTy, KernArgReg, COffset).getReg(0);
4834 Align Alignment)
const {
4838 "unexpected kernarg parameter type");
4845 MI.eraseFromParent();
4853 LLT DstTy =
MRI.getType(Dst);
4880 auto FloatY =
B.buildUITOFP(
S32,
Y);
4881 auto RcpIFlag =
B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {
S32}, {FloatY});
4883 auto ScaledY =
B.buildFMul(
S32, RcpIFlag, Scale);
4884 auto Z =
B.buildFPTOUI(
S32, ScaledY);
4887 auto NegY =
B.buildSub(
S32,
B.buildConstant(
S32, 0),
Y);
4888 auto NegYZ =
B.buildMul(
S32, NegY, Z);
4889 Z =
B.buildAdd(
S32, Z,
B.buildUMulH(
S32, Z, NegYZ));
4892 auto Q =
B.buildUMulH(
S32,
X, Z);
4893 auto R =
B.buildSub(
S32,
X,
B.buildMul(
S32, Q,
Y));
4896 auto One =
B.buildConstant(
S32, 1);
4899 Q =
B.buildSelect(
S32,
Cond,
B.buildAdd(
S32, Q, One), Q);
4905 B.buildSelect(DstDivReg,
Cond,
B.buildAdd(
S32, Q, One), Q);
4908 B.buildSelect(DstRemReg,
Cond,
B.buildSub(
S32, R,
Y), R);
4927 auto Unmerge =
B.buildUnmerge(
S32, Val);
4929 auto CvtLo =
B.buildUITOFP(
S32, Unmerge.getReg(0));
4930 auto CvtHi =
B.buildUITOFP(
S32, Unmerge.getReg(1));
4932 auto Mad =
B.buildFMAD(
4936 auto Rcp =
B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {
S32}, {Mad});
4937 auto Mul1 =
B.buildFMul(
4941 auto Mul2 =
B.buildFMul(
4943 auto Trunc =
B.buildIntrinsicTrunc(
S32, Mul2);
4946 auto Mad2 =
B.buildFMAD(
4950 auto ResultLo =
B.buildFPTOUI(
S32, Mad2);
4951 auto ResultHi =
B.buildFPTOUI(
S32, Trunc);
4953 return {ResultLo.getReg(0), ResultHi.getReg(0)};
4968 auto Rcp =
B.buildMergeLikeInstr(
S64, {RcpLo, RcpHi});
4970 auto Zero64 =
B.buildConstant(
S64, 0);
4971 auto NegDenom =
B.buildSub(
S64, Zero64, Denom);
4973 auto MulLo1 =
B.buildMul(
S64, NegDenom, Rcp);
4974 auto MulHi1 =
B.buildUMulH(
S64, Rcp, MulLo1);
4976 auto UnmergeMulHi1 =
B.buildUnmerge(
S32, MulHi1);
4977 Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
4978 Register MulHi1_Hi = UnmergeMulHi1.getReg(1);
4980 auto Add1_Lo =
B.buildUAddo(
S32,
S1, RcpLo, MulHi1_Lo);
4981 auto Add1_Hi =
B.buildUAdde(
S32,
S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
4982 auto Add1 =
B.buildMergeLikeInstr(
S64, {Add1_Lo, Add1_Hi});
4984 auto MulLo2 =
B.buildMul(
S64, NegDenom, Add1);
4985 auto MulHi2 =
B.buildUMulH(
S64, Add1, MulLo2);
4986 auto UnmergeMulHi2 =
B.buildUnmerge(
S32, MulHi2);
4987 Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
4988 Register MulHi2_Hi = UnmergeMulHi2.getReg(1);
4990 auto Zero32 =
B.buildConstant(
S32, 0);
4991 auto Add2_Lo =
B.buildUAddo(
S32,
S1, Add1_Lo, MulHi2_Lo);
4992 auto Add2_Hi =
B.buildUAdde(
S32,
S1, Add1_Hi, MulHi2_Hi, Add2_Lo.getReg(1));
4993 auto Add2 =
B.buildMergeLikeInstr(
S64, {Add2_Lo, Add2_Hi});
4995 auto UnmergeNumer =
B.buildUnmerge(
S32, Numer);
4996 Register NumerLo = UnmergeNumer.getReg(0);
4997 Register NumerHi = UnmergeNumer.getReg(1);
4999 auto MulHi3 =
B.buildUMulH(
S64, Numer, Add2);
5000 auto Mul3 =
B.buildMul(
S64, Denom, MulHi3);
5001 auto UnmergeMul3 =
B.buildUnmerge(
S32, Mul3);
5002 Register Mul3_Lo = UnmergeMul3.getReg(0);
5003 Register Mul3_Hi = UnmergeMul3.getReg(1);
5004 auto Sub1_Lo =
B.buildUSubo(
S32,
S1, NumerLo, Mul3_Lo);
5005 auto Sub1_Hi =
B.buildUSube(
S32,
S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
5006 auto Sub1_Mi =
B.buildSub(
S32, NumerHi, Mul3_Hi);
5007 auto Sub1 =
B.buildMergeLikeInstr(
S64, {Sub1_Lo, Sub1_Hi});
5009 auto UnmergeDenom =
B.buildUnmerge(
S32, Denom);
5010 Register DenomLo = UnmergeDenom.getReg(0);
5011 Register DenomHi = UnmergeDenom.getReg(1);
5014 auto C1 =
B.buildSExt(
S32, CmpHi);
5017 auto C2 =
B.buildSExt(
S32, CmpLo);
5020 auto C3 =
B.buildSelect(
S32, CmpEq, C2, C1);
5027 auto Sub2_Lo =
B.buildUSubo(
S32,
S1, Sub1_Lo, DenomLo);
5028 auto Sub2_Mi =
B.buildUSube(
S32,
S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
5029 auto Sub2_Hi =
B.buildUSube(
S32,
S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
5030 auto Sub2 =
B.buildMergeLikeInstr(
S64, {Sub2_Lo, Sub2_Hi});
5032 auto One64 =
B.buildConstant(
S64, 1);
5033 auto Add3 =
B.buildAdd(
S64, MulHi3, One64);
5039 auto C6 =
B.buildSelect(
5043 auto Add4 =
B.buildAdd(
S64, Add3, One64);
5044 auto Sub3_Lo =
B.buildUSubo(
S32,
S1, Sub2_Lo, DenomLo);
5046 auto Sub3_Mi =
B.buildUSube(
S32,
S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
5047 auto Sub3_Hi =
B.buildUSube(
S32,
S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
5048 auto Sub3 =
B.buildMergeLikeInstr(
S64, {Sub3_Lo, Sub3_Hi});
5054 auto Sel1 =
B.buildSelect(
5061 auto Sel2 =
B.buildSelect(
5072 switch (
MI.getOpcode()) {
5075 case AMDGPU::G_UDIV: {
5076 DstDivReg =
MI.getOperand(0).getReg();
5079 case AMDGPU::G_UREM: {
5080 DstRemReg =
MI.getOperand(0).getReg();
5083 case AMDGPU::G_UDIVREM: {
5084 DstDivReg =
MI.getOperand(0).getReg();
5085 DstRemReg =
MI.getOperand(1).getReg();
5092 const unsigned FirstSrcOpIdx =
MI.getNumExplicitDefs();
5093 Register Num =
MI.getOperand(FirstSrcOpIdx).getReg();
5094 Register Den =
MI.getOperand(FirstSrcOpIdx + 1).getReg();
5095 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
5104 MI.eraseFromParent();
5114 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
5115 if (Ty !=
S32 && Ty !=
S64)
5118 const unsigned FirstSrcOpIdx =
MI.getNumExplicitDefs();
5119 Register LHS =
MI.getOperand(FirstSrcOpIdx).getReg();
5120 Register RHS =
MI.getOperand(FirstSrcOpIdx + 1).getReg();
5122 auto SignBitOffset =
B.buildConstant(
S32, Ty.getSizeInBits() - 1);
5123 auto LHSign =
B.buildAShr(Ty, LHS, SignBitOffset);
5124 auto RHSign =
B.buildAShr(Ty, RHS, SignBitOffset);
5126 LHS =
B.buildAdd(Ty, LHS, LHSign).getReg(0);
5127 RHS =
B.buildAdd(Ty, RHS, RHSign).getReg(0);
5129 LHS =
B.buildXor(Ty, LHS, LHSign).getReg(0);
5130 RHS =
B.buildXor(Ty, RHS, RHSign).getReg(0);
5132 Register DstDivReg, DstRemReg, TmpDivReg, TmpRemReg;
5133 switch (
MI.getOpcode()) {
5136 case AMDGPU::G_SDIV: {
5137 DstDivReg =
MI.getOperand(0).getReg();
5138 TmpDivReg =
MRI.createGenericVirtualRegister(Ty);
5141 case AMDGPU::G_SREM: {
5142 DstRemReg =
MI.getOperand(0).getReg();
5143 TmpRemReg =
MRI.createGenericVirtualRegister(Ty);
5146 case AMDGPU::G_SDIVREM: {
5147 DstDivReg =
MI.getOperand(0).getReg();
5148 DstRemReg =
MI.getOperand(1).getReg();
5149 TmpDivReg =
MRI.createGenericVirtualRegister(Ty);
5150 TmpRemReg =
MRI.createGenericVirtualRegister(Ty);
5161 auto Sign =
B.buildXor(Ty, LHSign, RHSign).getReg(0);
5162 auto SignXor =
B.buildXor(Ty, TmpDivReg, Sign).getReg(0);
5163 B.buildSub(DstDivReg, SignXor, Sign);
5167 auto Sign = LHSign.getReg(0);
5168 auto SignXor =
B.buildXor(Ty, TmpRemReg, Sign).getReg(0);
5169 B.buildSub(DstRemReg, SignXor, Sign);
5172 MI.eraseFromParent();
5183 LLT ResTy =
MRI.getType(Res);
5188 if (!AllowInaccurateRcp && ResTy !=
LLT::scalar(16))
5199 if (CLHS->isExactlyValue(1.0)) {
5200 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res)
5204 MI.eraseFromParent();
5209 if (CLHS->isExactlyValue(-1.0)) {
5210 auto FNeg =
B.buildFNeg(ResTy, RHS, Flags);
5211 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res)
5212 .addUse(FNeg.getReg(0))
5215 MI.eraseFromParent();
5222 if (!AllowInaccurateRcp && (ResTy !=
LLT::scalar(16) ||
5227 auto RCP =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy})
5230 B.buildFMul(Res, LHS, RCP, Flags);
5232 MI.eraseFromParent();
5243 LLT ResTy =
MRI.getType(Res);
5247 if (!AllowInaccurateRcp)
5250 auto NegY =
B.buildFNeg(ResTy,
Y);
5251 auto One =
B.buildFConstant(ResTy, 1.0);
5253 auto R =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy})
5257 auto Tmp0 =
B.buildFMA(ResTy, NegY, R, One);
5258 R =
B.buildFMA(ResTy, Tmp0, R, R);
5260 auto Tmp1 =
B.buildFMA(ResTy, NegY, R, One);
5261 R =
B.buildFMA(ResTy, Tmp1, R, R);
5263 auto Ret =
B.buildFMul(ResTy,
X, R);
5264 auto Tmp2 =
B.buildFMA(ResTy, NegY, Ret,
X);
5266 B.buildFMA(Res, Tmp2, R, Ret);
5267 MI.eraseFromParent();
5299 auto LHSExt =
B.buildFPExt(
S32, LHS, Flags);
5300 auto RHSExt =
B.buildFPExt(
S32, RHS, Flags);
5301 auto NegRHSExt =
B.buildFNeg(
S32, RHSExt);
5302 auto Rcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5303 .addUse(RHSExt.getReg(0))
5305 auto Quot =
B.buildFMul(
S32, LHSExt, Rcp, Flags);
5307 if (ST.hasMadMacF32Insts()) {
5308 Err =
B.buildFMAD(
S32, NegRHSExt, Quot, LHSExt, Flags);
5309 Quot =
B.buildFMAD(
S32, Err, Rcp, Quot, Flags);
5310 Err =
B.buildFMAD(
S32, NegRHSExt, Quot, LHSExt, Flags);
5312 Err =
B.buildFMA(
S32, NegRHSExt, Quot, LHSExt, Flags);
5313 Quot =
B.buildFMA(
S32, Err, Rcp, Quot, Flags);
5314 Err =
B.buildFMA(
S32, NegRHSExt, Quot, LHSExt, Flags);
5316 auto Tmp =
B.buildFMul(
S32, Err, Rcp, Flags);
5317 Tmp =
B.buildAnd(
S32, Tmp,
B.buildConstant(
S32, 0xff800000));
5318 Quot =
B.buildFAdd(
S32, Tmp, Quot, Flags);
5319 auto RDst =
B.buildFPTrunc(
S16, Quot, Flags);
5320 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res)
5321 .addUse(RDst.getReg(0))
5326 MI.eraseFromParent();
5339 unsigned SPDenormMode =
5342 if (ST.hasDenormModeInst()) {
5344 uint32_t DPDenormModeDefault =
Mode.fpDenormModeDPValue();
5346 uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
5347 B.buildInstr(AMDGPU::S_DENORM_MODE)
5348 .addImm(NewDenormModeValue);
5351 B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
5352 .addImm(SPDenormMode)
5374 auto One =
B.buildFConstant(
S32, 1.0f);
5376 auto DenominatorScaled =
5377 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S32,
S1})
5382 auto NumeratorScaled =
5383 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S32,
S1})
5389 auto ApproxRcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5390 .addUse(DenominatorScaled.getReg(0))
5392 auto NegDivScale0 =
B.buildFNeg(
S32, DenominatorScaled, Flags);
5395 const bool HasDynamicDenormals =
5400 if (!PreservesDenormals) {
5401 if (HasDynamicDenormals) {
5402 SavedSPDenormMode =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5403 B.buildInstr(AMDGPU::S_GETREG_B32)
5404 .addDef(SavedSPDenormMode)
5410 auto Fma0 =
B.buildFMA(
S32, NegDivScale0, ApproxRcp, One, Flags);
5411 auto Fma1 =
B.buildFMA(
S32, Fma0, ApproxRcp, ApproxRcp, Flags);
5412 auto Mul =
B.buildFMul(
S32, NumeratorScaled, Fma1, Flags);
5413 auto Fma2 =
B.buildFMA(
S32, NegDivScale0,
Mul, NumeratorScaled, Flags);
5414 auto Fma3 =
B.buildFMA(
S32, Fma2, Fma1,
Mul, Flags);
5415 auto Fma4 =
B.buildFMA(
S32, NegDivScale0, Fma3, NumeratorScaled, Flags);
5417 if (!PreservesDenormals) {
5418 if (HasDynamicDenormals) {
5419 assert(SavedSPDenormMode);
5420 B.buildInstr(AMDGPU::S_SETREG_B32)
5421 .addReg(SavedSPDenormMode)
5427 auto Fmas =
B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {
S32})
5428 .addUse(Fma4.getReg(0))
5429 .addUse(Fma1.getReg(0))
5430 .addUse(Fma3.getReg(0))
5431 .addUse(NumeratorScaled.getReg(1))
5434 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res)
5435 .addUse(Fmas.getReg(0))
5440 MI.eraseFromParent();
5459 auto One =
B.buildFConstant(
S64, 1.0);
5461 auto DivScale0 =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S64,
S1})
5467 auto NegDivScale0 =
B.buildFNeg(
S64, DivScale0.getReg(0), Flags);
5469 auto Rcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S64})
5470 .addUse(DivScale0.getReg(0))
5473 auto Fma0 =
B.buildFMA(
S64, NegDivScale0, Rcp, One, Flags);
5474 auto Fma1 =
B.buildFMA(
S64, Rcp, Fma0, Rcp, Flags);
5475 auto Fma2 =
B.buildFMA(
S64, NegDivScale0, Fma1, One, Flags);
5477 auto DivScale1 =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S64,
S1})
5483 auto Fma3 =
B.buildFMA(
S64, Fma1, Fma2, Fma1, Flags);
5484 auto Mul =
B.buildFMul(
S64, DivScale1.getReg(0), Fma3, Flags);
5485 auto Fma4 =
B.buildFMA(
S64, NegDivScale0,
Mul, DivScale1.getReg(0), Flags);
5488 if (!ST.hasUsableDivScaleConditionOutput()) {
5494 auto NumUnmerge =
B.buildUnmerge(
S32, LHS);
5495 auto DenUnmerge =
B.buildUnmerge(
S32, RHS);
5496 auto Scale0Unmerge =
B.buildUnmerge(
S32, DivScale0);
5497 auto Scale1Unmerge =
B.buildUnmerge(
S32, DivScale1);
5500 Scale1Unmerge.getReg(1));
5502 Scale0Unmerge.getReg(1));
5503 Scale =
B.buildXor(
S1, CmpNum, CmpDen).getReg(0);
5505 Scale = DivScale1.getReg(1);
5508 auto Fmas =
B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {
S64})
5509 .addUse(Fma4.getReg(0))
5510 .addUse(Fma3.getReg(0))
5511 .addUse(
Mul.getReg(0))
5515 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup,
ArrayRef(Res))
5516 .addUse(Fmas.getReg(0))
5521 MI.eraseFromParent();
5533 LLT Ty =
MRI.getType(Res0);
5536 auto Mant =
B.buildIntrinsic(Intrinsic::amdgcn_frexp_mant, {Ty})
5539 auto Exp =
B.buildIntrinsic(Intrinsic::amdgcn_frexp_exp, {InstrExpTy})
5543 if (ST.hasFractBug()) {
5544 auto Fabs =
B.buildFAbs(Ty, Val);
5548 auto Zero =
B.buildConstant(InstrExpTy, 0);
5549 Exp =
B.buildSelect(InstrExpTy, IsFinite, Exp, Zero);
5550 Mant =
B.buildSelect(Ty, IsFinite, Mant, Val);
5553 B.buildCopy(Res0, Mant);
5554 B.buildSExtOrTrunc(Res1, Exp);
5556 MI.eraseFromParent();
5571 auto Abs =
B.buildFAbs(
S32, RHS, Flags);
5574 auto C0 =
B.buildFConstant(
S32, 0x1p+96f);
5575 auto C1 =
B.buildFConstant(
S32, 0x1p-32f);
5576 auto C2 =
B.buildFConstant(
S32, 1.0f);
5579 auto Sel =
B.buildSelect(
S32, CmpRes, C1, C2, Flags);
5581 auto Mul0 =
B.buildFMul(
S32, RHS, Sel, Flags);
5583 auto RCP =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5584 .addUse(Mul0.getReg(0))
5587 auto Mul1 =
B.buildFMul(
S32, LHS, RCP, Flags);
5589 B.buildFMul(Res, Sel, Mul1, Flags);
5591 MI.eraseFromParent();
5600 unsigned Flags =
MI.getFlags();
5601 assert(!ST.has16BitInsts());
5603 auto Ext =
B.buildFPExt(
F32,
MI.getOperand(1), Flags);
5604 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_sqrt, {
F32})
5605 .addUse(Ext.getReg(0))
5607 B.buildFPTrunc(
MI.getOperand(0),
Log2, Flags);
5608 MI.eraseFromParent();
5618 const unsigned Flags =
MI.getFlags();
5627 MI.eraseFromParent();
5631 auto ScaleThreshold =
B.buildFConstant(
F32, 0x1.0p-96f);
5633 auto ScaleUpFactor =
B.buildFConstant(
F32, 0x1.0p+32f);
5634 auto ScaledX =
B.buildFMul(
F32,
X, ScaleUpFactor, Flags);
5635 auto SqrtX =
B.buildSelect(
F32, NeedScale, ScaledX,
X, Flags);
5640 .addUse(SqrtX.getReg(0))
5643 auto NegOne =
B.buildConstant(I32, -1);
5644 auto SqrtSNextDown =
B.buildAdd(I32, SqrtS, NegOne);
5646 auto NegSqrtSNextDown =
B.buildFNeg(
F32, SqrtSNextDown, Flags);
5647 auto SqrtVP =
B.buildFMA(
F32, NegSqrtSNextDown, SqrtS, SqrtX, Flags);
5649 auto PosOne =
B.buildConstant(I32, 1);
5650 auto SqrtSNextUp =
B.buildAdd(I32, SqrtS, PosOne);
5652 auto NegSqrtSNextUp =
B.buildFNeg(
F32, SqrtSNextUp, Flags);
5653 auto SqrtVS =
B.buildFMA(
F32, NegSqrtSNextUp, SqrtS, SqrtX, Flags);
5655 auto Zero =
B.buildFConstant(
F32, 0.0f);
5659 B.buildSelect(
F32, SqrtVPLE0, SqrtSNextDown, SqrtS, Flags).getReg(0);
5663 B.buildSelect(
F32, SqrtVPVSGT0, SqrtSNextUp, SqrtS, Flags).getReg(0);
5666 B.buildIntrinsic(Intrinsic::amdgcn_rsq, {
F32}).addReg(SqrtX.getReg(0));
5667 B.buildFMul(SqrtS, SqrtX, SqrtR, Flags);
5669 auto Half =
B.buildFConstant(
F32, 0.5f);
5670 auto SqrtH =
B.buildFMul(
F32, SqrtR, Half, Flags);
5671 auto NegSqrtH =
B.buildFNeg(
F32, SqrtH, Flags);
5672 auto SqrtE =
B.buildFMA(
F32, NegSqrtH, SqrtS, Half, Flags);
5673 SqrtH =
B.buildFMA(
F32, SqrtH, SqrtE, SqrtH, Flags);
5674 SqrtS =
B.buildFMA(
F32, SqrtS, SqrtE, SqrtS, Flags).getReg(0);
5675 auto NegSqrtS =
B.buildFNeg(
F32, SqrtS, Flags);
5676 auto SqrtD =
B.buildFMA(
F32, NegSqrtS, SqrtS, SqrtX, Flags);
5677 SqrtS =
B.buildFMA(
F32, SqrtD, SqrtH, SqrtS, Flags).getReg(0);
5680 auto ScaleDownFactor =
B.buildFConstant(
F32, 0x1.0p-16f);
5682 auto ScaledDown =
B.buildFMul(
F32, SqrtS, ScaleDownFactor, Flags);
5684 SqrtS =
B.buildSelect(
F32, NeedScale, ScaledDown, SqrtS, Flags).getReg(0);
5687 B.buildSelect(Dst, IsZeroOrInf, SqrtX, SqrtS, Flags);
5689 MI.eraseFromParent();
5721 assert(
MRI.getType(Dst) ==
F64 &&
"only expect to lower f64 sqrt");
5724 unsigned Flags =
MI.getFlags();
5726 auto ScaleConstant =
B.buildFConstant(
F64, 0x1.0p-767);
5728 auto ZeroInt =
B.buildConstant(
S32, 0);
5732 auto ScaleUpFactor =
B.buildConstant(
S32, 256);
5733 auto ScaleUp =
B.buildSelect(
S32, Scaling, ScaleUpFactor, ZeroInt);
5734 auto SqrtX =
B.buildFLdexp(
F64,
X, ScaleUp, Flags);
5737 B.buildIntrinsic(Intrinsic::amdgcn_rsq, {
F64}).addReg(SqrtX.getReg(0));
5739 auto Half =
B.buildFConstant(
F64, 0.5);
5740 auto SqrtH0 =
B.buildFMul(
F64, SqrtY, Half);
5741 auto SqrtS0 =
B.buildFMul(
F64, SqrtX, SqrtY);
5743 auto NegSqrtH0 =
B.buildFNeg(
F64, SqrtH0);
5744 auto SqrtR0 =
B.buildFMA(
F64, NegSqrtH0, SqrtS0, Half);
5746 auto SqrtS1 =
B.buildFMA(
F64, SqrtS0, SqrtR0, SqrtS0);
5747 auto SqrtH1 =
B.buildFMA(
F64, SqrtH0, SqrtR0, SqrtH0);
5749 auto NegSqrtS1 =
B.buildFNeg(
F64, SqrtS1);
5750 auto SqrtD0 =
B.buildFMA(
F64, NegSqrtS1, SqrtS1, SqrtX);
5752 auto SqrtS2 =
B.buildFMA(
F64, SqrtD0, SqrtH1, SqrtS1);
5754 auto NegSqrtS2 =
B.buildFNeg(
F64, SqrtS2);
5755 auto SqrtD1 =
B.buildFMA(
F64, NegSqrtS2, SqrtS2, SqrtX);
5757 auto SqrtRet =
B.buildFMA(
F64, SqrtD1, SqrtH1, SqrtS2);
5760 auto ScaleDownFactor =
B.buildConstant(
S32, -128);
5761 auto ScaleDown =
B.buildSelect(
S32, Scaling, ScaleDownFactor, ZeroInt);
5762 SqrtRet =
B.buildFLdexp(
F64, SqrtRet, ScaleDown, Flags);
5771 B.buildSelect(Dst, IsZeroOrInf, SqrtX, SqrtRet, Flags);
5773 MI.eraseFromParent();
5780 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
5804 auto Flags =
MI.getFlags();
5806 LLT Ty =
MRI.getType(Dst);
5816 auto Rsq =
B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty})
5826 auto ClampMax = UseIEEE ?
B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) :
5827 B.buildFMinNum(Ty, Rsq, MaxFlt, Flags);
5832 B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags);
5834 B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags);
5835 MI.eraseFromParent();
5847 bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 ||
5848 IID == Intrinsic::amdgcn_permlanex16;
5849 bool IsSetInactive = IID == Intrinsic::amdgcn_set_inactive ||
5850 IID == Intrinsic::amdgcn_set_inactive_chain_arg;
5854 auto LaneOp =
B.buildIntrinsic(IID, {VT}).addUse(Src0);
5856 case Intrinsic::amdgcn_readfirstlane:
5857 case Intrinsic::amdgcn_permlane64:
5858 return LaneOp.getReg(0);
5859 case Intrinsic::amdgcn_readlane:
5860 case Intrinsic::amdgcn_set_inactive:
5861 case Intrinsic::amdgcn_set_inactive_chain_arg:
5862 return LaneOp.addUse(Src1).getReg(0);
5863 case Intrinsic::amdgcn_writelane:
5864 return LaneOp.addUse(Src1).addUse(Src2).getReg(0);
5865 case Intrinsic::amdgcn_permlane16:
5866 case Intrinsic::amdgcn_permlanex16: {
5868 int64_t Src4 =
MI.getOperand(6).getImm();
5869 int64_t Src5 =
MI.getOperand(7).getImm();
5870 return LaneOp.addUse(Src1)
5877 case Intrinsic::amdgcn_mov_dpp8:
5878 return LaneOp.addImm(
MI.getOperand(3).getImm()).getReg(0);
5879 case Intrinsic::amdgcn_update_dpp:
5880 return LaneOp.addUse(Src1)
5881 .addImm(
MI.getOperand(4).getImm())
5882 .addImm(
MI.getOperand(5).getImm())
5883 .addImm(
MI.getOperand(6).getImm())
5884 .addImm(
MI.getOperand(7).getImm())
5894 if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane ||
5895 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
5896 Src1 =
MI.getOperand(3).getReg();
5897 if (IID == Intrinsic::amdgcn_writelane || IsPermLane16) {
5898 Src2 =
MI.getOperand(4).getReg();
5902 LLT Ty =
MRI.getType(DstReg);
5903 unsigned Size = Ty.getSizeInBits();
5905 unsigned SplitSize = 32;
5906 if (IID == Intrinsic::amdgcn_update_dpp && (
Size % 64 == 0) &&
5907 ST.hasDPALU_DPP() &&
5911 if (
Size == SplitSize) {
5917 Src0 =
B.buildAnyExt(
S32, Src0).getReg(0);
5919 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5922 if (IID == Intrinsic::amdgcn_writelane)
5925 Register LaneOpDst = createLaneOp(Src0, Src1, Src2,
S32);
5926 B.buildTrunc(DstReg, LaneOpDst);
5927 MI.eraseFromParent();
5931 if (
Size % SplitSize != 0)
5935 bool NeedsBitcast =
false;
5936 if (Ty.isVector()) {
5939 if (EltSize == SplitSize) {
5940 PartialResTy = EltTy;
5941 }
else if (EltSize == 16 || EltSize == 32) {
5942 unsigned NElem = SplitSize / EltSize;
5946 NeedsBitcast =
true;
5951 unsigned NumParts =
Size / SplitSize;
5955 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5956 Src1Parts =
B.buildUnmerge(PartialResTy, Src1);
5958 if (IID == Intrinsic::amdgcn_writelane)
5959 Src2Parts =
B.buildUnmerge(PartialResTy, Src2);
5961 for (
unsigned i = 0; i < NumParts; ++i) {
5962 Src0 = Src0Parts.
getReg(i);
5964 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5965 Src1 = Src1Parts.
getReg(i);
5967 if (IID == Intrinsic::amdgcn_writelane)
5968 Src2 = Src2Parts.
getReg(i);
5970 PartialRes.
push_back(createLaneOp(Src0, Src1, Src2, PartialResTy));
5974 B.buildBitcast(DstReg,
B.buildMergeLikeInstr(
5977 B.buildMergeLikeInstr(DstReg, PartialRes);
5979 MI.eraseFromParent();
5987 ST.getTargetLowering()->getImplicitParameterOffset(
5989 LLT DstTy =
MRI.getType(DstReg);
5992 Register KernargPtrReg =
MRI.createGenericVirtualRegister(DstTy);
5997 B.buildObjectPtrOffset(DstReg, KernargPtrReg,
5998 B.buildConstant(IdxTy,
Offset).getReg(0));
6009 Register Pointer =
MI.getOperand(2).getReg();
6011 Register NumRecords =
MI.getOperand(4).getReg();
6017 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6019 auto ExtStride =
B.buildAnyExt(
S32, Stride);
6021 if (ST.has45BitNumRecordsBufferResource()) {
6026 auto PointerInt =
B.buildPtrToInt(PtrIntTy, Pointer);
6027 auto ExtPointer =
B.buildAnyExtOrTrunc(
S64, PointerInt);
6028 auto NumRecordsLHS =
B.buildShl(
S64, NumRecords,
B.buildConstant(
S32, 57));
6029 Register LowHalf =
B.buildOr(
S64, ExtPointer, NumRecordsLHS).getReg(0);
6033 auto NumRecordsRHS =
B.buildLShr(
S64, NumRecords,
B.buildConstant(
S32, 7));
6034 auto ShiftedStride =
B.buildShl(
S32, ExtStride,
B.buildConstant(
S32, 12));
6035 auto ExtShiftedStride =
6036 B.buildMergeValues(
S64, {Zero, ShiftedStride.getReg(0)});
6037 auto ShiftedFlags =
B.buildShl(
S32, Flags,
B.buildConstant(
S32, 28));
6038 auto ExtShiftedFlags =
6039 B.buildMergeValues(
S64, {Zero, ShiftedFlags.getReg(0)});
6040 auto CombinedFields =
B.buildOr(
S64, NumRecordsRHS, ExtShiftedStride);
6042 B.buildOr(
S64, CombinedFields, ExtShiftedFlags).getReg(0);
6043 B.buildMergeValues(Result, {LowHalf, HighHalf});
6045 NumRecords =
B.buildTrunc(
S32, NumRecords).getReg(0);
6046 auto Unmerge =
B.buildUnmerge(
S32, Pointer);
6047 auto LowHalf = Unmerge.getReg(0);
6048 auto HighHalf = Unmerge.getReg(1);
6050 auto AndMask =
B.buildConstant(
S32, 0x0000ffff);
6051 auto Masked =
B.buildAnd(
S32, HighHalf, AndMask);
6052 auto ShiftConst =
B.buildConstant(
S32, 16);
6053 auto ShiftedStride =
B.buildShl(
S32, ExtStride, ShiftConst);
6054 auto NewHighHalf =
B.buildOr(
S32,
Masked, ShiftedStride);
6055 Register NewHighHalfReg = NewHighHalf.getReg(0);
6056 B.buildMergeValues(Result, {LowHalf, NewHighHalfReg, NumRecords, Flags});
6059 MI.eraseFromParent();
6076 MI.eraseFromParent();
6084 std::optional<uint32_t> KnownSize =
6086 if (KnownSize.has_value())
6087 B.buildConstant(DstReg, *KnownSize);
6105 MI.eraseFromParent();
6112 unsigned AddrSpace)
const {
6114 auto Unmerge =
B.buildUnmerge(
S32,
MI.getOperand(2).getReg());
6118 ST.hasGloballyAddressableScratch()) {
6120 B.buildInstr(AMDGPU::S_MOV_B32, {
S32},
6121 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE_HI)})
6123 MRI.setRegClass(FlatScratchBaseHi, &AMDGPU::SReg_32RegClass);
6125 Register XOR =
B.buildXor(
S32, Hi32, FlatScratchBaseHi).getReg(0);
6127 B.buildConstant(
S32, 1u << 26));
6132 MI.eraseFromParent();
6142std::pair<Register, unsigned>
6156 MRI, OrigOffset,
nullptr, CheckNUW);
6159 if (
MRI.getType(BaseReg).isPointer())
6160 BaseReg =
B.buildPtrToInt(
MRI.getType(OrigOffset), BaseReg).getReg(0);
6170 unsigned Overflow = ImmOffset & ~MaxImm;
6171 ImmOffset -= Overflow;
6172 if ((int32_t)Overflow < 0) {
6173 Overflow += ImmOffset;
6177 if (Overflow != 0) {
6179 BaseReg =
B.buildConstant(
S32, Overflow).getReg(0);
6181 auto OverflowVal =
B.buildConstant(
S32, Overflow);
6182 BaseReg =
B.buildAdd(
S32, BaseReg, OverflowVal).getReg(0);
6187 BaseReg =
B.buildConstant(
S32, 0).getReg(0);
6189 return std::pair(BaseReg, ImmOffset);
6196 bool ImageStore)
const {
6199 LLT StoreVT =
MRI.getType(Reg);
6202 if (ST.hasUnpackedD16VMem()) {
6203 auto Unmerge =
B.buildUnmerge(
S16, Reg);
6206 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
6207 WideRegs.
push_back(
B.buildAnyExt(
S32, Unmerge.getReg(
I)).getReg(0));
6215 if (ImageStore && ST.hasImageStoreD16Bug()) {
6218 Reg =
B.buildBitcast(
S32, Reg).getReg(0);
6220 PackedRegs.
resize(2,
B.buildUndef(
S32).getReg(0));
6227 auto Unmerge =
B.buildUnmerge(
S16, Reg);
6228 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
6230 PackedRegs.
resize(6,
B.buildUndef(
S16).getReg(0));
6238 auto Unmerge =
B.buildUnmerge(
S32, Reg);
6239 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
6241 PackedRegs.
resize(4,
B.buildUndef(
S32).getReg(0));
6258 bool IsFormat)
const {
6260 LLT Ty =
MRI->getType(VData);
6270 VData =
B.buildBitcast(Ty, VData).getReg(0);
6278 if (Ty.isVector()) {
6279 if (Ty.getElementType() ==
S16 && Ty.getNumElements() <= 4) {
6291 bool IsFormat)
const {
6296 LLT Ty =
MRI.getType(VData);
6298 const bool IsD16 = IsFormat && (EltTy.
getSizeInBits() == 16);
6313 const unsigned NumVIndexOps = IsTyped ? 8 : 7;
6316 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps;
6320 VIndex =
MI.getOperand(3).getReg();
6323 VIndex =
B.buildConstant(
S32, 0).getReg(0);
6326 Register VOffset =
MI.getOperand(3 + OpOffset).getReg();
6327 Register SOffset =
MI.getOperand(4 + OpOffset).getReg();
6331 Format =
MI.getOperand(5 + OpOffset).getImm();
6335 unsigned AuxiliaryData =
MI.getOperand(5 + OpOffset).getImm();
6341 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
6342 AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
6343 }
else if (IsFormat) {
6344 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
6345 AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
6349 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
6352 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
6355 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
6360 auto MIB =
B.buildInstr(
Opc)
6371 MIB.addImm(AuxiliaryData)
6372 .addImm(HasVIndex ? -1 : 0)
6373 .addMemOperand(MMO);
6375 MI.eraseFromParent();
6381 unsigned ImmOffset,
unsigned Format,
6384 auto MIB =
B.buildInstr(
Opc)
6395 MIB.addImm(AuxiliaryData)
6396 .addImm(HasVIndex ? -1 : 0)
6397 .addMemOperand(MMO);
6403 bool IsTyped)
const {
6417 assert(
MI.getNumExplicitDefs() == 1 ||
MI.getNumExplicitDefs() == 2);
6418 bool IsTFE =
MI.getNumExplicitDefs() == 2;
6420 StatusDst =
MI.getOperand(1).getReg();
6425 Register RSrc =
MI.getOperand(2 + OpOffset).getReg();
6428 const unsigned NumVIndexOps = IsTyped ? 8 : 7;
6431 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps + OpOffset;
6434 VIndex =
MI.getOperand(3 + OpOffset).getReg();
6437 VIndex =
B.buildConstant(
S32, 0).getReg(0);
6440 Register VOffset =
MI.getOperand(3 + OpOffset).getReg();
6441 Register SOffset =
MI.getOperand(4 + OpOffset).getReg();
6445 Format =
MI.getOperand(5 + OpOffset).getImm();
6449 unsigned AuxiliaryData =
MI.getOperand(5 + OpOffset).getImm();
6452 LLT Ty =
MRI.getType(Dst);
6459 Dst =
MI.getOperand(0).getReg();
6460 B.setInsertPt(
B.getMBB(),
MI);
6467 Dst =
MI.getOperand(0).getReg();
6468 B.setInsertPt(
B.getMBB(),
MI);
6472 const bool IsD16 = IsFormat && (EltTy.
getSizeInBits() == 16);
6473 const bool Unpacked = ST.hasUnpackedD16VMem();
6483 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
6484 AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
6485 }
else if (IsFormat) {
6489 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16;
6491 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_TFE
6492 : AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
6497 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE_TFE
6498 : AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
6501 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT_TFE
6502 : AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
6505 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_TFE
6506 : AMDGPU::G_AMDGPU_BUFFER_LOAD;
6512 unsigned NumValueDWords =
divideCeil(Ty.getSizeInBits(), 32);
6513 unsigned NumLoadDWords = NumValueDWords + 1;
6515 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(LoadTy);
6517 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6519 Register ExtDst =
B.getMRI()->createGenericVirtualRegister(
S32);
6520 B.buildUnmerge({ExtDst, StatusDst}, LoadDstReg);
6521 B.buildTrunc(Dst, ExtDst);
6522 }
else if (NumValueDWords == 1) {
6523 B.buildUnmerge({Dst, StatusDst}, LoadDstReg);
6526 for (
unsigned I = 0;
I != NumValueDWords; ++
I)
6527 LoadElts.
push_back(
B.getMRI()->createGenericVirtualRegister(
S32));
6529 B.buildUnmerge(LoadElts, LoadDstReg);
6531 B.buildMergeLikeInstr(Dst, LoadElts);
6534 (IsD16 && !Ty.isVector())) {
6535 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(
S32);
6537 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6538 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6539 B.buildTrunc(Dst, LoadDstReg);
6540 }
else if (Unpacked && IsD16 && Ty.isVector()) {
6542 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(UnpackedTy);
6544 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6545 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6547 auto Unmerge =
B.buildUnmerge(
S32, LoadDstReg);
6549 for (
unsigned I = 0,
N = Unmerge->getNumOperands() - 1;
I !=
N; ++
I)
6550 Repack.
push_back(
B.buildTrunc(EltTy, Unmerge.getReg(
I)).getReg(0));
6551 B.buildMergeLikeInstr(Dst, Repack);
6554 AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6557 MI.eraseFromParent();
6563 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6564 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
6565 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6566 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
6567 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
6568 case Intrinsic::amdgcn_raw_buffer_atomic_add:
6569 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
6570 case Intrinsic::amdgcn_struct_buffer_atomic_add:
6571 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
6572 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
6573 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6574 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
6575 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6576 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
6577 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
6578 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6579 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
6580 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6581 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
6582 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
6583 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6584 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
6585 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6586 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
6587 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
6588 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6589 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
6590 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6591 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
6592 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
6593 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6594 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
6595 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6596 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
6597 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
6598 case Intrinsic::amdgcn_raw_buffer_atomic_and:
6599 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
6600 case Intrinsic::amdgcn_struct_buffer_atomic_and:
6601 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
6602 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
6603 case Intrinsic::amdgcn_raw_buffer_atomic_or:
6604 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
6605 case Intrinsic::amdgcn_struct_buffer_atomic_or:
6606 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
6607 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
6608 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6609 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
6610 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6611 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
6612 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
6613 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6614 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
6615 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6616 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
6617 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
6618 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
6619 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
6620 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
6621 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
6622 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
6623 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
6624 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap:
6625 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
6626 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap:
6627 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
6628 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
6629 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
6630 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
6631 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
6632 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD;
6633 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
6634 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
6635 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
6636 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
6637 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN;
6638 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
6639 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
6640 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
6641 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
6642 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX;
6643 case Intrinsic::amdgcn_raw_buffer_atomic_sub_clamp_u32:
6644 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub_clamp_u32:
6645 case Intrinsic::amdgcn_struct_buffer_atomic_sub_clamp_u32:
6646 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub_clamp_u32:
6647 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB_CLAMP_U32;
6648 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
6649 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cond_sub_u32:
6650 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
6651 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cond_sub_u32:
6652 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32;
6661 const bool IsCmpSwap =
6662 IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
6663 IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap ||
6664 IID == Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap ||
6665 IID == Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap;
6676 CmpVal =
MI.getOperand(3).getReg();
6681 Register RSrc =
MI.getOperand(3 + OpOffset).getReg();
6682 const unsigned NumVIndexOps = IsCmpSwap ? 9 : 8;
6685 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps;
6688 VIndex =
MI.getOperand(4 + OpOffset).getReg();
6691 VIndex =
B.buildConstant(
LLT::scalar(32), 0).getReg(0);
6694 Register VOffset =
MI.getOperand(4 + OpOffset).getReg();
6695 Register SOffset =
MI.getOperand(5 + OpOffset).getReg();
6696 unsigned AuxiliaryData =
MI.getOperand(6 + OpOffset).getImm();
6715 .addImm(AuxiliaryData)
6716 .addImm(HasVIndex ? -1 : 0)
6717 .addMemOperand(MMO);
6719 MI.eraseFromParent();
6729 bool IsA16,
bool IsG16) {
6745 (
B.getMRI()->getType(AddrReg) ==
S16)) {
6750 B.buildBuildVector(
V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
6754 "Bias needs to be converted to 16 bit in A16 mode");
6756 AddrReg =
B.buildBitcast(
V2S16, AddrReg).getReg(0);
6762 if (((
I + 1) >= EndIdx) ||
6769 !
MI.getOperand(ArgOffset +
I + 1).isReg()) {
6771 B.buildBuildVector(
V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
6776 V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()})
6787 int DimIdx,
int NumVAddrs) {
6791 for (
int I = 0;
I != NumVAddrs; ++
I) {
6793 if (
SrcOp.isReg()) {
6799 int NumAddrRegs = AddrRegs.
size();
6800 if (NumAddrRegs != 1) {
6803 MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
6806 for (
int I = 1;
I != NumVAddrs; ++
I) {
6809 MI.getOperand(DimIdx +
I).setReg(AMDGPU::NoRegister);
6831 const unsigned NumDefs =
MI.getNumExplicitDefs();
6832 const unsigned ArgOffset = NumDefs + 1;
6833 bool IsTFE = NumDefs == 2;
6851 VData =
MI.getOperand(NumDefs == 0 ? 1 : 0).getReg();
6852 Ty =
MRI->getType(VData);
6855 const bool IsAtomicPacked16Bit =
6856 (BaseOpcode->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
6857 BaseOpcode->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
6865 ST.hasG16() ? (BaseOpcode->
Gradients && GradTy ==
S16) : GradTy ==
S16;
6866 const bool IsA16 = AddrTy ==
S16;
6867 const bool IsD16 = !IsAtomicPacked16Bit && Ty.getScalarType() ==
S16;
6870 if (!BaseOpcode->
Atomic) {
6871 DMask =
MI.getOperand(ArgOffset + Intr->
DMaskIndex).getImm();
6874 }
else if (DMask != 0) {
6876 }
else if (!IsTFE && !BaseOpcode->
Store) {
6878 B.buildUndef(
MI.getOperand(0));
6879 MI.eraseFromParent();
6887 const unsigned StoreOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE_D16
6888 : AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE;
6889 const unsigned LoadOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_D16
6890 : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;
6891 unsigned NewOpcode = LoadOpcode;
6892 if (BaseOpcode->
Store)
6893 NewOpcode = StoreOpcode;
6895 NewOpcode = AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_NORET;
6898 MI.setDesc(
B.getTII().get(NewOpcode));
6902 if (IsTFE && DMask == 0) {
6905 MI.getOperand(ArgOffset + Intr->
DMaskIndex).setImm(DMask);
6908 if (BaseOpcode->
Atomic) {
6910 LLT Ty =
MRI->getType(VData0);
6913 if (Ty.isVector() && !IsAtomicPacked16Bit)
6920 auto Concat =
B.buildBuildVector(PackedTy, {VData0, VData1});
6921 MI.getOperand(2).setReg(
Concat.getReg(0));
6922 MI.getOperand(3).setReg(AMDGPU::NoRegister);
6926 unsigned CorrectedNumVAddrs = Intr->
NumVAddrs;
6929 if (BaseOpcode->
Gradients && !ST.hasG16() && (IsA16 != IsG16)) {
6935 if (IsA16 && !ST.hasA16()) {
6940 const unsigned NSAMaxSize = ST.getNSAMaxSize(BaseOpcode->
Sampler);
6941 const unsigned HasPartialNSA = ST.hasPartialNSAEncoding();
6943 if (IsA16 || IsG16) {
6951 const bool UseNSA = ST.hasNSAEncoding() &&
6952 PackedRegs.
size() >= ST.getNSAThreshold(MF) &&
6953 (PackedRegs.
size() <= NSAMaxSize || HasPartialNSA);
6954 const bool UsePartialNSA =
6955 UseNSA && HasPartialNSA && PackedRegs.
size() > NSAMaxSize;
6957 if (UsePartialNSA) {
6961 auto Concat =
B.buildConcatVectors(
6962 PackedAddrTy,
ArrayRef(PackedRegs).slice(NSAMaxSize - 1));
6963 PackedRegs[NSAMaxSize - 1] =
Concat.getReg(0);
6964 PackedRegs.
resize(NSAMaxSize);
6965 }
else if (!UseNSA && PackedRegs.
size() > 1) {
6967 auto Concat =
B.buildConcatVectors(PackedAddrTy, PackedRegs);
6968 PackedRegs[0] =
Concat.getReg(0);
6972 const unsigned NumPacked = PackedRegs.
size();
6975 if (!
SrcOp.isReg()) {
6985 SrcOp.setReg(AMDGPU::NoRegister);
7002 const bool UseNSA = ST.hasNSAEncoding() &&
7003 CorrectedNumVAddrs >= ST.getNSAThreshold(MF) &&
7004 (CorrectedNumVAddrs <= NSAMaxSize || HasPartialNSA);
7005 const bool UsePartialNSA =
7006 UseNSA && HasPartialNSA && CorrectedNumVAddrs > NSAMaxSize;
7008 if (UsePartialNSA) {
7010 ArgOffset + Intr->
VAddrStart + NSAMaxSize - 1,
7012 }
else if (!UseNSA && Intr->
NumVAddrs > 1) {
7027 if (!Ty.isVector() || !IsD16)
7031 if (RepackedReg != VData) {
7032 MI.getOperand(1).setReg(RepackedReg);
7040 const int NumElts = Ty.
isVector() ? Ty.getNumElements() : 1;
7043 if (NumElts < DMaskLanes)
7046 if (NumElts > 4 || DMaskLanes > 4)
7056 const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
7057 const LLT AdjustedTy =
7073 if (IsD16 && ST.hasUnpackedD16VMem()) {
7080 unsigned RoundedElts = (AdjustedTy.
getSizeInBits() + 31) / 32;
7081 unsigned RoundedSize = 32 * RoundedElts;
7085 RegTy = !IsTFE && EltSize == 16 ?
V2S16 :
S32;
7090 if (!IsTFE && (RoundedTy == Ty || !Ty.
isVector()))
7096 B.setInsertPt(*
MI.getParent(), ++
MI.getIterator());
7100 const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
7101 const int ResultNumRegs = LoadResultTy.
getSizeInBits() / 32;
7103 Register NewResultReg =
MRI->createGenericVirtualRegister(LoadResultTy);
7105 MI.getOperand(0).setReg(NewResultReg);
7113 Dst1Reg =
MI.getOperand(1).getReg();
7114 if (
MRI->getType(Dst1Reg) !=
S32)
7118 MI.removeOperand(1);
7122 B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
7131 const int NumDataRegs = IsTFE ? ResultNumRegs - 1 : ResultNumRegs;
7133 if (ResultNumRegs == 1) {
7135 ResultRegs[0] = NewResultReg;
7138 for (
int I = 0;
I != NumDataRegs; ++
I)
7139 ResultRegs[
I] =
MRI->createGenericVirtualRegister(RegTy);
7140 B.buildUnmerge(ResultRegs, NewResultReg);
7145 ResultRegs.
resize(NumDataRegs);
7150 if (IsD16 && !Ty.isVector()) {
7151 B.buildTrunc(DstReg, ResultRegs[0]);
7156 if (Ty ==
V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
7157 B.buildBitcast(DstReg, ResultRegs[0]);
7169 if (RegTy !=
V2S16 && !ST.hasUnpackedD16VMem()) {
7171 Reg =
B.buildBitcast(
V2S16, Reg).getReg(0);
7172 }
else if (ST.hasUnpackedD16VMem()) {
7174 Reg =
B.buildTrunc(
S16, Reg).getReg(0);
7178 auto padWithUndef = [&](
LLT Ty,
int NumElts) {
7181 Register Undef =
B.buildUndef(Ty).getReg(0);
7182 for (
int I = 0;
I != NumElts; ++
I)
7187 LLT ResTy =
MRI->getType(ResultRegs[0]);
7189 padWithUndef(ResTy, NumElts - ResultRegs.
size());
7190 B.buildBuildVector(DstReg, ResultRegs);
7194 assert(!ST.hasUnpackedD16VMem() && ResTy ==
V2S16);
7195 const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;
7201 if (ResultRegs.
size() == 1) {
7202 NewResultReg = ResultRegs[0];
7203 }
else if (ResultRegs.
size() == 2) {
7205 NewResultReg =
B.buildConcatVectors(
V4S16, ResultRegs).getReg(0);
7211 if (
MRI->getType(DstReg).getNumElements() <
7212 MRI->getType(NewResultReg).getNumElements()) {
7213 B.buildDeleteTrailingVectorElements(DstReg, NewResultReg);
7215 B.buildPadVectorWithUndefElements(DstReg, NewResultReg);
7220 padWithUndef(ResTy, RegsToCover - ResultRegs.
size());
7221 B.buildConcatVectors(DstReg, ResultRegs);
7230 Register OrigDst =
MI.getOperand(0).getReg();
7232 LLT Ty =
B.getMRI()->getType(OrigDst);
7233 unsigned Size = Ty.getSizeInBits();
7236 if (
Size < 32 && ST.hasScalarSubwordLoads()) {
7238 Opc =
Size == 8 ? AMDGPU::G_AMDGPU_S_BUFFER_LOAD_UBYTE
7239 : AMDGPU::G_AMDGPU_S_BUFFER_LOAD_USHORT;
7242 Dst =
B.getMRI()->createGenericVirtualRegister(
LLT::scalar(32));
7244 Opc = AMDGPU::G_AMDGPU_S_BUFFER_LOAD;
7253 B.setInsertPt(
B.getMBB(),
MI);
7258 B.setInsertPt(
B.getMBB(),
MI);
7264 MI.setDesc(
B.getTII().get(
Opc));
7265 MI.removeOperand(1);
7268 const unsigned MemSize = (
Size + 7) / 8;
7269 const Align MemAlign =
B.getDataLayout().getABITypeAlign(
7276 MI.addMemOperand(MF, MMO);
7277 if (Dst != OrigDst) {
7278 MI.getOperand(0).setReg(Dst);
7279 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
7280 B.buildTrunc(OrigDst, Dst);
7302 MI.setDesc(
B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_PREFETCH));
7303 MI.removeOperand(0);
7313 if (!ST.isTrapHandlerEnabled() ||
7317 return ST.supportsGetDoorbellID() ?
7330 MI.eraseFromParent();
7340 BuildMI(*TrapBB, TrapBB->
end(),
DL,
B.getTII().get(AMDGPU::S_ENDPGM))
7342 BuildMI(BB, &
MI,
DL,
B.getTII().get(AMDGPU::S_CBRANCH_EXECNZ))
7346 MI.eraseFromParent();
7355 Register SGPR01(AMDGPU::SGPR0_SGPR1);
7362 ST.getTargetLowering()->getImplicitParameterOffset(
B.getMF(), Param);
7364 Register KernargPtrReg =
MRI.createGenericVirtualRegister(
7380 Register LoadAddr =
MRI.createGenericVirtualRegister(
7382 B.buildObjectPtrOffset(LoadAddr, KernargPtrReg,
7385 Register Temp =
B.buildLoad(
S64, LoadAddr, *MMO).getReg(0);
7386 B.buildCopy(SGPR01, Temp);
7387 B.buildInstr(AMDGPU::S_TRAP)
7390 MI.eraseFromParent();
7401 B.buildCopy(SGPR01, LiveIn);
7402 B.buildInstr(AMDGPU::S_TRAP)
7406 MI.eraseFromParent();
7415 if (ST.hasPrivEnabledTrap2NopBug()) {
7416 ST.getInstrInfo()->insertSimulatedTrap(
MRI,
B.getMBB(),
MI,
7418 MI.eraseFromParent();
7422 B.buildInstr(AMDGPU::S_TRAP)
7424 MI.eraseFromParent();
7433 if (!ST.isTrapHandlerEnabled() ||
7437 Fn,
"debugtrap handler not supported",
MI.getDebugLoc(),
DS_Warning));
7440 B.buildInstr(AMDGPU::S_TRAP)
7444 MI.eraseFromParent();
7457 Register NodePtr =
MI.getOperand(2).getReg();
7458 Register RayExtent =
MI.getOperand(3).getReg();
7459 Register RayOrigin =
MI.getOperand(4).getReg();
7461 Register RayInvDir =
MI.getOperand(6).getReg();
7464 if (!ST.hasGFX10_AEncoding()) {
7467 Fn,
"intrinsic not supported on subtarget",
MI.getDebugLoc()));
7474 const bool IsA16 =
MRI.getType(RayDir).getElementType().getSizeInBits() == 16;
7475 const bool Is64 =
MRI.getType(NodePtr).getSizeInBits() == 64;
7476 const unsigned NumVDataDwords = 4;
7477 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7478 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
7480 IsGFX12Plus || (ST.hasNSAEncoding() && NumVAddrs <= ST.getNSAMaxSize());
7482 const unsigned BaseOpcodes[2][2] = {
7483 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7484 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7485 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7489 IsGFX12Plus ? AMDGPU::MIMGEncGfx12
7490 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
7491 : AMDGPU::MIMGEncGfx10NSA,
7492 NumVDataDwords, NumVAddrDwords);
7496 IsGFX11 ? AMDGPU::MIMGEncGfx11Default
7497 : AMDGPU::MIMGEncGfx10Default,
7498 NumVDataDwords, NumVAddrDwords);
7503 if (UseNSA && IsGFX11Plus) {
7505 auto Unmerge =
B.buildUnmerge({
S32,
S32,
S32}, Src);
7506 auto Merged =
B.buildMergeLikeInstr(
7507 V3S32, {Unmerge.getReg(0), Unmerge.getReg(1), Unmerge.getReg(2)});
7508 Ops.push_back(Merged.getReg(0));
7511 Ops.push_back(NodePtr);
7512 Ops.push_back(RayExtent);
7513 packLanes(RayOrigin);
7516 auto UnmergeRayDir =
B.buildUnmerge({
S16,
S16,
S16}, RayDir);
7517 auto UnmergeRayInvDir =
B.buildUnmerge({
S16,
S16,
S16}, RayInvDir);
7518 auto MergedDir =
B.buildMergeLikeInstr(
7521 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(0),
7522 UnmergeRayDir.getReg(0)}))
7525 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(1),
7526 UnmergeRayDir.getReg(1)}))
7529 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(2),
7530 UnmergeRayDir.getReg(2)}))
7532 Ops.push_back(MergedDir.getReg(0));
7535 packLanes(RayInvDir);
7539 auto Unmerge =
B.buildUnmerge({
S32,
S32}, NodePtr);
7540 Ops.push_back(Unmerge.getReg(0));
7541 Ops.push_back(Unmerge.getReg(1));
7543 Ops.push_back(NodePtr);
7545 Ops.push_back(RayExtent);
7548 auto Unmerge =
B.buildUnmerge({
S32,
S32,
S32}, Src);
7549 Ops.push_back(Unmerge.getReg(0));
7550 Ops.push_back(Unmerge.getReg(1));
7551 Ops.push_back(Unmerge.getReg(2));
7554 packLanes(RayOrigin);
7556 auto UnmergeRayDir =
B.buildUnmerge({
S16,
S16,
S16}, RayDir);
7557 auto UnmergeRayInvDir =
B.buildUnmerge({
S16,
S16,
S16}, RayInvDir);
7561 B.buildMergeLikeInstr(R1,
7562 {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)});
7563 B.buildMergeLikeInstr(
7564 R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)});
7565 B.buildMergeLikeInstr(
7566 R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)});
7572 packLanes(RayInvDir);
7579 Register MergedOps =
B.buildMergeLikeInstr(OpTy,
Ops).getReg(0);
7581 Ops.push_back(MergedOps);
7584 auto MIB =
B.buildInstr(AMDGPU::G_AMDGPU_BVH_INTERSECT_RAY)
7593 .addImm(IsA16 ? 1 : 0)
7596 MI.eraseFromParent();
7606 Register DstOrigin =
MI.getOperand(1).getReg();
7608 Register NodePtr =
MI.getOperand(4).getReg();
7609 Register RayExtent =
MI.getOperand(5).getReg();
7610 Register InstanceMask =
MI.getOperand(6).getReg();
7611 Register RayOrigin =
MI.getOperand(7).getReg();
7613 Register Offsets =
MI.getOperand(9).getReg();
7614 Register TDescr =
MI.getOperand(10).getReg();
7616 if (!ST.hasBVHDualAndBVH8Insts()) {
7619 Fn,
"intrinsic not supported on subtarget",
MI.getDebugLoc()));
7624 Intrinsic::amdgcn_image_bvh8_intersect_ray;
7625 const unsigned NumVDataDwords = 10;
7626 const unsigned NumVAddrDwords = IsBVH8 ? 11 : 12;
7628 IsBVH8 ? AMDGPU::IMAGE_BVH8_INTERSECT_RAY
7629 : AMDGPU::IMAGE_BVH_DUAL_INTERSECT_RAY,
7630 AMDGPU::MIMGEncGfx12, NumVDataDwords, NumVAddrDwords);
7633 auto RayExtentInstanceMaskVec =
B.buildMergeLikeInstr(
7634 V2S32, {RayExtent,
B.buildAnyExt(
S32, InstanceMask)});
7636 B.buildInstr(IsBVH8 ? AMDGPU::G_AMDGPU_BVH8_INTERSECT_RAY
7637 : AMDGPU::G_AMDGPU_BVH_DUAL_INTERSECT_RAY)
7643 .addUse(RayExtentInstanceMaskVec.getReg(0))
7650 MI.eraseFromParent();
7659 B.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {DstReg}, {StackPtr});
7660 MI.eraseFromParent();
7667 if (!ST.hasArchitectedSGPRs())
7671 auto TTMP8 =
B.buildCopy(
S32,
Register(AMDGPU::TTMP8));
7672 auto LSB =
B.buildConstant(
S32, 25);
7673 auto Width =
B.buildConstant(
S32, 5);
7674 B.buildUbfx(DstReg, TTMP8, LSB, Width);
7675 MI.eraseFromParent();
7683 unsigned Width)
const {
7686 if (!
MRI.getRegClassOrNull(DstReg))
7687 MRI.setRegClass(DstReg, &AMDGPU::SReg_32RegClass);
7688 B.buildInstr(AMDGPU::S_GETREG_B32_const)
7691 MI.eraseFromParent();
7705 if (
MRI.getType(Src) !=
S64)
7709 B.buildIntrinsic(Intrinsic::amdgcn_s_getreg, {
S32},
7713 B.buildIntrinsic(Intrinsic::amdgcn_s_getreg, {
S32},
7716 B.buildMergeLikeInstr(Src, {ModeReg, TrapReg});
7717 MI.eraseFromParent();
7725 if (
MRI.getType(Src) !=
S64)
7728 auto Unmerge =
B.buildUnmerge({
S32,
S32},
MI.getOperand(0));
7732 .addReg(Unmerge.getReg(0));
7736 .addReg(Unmerge.getReg(1));
7737 MI.eraseFromParent();
7749 case Intrinsic::amdgcn_if:
7750 case Intrinsic::amdgcn_else: {
7753 bool Negated =
false;
7765 std::swap(CondBrTarget, UncondBrTarget);
7767 B.setInsertPt(
B.getMBB(), BrCond->getIterator());
7768 if (IntrID == Intrinsic::amdgcn_if) {
7769 B.buildInstr(AMDGPU::SI_IF)
7772 .addMBB(UncondBrTarget);
7774 B.buildInstr(AMDGPU::SI_ELSE)
7777 .addMBB(UncondBrTarget);
7786 B.buildBr(*CondBrTarget);
7789 MRI.setRegClass(Def,
TRI->getWaveMaskRegClass());
7790 MRI.setRegClass(
Use,
TRI->getWaveMaskRegClass());
7791 MI.eraseFromParent();
7792 BrCond->eraseFromParent();
7798 case Intrinsic::amdgcn_loop: {
7801 bool Negated =
false;
7811 std::swap(CondBrTarget, UncondBrTarget);
7813 B.setInsertPt(
B.getMBB(), BrCond->getIterator());
7814 B.buildInstr(AMDGPU::SI_LOOP)
7816 .addMBB(UncondBrTarget);
7821 B.buildBr(*CondBrTarget);
7823 MI.eraseFromParent();
7824 BrCond->eraseFromParent();
7825 MRI.setRegClass(Reg,
TRI->getWaveMaskRegClass());
7831 case Intrinsic::amdgcn_addrspacecast_nonnull:
7833 case Intrinsic::amdgcn_make_buffer_rsrc:
7835 case Intrinsic::amdgcn_kernarg_segment_ptr:
7838 B.buildConstant(
MI.getOperand(0).getReg(), 0);
7839 MI.eraseFromParent();
7845 case Intrinsic::amdgcn_implicitarg_ptr:
7847 case Intrinsic::amdgcn_workitem_id_x:
7850 case Intrinsic::amdgcn_workitem_id_y:
7853 case Intrinsic::amdgcn_workitem_id_z:
7856 case Intrinsic::amdgcn_workgroup_id_x:
7861 case Intrinsic::amdgcn_workgroup_id_y:
7866 case Intrinsic::amdgcn_workgroup_id_z:
7871 case Intrinsic::amdgcn_cluster_id_x:
7872 return ST.hasClusters() &&
7875 case Intrinsic::amdgcn_cluster_id_y:
7876 return ST.hasClusters() &&
7879 case Intrinsic::amdgcn_cluster_id_z:
7880 return ST.hasClusters() &&
7883 case Intrinsic::amdgcn_cluster_workgroup_id_x:
7884 return ST.hasClusters() &&
7887 case Intrinsic::amdgcn_cluster_workgroup_id_y:
7888 return ST.hasClusters() &&
7891 case Intrinsic::amdgcn_cluster_workgroup_id_z:
7892 return ST.hasClusters() &&
7895 case Intrinsic::amdgcn_cluster_workgroup_flat_id:
7896 return ST.hasClusters() &&
7898 case Intrinsic::amdgcn_cluster_workgroup_max_id_x:
7899 return ST.hasClusters() &&
7902 case Intrinsic::amdgcn_cluster_workgroup_max_id_y:
7903 return ST.hasClusters() &&
7906 case Intrinsic::amdgcn_cluster_workgroup_max_id_z:
7907 return ST.hasClusters() &&
7910 case Intrinsic::amdgcn_cluster_workgroup_max_flat_id:
7911 return ST.hasClusters() &&
7915 case Intrinsic::amdgcn_wave_id:
7917 case Intrinsic::amdgcn_lds_kernel_id:
7920 case Intrinsic::amdgcn_dispatch_ptr:
7923 case Intrinsic::amdgcn_queue_ptr:
7926 case Intrinsic::amdgcn_implicit_buffer_ptr:
7929 case Intrinsic::amdgcn_dispatch_id:
7932 case Intrinsic::r600_read_ngroups_x:
7936 case Intrinsic::r600_read_ngroups_y:
7939 case Intrinsic::r600_read_ngroups_z:
7942 case Intrinsic::r600_read_local_size_x:
7945 case Intrinsic::r600_read_local_size_y:
7949 case Intrinsic::r600_read_local_size_z:
7952 case Intrinsic::amdgcn_fdiv_fast:
7954 case Intrinsic::amdgcn_is_shared:
7956 case Intrinsic::amdgcn_is_private:
7958 case Intrinsic::amdgcn_wavefrontsize: {
7959 B.buildConstant(
MI.getOperand(0), ST.getWavefrontSize());
7960 MI.eraseFromParent();
7963 case Intrinsic::amdgcn_s_buffer_load:
7965 case Intrinsic::amdgcn_raw_buffer_store:
7966 case Intrinsic::amdgcn_raw_ptr_buffer_store:
7967 case Intrinsic::amdgcn_struct_buffer_store:
7968 case Intrinsic::amdgcn_struct_ptr_buffer_store:
7970 case Intrinsic::amdgcn_raw_buffer_store_format:
7971 case Intrinsic::amdgcn_raw_ptr_buffer_store_format:
7972 case Intrinsic::amdgcn_struct_buffer_store_format:
7973 case Intrinsic::amdgcn_struct_ptr_buffer_store_format:
7975 case Intrinsic::amdgcn_raw_tbuffer_store:
7976 case Intrinsic::amdgcn_raw_ptr_tbuffer_store:
7977 case Intrinsic::amdgcn_struct_tbuffer_store:
7978 case Intrinsic::amdgcn_struct_ptr_tbuffer_store:
7980 case Intrinsic::amdgcn_raw_buffer_load:
7981 case Intrinsic::amdgcn_raw_ptr_buffer_load:
7982 case Intrinsic::amdgcn_raw_atomic_buffer_load:
7983 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
7984 case Intrinsic::amdgcn_struct_buffer_load:
7985 case Intrinsic::amdgcn_struct_ptr_buffer_load:
7986 case Intrinsic::amdgcn_struct_atomic_buffer_load:
7987 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load:
7989 case Intrinsic::amdgcn_raw_buffer_load_format:
7990 case Intrinsic::amdgcn_raw_ptr_buffer_load_format:
7991 case Intrinsic::amdgcn_struct_buffer_load_format:
7992 case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
7994 case Intrinsic::amdgcn_raw_tbuffer_load:
7995 case Intrinsic::amdgcn_raw_ptr_tbuffer_load:
7996 case Intrinsic::amdgcn_struct_tbuffer_load:
7997 case Intrinsic::amdgcn_struct_ptr_tbuffer_load:
7999 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
8000 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
8001 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
8002 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
8003 case Intrinsic::amdgcn_raw_buffer_atomic_add:
8004 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
8005 case Intrinsic::amdgcn_struct_buffer_atomic_add:
8006 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
8007 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
8008 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
8009 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
8010 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
8011 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
8012 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
8013 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
8014 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
8015 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
8016 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
8017 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
8018 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
8019 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
8020 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
8021 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
8022 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
8023 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
8024 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
8025 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
8026 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
8027 case Intrinsic::amdgcn_raw_buffer_atomic_and:
8028 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
8029 case Intrinsic::amdgcn_struct_buffer_atomic_and:
8030 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
8031 case Intrinsic::amdgcn_raw_buffer_atomic_or:
8032 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
8033 case Intrinsic::amdgcn_struct_buffer_atomic_or:
8034 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
8035 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
8036 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
8037 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
8038 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
8039 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
8040 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
8041 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
8042 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
8043 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
8044 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
8045 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
8046 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
8047 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
8048 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap:
8049 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
8050 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap:
8051 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
8052 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
8053 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
8054 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
8055 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
8056 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
8057 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
8058 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
8059 case Intrinsic::amdgcn_raw_buffer_atomic_sub_clamp_u32:
8060 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub_clamp_u32:
8061 case Intrinsic::amdgcn_struct_buffer_atomic_sub_clamp_u32:
8062 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub_clamp_u32:
8063 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
8064 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cond_sub_u32:
8065 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
8066 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cond_sub_u32:
8067 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
8068 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
8069 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
8070 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
8072 case Intrinsic::amdgcn_rsq_clamp:
8074 case Intrinsic::amdgcn_image_bvh_intersect_ray:
8076 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
8077 case Intrinsic::amdgcn_image_bvh8_intersect_ray:
8079 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_fp8:
8080 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_bf8:
8081 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_fp8:
8082 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_bf8:
8083 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_fp8:
8084 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_bf8:
8085 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_fp8:
8086 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_bf8: {
8089 if (
MRI.getType(Index) !=
S64)
8090 MI.getOperand(5).setReg(
B.buildAnyExt(
S64, Index).getReg(0));
8093 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
8094 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
8095 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
8096 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
8097 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
8098 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
8099 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
8100 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
8103 if (
MRI.getType(Index) !=
S32)
8104 MI.getOperand(5).setReg(
B.buildAnyExt(
S32, Index).getReg(0));
8107 case Intrinsic::amdgcn_swmmac_f16_16x16x64_f16:
8108 case Intrinsic::amdgcn_swmmac_bf16_16x16x64_bf16:
8109 case Intrinsic::amdgcn_swmmac_f32_16x16x64_bf16:
8110 case Intrinsic::amdgcn_swmmac_bf16f32_16x16x64_bf16:
8111 case Intrinsic::amdgcn_swmmac_f32_16x16x64_f16:
8112 case Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8:
8113 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
8114 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
8115 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
8117 LLT IdxTy = IntrID == Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8
8120 if (
MRI.getType(Index) != IdxTy)
8121 MI.getOperand(7).setReg(
B.buildAnyExt(IdxTy, Index).getReg(0));
8125 case Intrinsic::amdgcn_fmed3: {
8131 MI.setDesc(
B.getTII().get(AMDGPU::G_AMDGPU_FMED3));
8132 MI.removeOperand(1);
8136 case Intrinsic::amdgcn_readlane:
8137 case Intrinsic::amdgcn_writelane:
8138 case Intrinsic::amdgcn_readfirstlane:
8139 case Intrinsic::amdgcn_permlane16:
8140 case Intrinsic::amdgcn_permlanex16:
8141 case Intrinsic::amdgcn_permlane64:
8142 case Intrinsic::amdgcn_set_inactive:
8143 case Intrinsic::amdgcn_set_inactive_chain_arg:
8144 case Intrinsic::amdgcn_mov_dpp8:
8145 case Intrinsic::amdgcn_update_dpp:
8147 case Intrinsic::amdgcn_s_buffer_prefetch_data:
8149 case Intrinsic::amdgcn_dead: {
8153 MI.eraseFromParent();
8156 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
8157 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
8158 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
8159 assert(
MI.hasOneMemOperand() &&
"Expected IRTranslator to set MemOp!");
8160 B.buildLoad(
MI.getOperand(0),
MI.getOperand(2), **
MI.memoperands_begin());
8161 MI.eraseFromParent();
8163 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
8164 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
8165 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B:
8166 assert(
MI.hasOneMemOperand() &&
"Expected IRTranslator to set MemOp!");
8167 B.buildStore(
MI.getOperand(2),
MI.getOperand(1), **
MI.memoperands_begin());
8168 MI.eraseFromParent();
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, SelectionDAG &DAG)
static SDValue getMad(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue X, SDValue Y, SDValue C, SDNodeFlags Flags=SDNodeFlags())
static bool valueIsKnownNeverF32Denorm(SDValue Src)
Return true if it's known that Src can never be an f32 denormal value.
Contains the definition of a TargetInstrInfo class that is common to all AMD GPUs.
static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI, SmallVectorImpl< Register > &PackedAddrs, unsigned ArgOffset, const AMDGPU::ImageDimIntrinsicInfo *Intr, bool IsA16, bool IsG16)
Turn a set of s16 typed registers in AddrRegs into a dword sized vector with s16 typed elements.
static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID)
static LLT getBufferRsrcScalarType(const LLT Ty)
static LegalityPredicate isIllegalRegisterType(const GCNSubtarget &ST, unsigned TypeIdx)
static cl::opt< bool > EnableNewLegality("amdgpu-global-isel-new-legality", cl::desc("Use GlobalISel desired legality, rather than try to use" "rules compatible with selection patterns"), cl::init(false), cl::ReallyHidden)
static MachineInstrBuilder buildExp(MachineIRBuilder &B, const DstOp &Dst, const SrcOp &Src, unsigned Flags)
static bool needsDenormHandlingF32(const MachineFunction &MF, Register Src, unsigned Flags)
constexpr std::initializer_list< LLT > AllVectors
static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx)
static LegalityPredicate isSmallOddVector(unsigned TypeIdx)
static LegalizeMutation oneMoreElement(unsigned TypeIdx)
static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size)
static bool allowApproxFunc(const MachineFunction &MF, unsigned Flags)
static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty, const LLT MemTy)
Return true if a load or store of the type should be lowered with a bitcast to a different type.
static constexpr unsigned FPEnvModeBitField
static LegalizeMutation getScalarTypeFromMemDesc(unsigned TypeIdx)
static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size)
static bool shouldWidenLoad(const GCNSubtarget &ST, LLT MemoryTy, uint64_t AlignInBits, unsigned AddrSpace, unsigned Opcode)
Return true if we should legalize a load by widening an odd sized memory access up to the alignment.
static bool isRegisterVectorElementType(LLT EltTy)
static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx)
static LegalityPredicate isWideVec16(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllScalarTypes
static LegalityPredicate isTruncStoreToSizePowerOf2(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllS32Vectors
static LegalizeMutation moreElementsToNextExistingRegClass(unsigned TypeIdx)
static Register castBufferRsrcToV4I32(Register Pointer, MachineIRBuilder &B)
Cast a buffer resource (an address space 8 pointer) into a 4xi32, which is the form in which the valu...
static bool isRegisterClassType(const GCNSubtarget &ST, LLT Ty)
static std::pair< Register, Register > emitReciprocalU64(MachineIRBuilder &B, Register Val)
static LLT getBitcastRegisterType(const LLT Ty)
static LLT getBufferRsrcRegisterType(const LLT Ty)
static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx)
static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI)
static LLT castBufferRsrcFromV4I32(MachineInstr &MI, MachineIRBuilder &B, MachineRegisterInfo &MRI, unsigned Idx)
Mutates IR (typicaly a load instruction) to use a <4 x s32> as the initial type of the operand idx an...
static bool replaceWithConstant(MachineIRBuilder &B, MachineInstr &MI, int64_t C)
static constexpr unsigned SPDenormModeBitField
static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS, bool IsLoad, bool IsAtomic)
static bool isLoadStoreSizeLegal(const GCNSubtarget &ST, const LegalityQuery &Query)
static MachineInstr * verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br, MachineBasicBlock *&UncondBrTarget, bool &Negated)
static LegalityPredicate numElementsNotEven(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllS64Vectors
static void castBufferRsrcArgToV4I32(MachineInstr &MI, MachineIRBuilder &B, unsigned Idx)
static constexpr unsigned FPEnvTrapBitField
static constexpr unsigned MaxRegisterSize
static bool isRegisterSize(const GCNSubtarget &ST, unsigned Size)
static LegalityPredicate isWideScalarExtLoadTruncStore(unsigned TypeIdx)
static bool hasBufferRsrcWorkaround(const LLT Ty)
static void toggleSPDenormMode(bool Enable, MachineIRBuilder &B, const GCNSubtarget &ST, SIModeRegisterDefaults Mode)
constexpr std::initializer_list< LLT > AllS16Vectors
static bool loadStoreBitcastWorkaround(const LLT Ty)
static LLT widenToNextPowerOf2(LLT Ty)
static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI)
static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI, int DimIdx, int NumVAddrs)
Convert from separate vaddr components to a single vector address register, and replace the remaining...
static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query)
static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx)
static LLT getPow2VectorType(LLT Ty)
static void buildBufferLoad(unsigned Opc, Register LoadDstReg, Register RSrc, Register VIndex, Register VOffset, Register SOffset, unsigned ImmOffset, unsigned Format, unsigned AuxiliaryData, MachineMemOperand *MMO, bool IsTyped, bool HasVIndex, MachineIRBuilder &B)
static LLT getPow2ScalarType(LLT Ty)
static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx)
static bool isRegisterVectorType(LLT Ty)
static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx)
static bool isRegisterType(const GCNSubtarget &ST, LLT Ty)
static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI, const AMDGPUTargetMachine &TM, unsigned AddrSpace)
Return true if the value is a known valid address, such that a null check is not necessary.
This file declares the targeting of the Machinelegalizer class for AMDGPU.
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Interface for Targets to specify which operations they can successfully select and how the others sho...
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
#define FP_DENORM_FLUSH_NONE
Interface definition for SIInstrInfo.
Interface definition for SIRegisterInfo.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
bool legalizeConstHwRegRead(MachineInstr &MI, MachineIRBuilder &B, AMDGPU::Hwreg::Id HwReg, unsigned LowBit, unsigned Width) const
void buildMultiply(LegalizerHelper &Helper, MutableArrayRef< Register > Accum, ArrayRef< Register > Src0, ArrayRef< Register > Src1, bool UsePartialMad64_32, bool SeparateOddAlignedProducts) const
bool legalizeGlobalValue(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF16(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeIntrinsicTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
std::pair< Register, unsigned > splitBufferOffsets(MachineIRBuilder &B, Register OrigOffset) const
bool legalizeBVHIntersectRayIntrinsic(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeIsAddrSpace(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, unsigned AddrSpace) const
bool legalizeUnsignedDIV_REM(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF32(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeAtomicCmpXChg(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeTrapHsa(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferStore(MachineInstr &MI, LegalizerHelper &Helper, bool IsTyped, bool IsFormat) const
bool legalizeMul(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFFREXP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register getSegmentAperture(unsigned AddrSpace, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFDIV64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizePointerAsRsrcIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
To create a buffer resource from a 64-bit pointer, mask off the upper 32 bits of the pointer and repl...
bool legalizeFlogCommon(MachineInstr &MI, MachineIRBuilder &B) const
bool getLDSKernelId(Register DstReg, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExp2(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeTrap(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferAtomic(MachineInstr &MI, MachineIRBuilder &B, Intrinsic::ID IID) const
void legalizeUnsignedDIV_REM32Impl(MachineIRBuilder &B, Register DstDivReg, Register DstRemReg, Register Num, Register Den) const
Register handleD16VData(MachineIRBuilder &B, MachineRegisterInfo &MRI, Register Reg, bool ImageStore=false) const
Handle register layout difference for f16 images for some subtargets.
bool legalizeCTLZ_CTTZ(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBuildVector(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFFloor(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
AMDGPULegalizerInfo(const GCNSubtarget &ST, const GCNTargetMachine &TM)
bool legalizeFDIV32(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFMad(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeSBufferPrefetch(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFExp10Unsafe(MachineIRBuilder &B, Register Dst, Register Src, unsigned Flags) const
bool legalizeFExp(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const override
bool legalizeFrem(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizePreloadedArgIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
bool legalizeStore(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
bool buildPCRelGlobalAddress(Register DstReg, LLT PtrTy, MachineIRBuilder &B, const GlobalValue *GV, int64_t Offset, unsigned GAFlags=SIInstrInfo::MO_NONE) const
MachinePointerInfo getKernargSegmentPtrInfo(MachineFunction &MF) const
bool legalizeFDIV16(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeRsqClampIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExpUnsafeImpl(MachineIRBuilder &B, Register Dst, Register Src, unsigned Flags, bool IsExp10) const
std::pair< Register, Register > getScaledLogInput(MachineIRBuilder &B, Register Src, unsigned Flags) const
bool legalizeFDIVFastIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool loadInputValue(Register DstReg, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
bool legalizeBVHDualOrBVH8IntersectRayIntrinsic(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeInsertVectorElt(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExpUnsafe(MachineIRBuilder &B, Register Dst, Register Src, unsigned Flags) const
bool legalizeAddrSpaceCast(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferLoad(MachineInstr &MI, LegalizerHelper &Helper, bool IsFormat, bool IsTyped) const
bool legalizeImplicitArgPtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeMinNumMaxNum(LegalizerHelper &Helper, MachineInstr &MI) const
void legalizeUnsignedDIV_REM64Impl(MachineIRBuilder &B, Register DstDivReg, Register DstRemReg, Register Num, Register Den) const
bool legalizeDebugTrap(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFastUnsafeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeSinCos(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWaveID(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFroundeven(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeLDSKernelId(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWorkGroupId(MachineInstr &MI, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ClusterIdPV, AMDGPUFunctionArgInfo::PreloadedValue ClusterMaxIdPV, AMDGPUFunctionArgInfo::PreloadedValue ClusterWorkGroupIdPV) const
bool legalizeSignedDIV_REM(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeITOFP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const
bool legalizeFPow(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFastUnsafeFDIV64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFPTOI(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const
bool legalizeStackSave(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFlogUnsafe(MachineIRBuilder &B, Register Dst, Register Src, bool IsLog10, unsigned Flags) const
bool legalizeKernargMemParameter(MachineInstr &MI, MachineIRBuilder &B, uint64_t Offset, Align Alignment=Align(4)) const
Legalize a value that's loaded from kernel arguments.
bool legalizeImageIntrinsic(MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer, const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr) const
Rewrite image intrinsics to use register layouts expected by the subtarget.
void buildAbsGlobalAddress(Register DstReg, LLT PtrTy, MachineIRBuilder &B, const GlobalValue *GV, MachineRegisterInfo &MRI) const
bool legalizeGetFPEnv(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool getImplicitArgPtr(Register DstReg, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRT(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register getKernargParameterPtr(MachineIRBuilder &B, int64_t Offset) const
bool legalizeSBufferLoad(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFceil(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeExtractVectorElt(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeLoad(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeCTLZ_ZERO_UNDEF(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register fixStoreSourceType(MachineIRBuilder &B, Register VData, LLT MemTy, bool IsFormat) const
bool legalizeLaneOp(LegalizerHelper &Helper, MachineInstr &MI, Intrinsic::ID IID) const
bool legalizeSetFPEnv(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWorkitemIDIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, unsigned Dim, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
void buildLoadInputValue(Register DstReg, MachineIRBuilder &B, const ArgDescriptor *Arg, const TargetRegisterClass *ArgRC, LLT ArgTy) const
bool legalizeTrapHsaQueuePtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFlog2(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeTrapEndpgm(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
static std::optional< uint32_t > getLDSKernelIdMetadata(const Function &F)
void setDynLDSAlign(const Function &F, const GlobalVariable &GV)
unsigned allocateLDSGlobal(const DataLayout &DL, const GlobalVariable &GV)
bool isEntryFunction() const
bool isModuleEntryFunction() const
static int64_t getNullPointerValue(unsigned AddrSpace)
Get the integer value of a null pointer in the given address space.
bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override
Returns true if a cast between SrcAS and DestAS is a noop.
const std::array< unsigned, 3 > & getDims() const
static const fltSemantics & IEEEsingle()
static const fltSemantics & IEEEdouble()
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
@ ICMP_SLT
signed less than
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ ICMP_UGE
unsigned greater or equal
@ ICMP_SGT
signed greater than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ ICMP_ULT
unsigned less than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
This is the shared class of boolean and integer constants.
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Diagnostic information for unsupported feature in backend.
static constexpr ElementCount getFixed(ScalarTy MinVal)
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
Simple wrapper observer that takes several observers, and calls each one for each event.
KnownBits getKnownBits(Register R)
bool hasExternalLinkage() const
Module * getParent()
Get the module that this global value is contained inside of...
Type * getValueType() const
static constexpr LLT float64()
Get a 64-bit IEEE double value.
constexpr unsigned getScalarSizeInBits() const
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr bool isPointer() const
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
static constexpr LLT float16()
Get a 16-bit IEEE half value.
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
constexpr LLT getScalarType() const
static constexpr LLT scalarOrVector(ElementCount EC, LLT ScalarTy)
static constexpr LLT float32()
Get a 32-bit IEEE float value.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
LLVM_ABI void computeTables()
Compute any ancillary tables needed to quickly decide how an operation should be handled.
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & unsupported()
The instruction is unsupported.
LegalizeRuleSet & scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx)
Change the type TypeIdx to have the same scalar size as type SameSizeIdx.
LegalizeRuleSet & fewerElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Remove elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & clampScalarOrElt(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The specified type index is coerced if predicate is true.
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & minScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements)
Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet & unsupportedFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Add more elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate)
The instruction is lowered if predicate is true.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy, unsigned NumElts)
Express EltTy vectors strictly using vectors with NumElts elements (or scalars when NumElts equals 1)...
LegalizeRuleSet & unsupportedIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Widen the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & alwaysLegal()
LegalizeRuleSet & clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the number of elements for the given vectors to at least MinTy's number of elements and at most...
LegalizeRuleSet & maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Conditionally limit the maximum size of the scalar.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & scalarize(unsigned TypeIdx)
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
LegalizeRuleSet & customFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & widenScalarToNextMultipleOf(unsigned TypeIdx, unsigned Size)
Widen the scalar to the next multiple of Size.
LLVM_ABI LegalizeResult lowerFMinNumMaxNum(MachineInstr &MI)
LLVM_ABI void moreElementsVectorDst(MachineInstr &MI, LLT MoreTy, unsigned OpIdx)
Legalize a single operand OpIdx of the machine instruction MI as a Def by performing it with addition...
GISelValueTracking * getValueTracking() const
@ Legalized
Instruction has been legalized and the MachineFunction changed.
GISelChangeObserver & Observer
To keep track of changes made by the LegalizerHelper.
LLVM_ABI void bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx)
Legalize a single operand OpIdx of the machine instruction MI as a def by inserting a G_BITCAST from ...
LLVM_ABI LegalizeResult lowerFMad(MachineInstr &MI)
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LLVM_ABI void widenScalarDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx=0, unsigned TruncOpcode=TargetOpcode::G_TRUNC)
Legalize a single operand OpIdx of the machine instruction MI as a Def by extending the operand's typ...
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
TypeSize getValue() const
Wrapper class representing physical registers. Should be passed by value.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
PseudoSourceValueManager & getPSVManager() const
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void push_back(MachineBasicBlock *MBB)
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Helper class to build MachineInstr.
MachineFunction & getMF()
Getter for the function we currently build.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
LLT getMemoryType() const
Return the memory type of the memory reference.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
MachineBasicBlock * getMBB() const
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
void setMBB(MachineBasicBlock *MBB)
static MachineOperand CreateImm(int64_t Val)
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
MutableArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
LLVM_ABI const PseudoSourceValue * getConstantPool()
Return a pseudo source value referencing the constant pool.
Wrapper class representing virtual and physical registers.
constexpr bool isValid() const
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
static unsigned getMaxMUBUFImmOffset(const GCNSubtarget &ST)
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
bool hasWorkGroupIDZ() const
AMDGPU::ClusterDimsAttr getClusterDims() const
SIModeRegisterDefaults getMode() const
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
bool allowsMisalignedMemoryAccessesImpl(unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const
bool shouldEmitFixup(const GlobalValue *GV) const
bool shouldUseLDSConstAddress(const GlobalValue *GV) const
bool shouldEmitPCReloc(const GlobalValue *GV) const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void truncate(size_type N)
Like resize, but requires that N is less than size().
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
unsigned getPointerSizeInBits(unsigned AS) const
unsigned NoNaNsFPMath
NoNaNsFPMath - This flag is enabled when the -enable-no-nans-fp-math flag is specified on the command...
The instances of the Type class are immutable: once they are created, they are never changed.
A Use represents the edge between a Value definition and its users.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
bool isFlatGlobalAddrSpace(unsigned AS)
bool isGFX12Plus(const MCSubtargetInfo &STI)
bool isGFX11(const MCSubtargetInfo &STI)
LLVM_READNONE bool isLegalDPALU_DPPControl(const MCSubtargetInfo &ST, unsigned DC)
unsigned getAMDHSACodeObjectVersion(const Module &M)
LLVM_READNONE constexpr bool isKernel(CallingConv::ID CC)
LLVM_READNONE constexpr bool isEntryFunctionCC(CallingConv::ID CC)
LLVM_READNONE constexpr bool isCompute(CallingConv::ID CC)
TargetExtType * isNamedBarrier(const GlobalVariable &GV)
bool isGFX11Plus(const MCSubtargetInfo &STI)
bool isGFX1250(const MCSubtargetInfo &STI)
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
std::pair< Register, unsigned > getBaseWithConstantOffset(MachineRegisterInfo &MRI, Register Reg, GISelValueTracking *ValueTracking=nullptr, bool CheckNUW=false)
Returns base register and constant offset.
const ImageDimIntrinsicInfo * getImageDimIntrinsicInfo(unsigned Intr)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ MaxID
The highest possible ID. Must be some 2^k - 1.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or a vector with an element type that's wider than the ...
LLVM_ABI LegalityPredicate isScalar(unsigned TypeIdx)
True iff the specified type index is a scalar.
LLVM_ABI LegalityPredicate isPointer(unsigned TypeIdx)
True iff the specified type index is a pointer (with any address space).
LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
LLVM_ABI LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a smaller total bit size than second type index.
LLVM_ABI LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a larger total bit size than second type index.
LLVM_ABI LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy)
True if the type index is a vector with element type EltTy.
LLVM_ABI LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the specified type indices are both the same bit size.
LLVM_ABI LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or vector with an element type that's narrower than the...
LLVM_ABI LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size)
True if the total bitwidth of the specified type index is Size bits.
LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type)
True iff the given type index is not the specified type.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
LLVM_ABI LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's narrower than the given size.
LLVM_ABI LegalizeMutation scalarize(unsigned TypeIdx)
Break up the vector type for the given type index into the element type.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min=0)
Widen the scalar type or vector element type for the given type index to the next power of 2.
LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
@ Implicit
Not emitted register (e.g. carry, or temporary result).
Invariant opcodes: All instruction sets have these as their low opcodes.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Register getFunctionLiveInPhysReg(MachineFunction &MF, const TargetInstrInfo &TII, MCRegister PhysReg, const TargetRegisterClass &RC, const DebugLoc &DL, LLT RegTy=LLT())
Return a virtual register corresponding to the incoming argument register PhysReg.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
LLVM_ABI Type * getTypeForLLT(LLT Ty, LLVMContext &C)
Get the type back from LLT.
LLVM_ABI MachineInstr * getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI)
See if Reg is defined by an single def instruction that is Opcode.
LLVM_ABI const ConstantFP * getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI const llvm::fltSemantics & getFltSemanticForLLT(LLT Ty)
Get the appropriate floating point arithmetic semantic based on the bit size of the given scalar LLT.
std::function< std::pair< unsigned, LLT >(const LegalityQuery &)> LegalizeMutation
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
LLVM_ABI std::optional< int64_t > getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI)
If VReg is defined by a G_CONSTANT fits in int64_t returns it.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool has_single_bit(T Value) noexcept
std::function< bool(const LegalityQuery &)> LegalityPredicate
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
auto make_scope_exit(Callable &&F)
To bit_cast(const From &from) noexcept
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI void eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver=nullptr)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
unsigned Log2(Align A)
Returns the log2 of the alignment.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
@ CLUSTER_WORKGROUP_MAX_ID_X
@ CLUSTER_WORKGROUP_MAX_ID_Z
@ CLUSTER_WORKGROUP_MAX_FLAT_ID
@ CLUSTER_WORKGROUP_MAX_ID_Y
static constexpr uint64_t encode(Fields... Values)
MIMGBaseOpcode BaseOpcode
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
MCRegister getRegister() const
static ArgDescriptor createRegister(Register Reg, unsigned Mask=~0u)
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ Dynamic
Denormals have unknown treatment.
static constexpr DenormalMode getPreserveSign()
static constexpr DenormalMode getIEEE()
bool isZero() const
Returns true if value is all zero.
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
This class contains a discriminated union of information about pointers in memory operands,...
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
DenormalMode FP64FP16Denormals
If this is set, neither input or output denormals are flushed for both f64 and f16/v2f16 instructions...
bool IEEE
Floating point opcodes that support exception flag gathering quiet and propagate signaling NaN inputs...
DenormalMode FP32Denormals
If this is set, neither input or output denormals are flushed for most f32 instructions.