94#include "llvm/IR/IntrinsicsAArch64.h"
95#include "llvm/IR/IntrinsicsAMDGPU.h"
96#include "llvm/IR/IntrinsicsARM.h"
97#include "llvm/IR/IntrinsicsNVPTX.h"
98#include "llvm/IR/IntrinsicsWebAssembly.h"
136 cl::desc(
"Ensure that llvm.experimental.noalias.scope.decl for identical "
137 "scopes are not dominating"));
160 *
OS <<
"; ModuleID = '" << M->getModuleIdentifier() <<
"'\n";
173 V.printAsOperand(*
OS,
true,
MST);
178 void Write(
const DbgRecord *DR) {
212 template <
class T>
void Write(
const MDTupleTypedArrayWrapper<T> &MD) {
216 void Write(
const NamedMDNode *NMD) {
229 void Write(
const Comdat *
C) {
235 void Write(
const APInt *AI) {
241 void Write(
const unsigned i) { *
OS << i <<
'\n'; }
247 *
OS <<
A->getAsString() <<
'\n';
251 void Write(
const AttributeSet *AS) {
258 void Write(
const AttributeList *AL) {
264 void Write(Printable
P) { *
OS <<
P <<
'\n'; }
266 template <
typename T>
void Write(ArrayRef<T> Vs) {
267 for (
const T &V : Vs)
271 template <
typename T1,
typename... Ts>
272 void WriteTs(
const T1 &V1,
const Ts &... Vs) {
277 template <
typename... Ts>
void WriteTs() {}
286 *
OS << Message <<
'\n';
294 template <
typename T1,
typename... Ts>
304 *
OS << Message <<
'\n';
310 template <
typename T1,
typename... Ts>
342 Type *LandingPadResultTy;
349 bool HasDebugInfo =
false;
392 SawFrameEscape(
false), TBAAVerifyHelper(this) {
393 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
396 bool hasBrokenDebugInfo()
const {
return BrokenDebugInfo; }
398 bool verify(
const Function &
F) {
399 llvm::TimeTraceScope timeScope(
"Verifier");
401 "An instance of this class only works with a specific module!");
410 DT.recalculate(
const_cast<Function &
>(
F));
412 for (
const BasicBlock &BB :
F) {
413 if (!BB.empty() && BB.back().isTerminator())
417 *OS <<
"Basic Block in function '" <<
F.getName()
418 <<
"' does not have terminator!\n";
419 BB.printAsOperand(*OS,
true, MST);
425 auto FailureCB = [
this](
const Twine &Message) {
426 this->CheckFailed(Message);
428 ConvergenceVerifyHelper.initialize(OS, FailureCB,
F);
433 verifySiblingFuncletUnwinds();
435 if (ConvergenceVerifyHelper.sawTokens())
436 ConvergenceVerifyHelper.verify(DT);
438 InstsInThisBlock.clear();
440 LandingPadResultTy =
nullptr;
441 SawFrameEscape =
false;
442 SiblingFuncletInfo.clear();
443 verifyNoAliasScopeDecl();
444 NoAliasScopeDecls.clear();
454 for (
const Function &
F : M)
455 if (
F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
456 DeoptimizeDeclarations.push_back(&
F);
460 verifyFrameRecoverIndices();
461 for (
const GlobalVariable &GV :
M.globals())
462 visitGlobalVariable(GV);
464 for (
const GlobalAlias &GA :
M.aliases())
465 visitGlobalAlias(GA);
467 for (
const GlobalIFunc &GI :
M.ifuncs())
468 visitGlobalIFunc(GI);
470 for (
const NamedMDNode &NMD :
M.named_metadata())
471 visitNamedMDNode(NMD);
473 for (
const StringMapEntry<Comdat> &SMEC :
M.getComdatSymbolTable())
474 visitComdat(SMEC.getValue());
478 visitModuleCommandLines();
479 visitModuleErrnoTBAA();
481 verifyCompileUnits();
483 verifyDeoptimizeCallingConvs();
484 DISubprogramAttachments.clear();
490 enum class AreDebugLocsAllowed {
No,
Yes };
494 enum class RangeLikeMetadataKind {
501 void visitGlobalValue(
const GlobalValue &GV);
502 void visitGlobalVariable(
const GlobalVariable &GV);
503 void visitGlobalAlias(
const GlobalAlias &GA);
504 void visitGlobalIFunc(
const GlobalIFunc &GI);
505 void visitAliaseeSubExpr(
const GlobalAlias &
A,
const Constant &
C);
506 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
507 const GlobalAlias &
A,
const Constant &
C);
508 void visitNamedMDNode(
const NamedMDNode &NMD);
509 void visitMDNode(
const MDNode &MD, AreDebugLocsAllowed AllowLocs);
510 void visitMetadataAsValue(
const MetadataAsValue &MD, Function *
F);
511 void visitValueAsMetadata(
const ValueAsMetadata &MD, Function *
F);
512 void visitDIArgList(
const DIArgList &AL, Function *
F);
513 void visitComdat(
const Comdat &
C);
514 void visitModuleIdents();
515 void visitModuleCommandLines();
516 void visitModuleErrnoTBAA();
517 void visitModuleFlags();
518 void visitModuleFlag(
const MDNode *
Op,
519 DenseMap<const MDString *, const MDNode *> &SeenIDs,
520 SmallVectorImpl<const MDNode *> &Requirements);
521 void visitModuleFlagCGProfileEntry(
const MDOperand &MDO);
522 void visitFunction(
const Function &
F);
523 void visitBasicBlock(BasicBlock &BB);
524 void verifyRangeLikeMetadata(
const Value &V,
const MDNode *
Range,
Type *Ty,
525 RangeLikeMetadataKind Kind);
526 void visitRangeMetadata(Instruction &
I, MDNode *
Range,
Type *Ty);
527 void visitNoaliasAddrspaceMetadata(Instruction &
I, MDNode *
Range,
Type *Ty);
528 void visitDereferenceableMetadata(Instruction &
I, MDNode *MD);
529 void visitNofreeMetadata(Instruction &
I, MDNode *MD);
530 void visitProfMetadata(Instruction &
I, MDNode *MD);
531 void visitCallStackMetadata(MDNode *MD);
532 void visitMemProfMetadata(Instruction &
I, MDNode *MD);
533 void visitCallsiteMetadata(Instruction &
I, MDNode *MD);
534 void visitCalleeTypeMetadata(Instruction &
I, MDNode *MD);
535 void visitDIAssignIDMetadata(Instruction &
I, MDNode *MD);
536 void visitMMRAMetadata(Instruction &
I, MDNode *MD);
537 void visitAnnotationMetadata(MDNode *Annotation);
538 void visitAliasScopeMetadata(
const MDNode *MD);
539 void visitAliasScopeListMetadata(
const MDNode *MD);
540 void visitAccessGroupMetadata(
const MDNode *MD);
541 void visitCapturesMetadata(Instruction &
I,
const MDNode *Captures);
542 void visitAllocTokenMetadata(Instruction &
I, MDNode *MD);
544 template <
class Ty>
bool isValidMetadataArray(
const MDTuple &
N);
545#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
546#include "llvm/IR/Metadata.def"
547 void visitDIScope(
const DIScope &
N);
571 void checkPtrToAddr(
Type *SrcTy,
Type *DestTy,
const Value &V);
576 void visitPHINode(
PHINode &PN);
585 void visitVAArgInst(
VAArgInst &VAA) { visitInstruction(VAA); }
586 void visitCallInst(CallInst &CI);
587 void visitInvokeInst(InvokeInst &
II);
588 void visitGetElementPtrInst(GetElementPtrInst &
GEP);
589 void visitLoadInst(LoadInst &LI);
590 void visitStoreInst(StoreInst &SI);
591 void verifyDominatesUse(Instruction &
I,
unsigned i);
592 void visitInstruction(Instruction &
I);
593 void visitTerminator(Instruction &
I);
594 void visitBranchInst(BranchInst &BI);
595 void visitReturnInst(ReturnInst &RI);
596 void visitSwitchInst(SwitchInst &SI);
597 void visitIndirectBrInst(IndirectBrInst &BI);
598 void visitCallBrInst(CallBrInst &CBI);
599 void visitSelectInst(SelectInst &SI);
600 void visitUserOp1(Instruction &
I);
601 void visitUserOp2(Instruction &
I) { visitUserOp1(
I); }
603 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
604 void visitVPIntrinsic(VPIntrinsic &VPI);
605 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
606 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
607 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
608 void visitFenceInst(FenceInst &FI);
609 void visitAllocaInst(AllocaInst &AI);
610 void visitExtractValueInst(ExtractValueInst &EVI);
611 void visitInsertValueInst(InsertValueInst &IVI);
612 void visitEHPadPredecessors(Instruction &
I);
613 void visitLandingPadInst(LandingPadInst &LPI);
614 void visitResumeInst(ResumeInst &RI);
615 void visitCatchPadInst(CatchPadInst &CPI);
616 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
617 void visitCleanupPadInst(CleanupPadInst &CPI);
618 void visitFuncletPadInst(FuncletPadInst &FPI);
619 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
620 void visitCleanupReturnInst(CleanupReturnInst &CRI);
622 void verifySwiftErrorCall(CallBase &
Call,
const Value *SwiftErrorVal);
623 void verifySwiftErrorValue(
const Value *SwiftErrorVal);
624 void verifyTailCCMustTailAttrs(
const AttrBuilder &Attrs, StringRef
Context);
625 void verifyMustTailCall(CallInst &CI);
626 bool verifyAttributeCount(AttributeList Attrs,
unsigned Params);
627 void verifyAttributeTypes(AttributeSet Attrs,
const Value *V);
628 void verifyParameterAttrs(AttributeSet Attrs,
Type *Ty,
const Value *V);
629 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
631 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
632 const Value *V,
bool IsIntrinsic,
bool IsInlineAsm);
633 void verifyFunctionMetadata(
ArrayRef<std::pair<unsigned, MDNode *>> MDs);
634 void verifyUnknownProfileMetadata(MDNode *MD);
635 void visitConstantExprsRecursively(
const Constant *EntryC);
636 void visitConstantExpr(
const ConstantExpr *CE);
637 void visitConstantPtrAuth(
const ConstantPtrAuth *CPA);
638 void verifyInlineAsmCall(
const CallBase &
Call);
639 void verifyStatepoint(
const CallBase &
Call);
640 void verifyFrameRecoverIndices();
641 void verifySiblingFuncletUnwinds();
643 void verifyFragmentExpression(
const DbgVariableRecord &
I);
644 template <
typename ValueOrMetadata>
645 void verifyFragmentExpression(
const DIVariable &V,
647 ValueOrMetadata *
Desc);
648 void verifyFnArgs(
const DbgVariableRecord &DVR);
649 void verifyNotEntryValue(
const DbgVariableRecord &
I);
652 void verifyCompileUnits();
656 void verifyDeoptimizeCallingConvs();
658 void verifyAttachedCallBundle(
const CallBase &
Call,
659 const OperandBundleUse &BU);
662 void verifyNoAliasScopeDecl();
668#define Check(C, ...) \
671 CheckFailed(__VA_ARGS__); \
678#define CheckDI(C, ...) \
681 DebugInfoCheckFailed(__VA_ARGS__); \
689 CheckDI(
I.DebugMarker->MarkedInstr == &
I,
690 "Instruction has invalid DebugMarker", &
I);
692 "PHI Node must not have any attached DbgRecords", &
I);
695 "DbgRecord had invalid DebugMarker", &
I, &DR);
698 visitMDNode(*
Loc, AreDebugLocsAllowed::Yes);
703 verifyFragmentExpression(*DVR);
704 verifyNotEntryValue(*DVR);
711void Verifier::visit(Instruction &
I) {
713 for (
unsigned i = 0, e =
I.getNumOperands(); i != e; ++i)
714 Check(
I.getOperand(i) !=
nullptr,
"Operand is null", &
I);
726 while (!WorkList.
empty()) {
728 if (!Visited.
insert(Cur).second)
735void Verifier::visitGlobalValue(
const GlobalValue &GV) {
737 "Global is external, but doesn't have external or weak linkage!", &GV);
740 if (
const MDNode *Associated =
741 GO->getMetadata(LLVMContext::MD_associated)) {
742 Check(Associated->getNumOperands() == 1,
743 "associated metadata must have one operand", &GV, Associated);
744 const Metadata *
Op = Associated->getOperand(0).get();
745 Check(
Op,
"associated metadata must have a global value", GO, Associated);
748 Check(VM,
"associated metadata must be ValueAsMetadata", GO, Associated);
751 "associated value must be pointer typed", GV, Associated);
753 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
755 "associated metadata must point to a GlobalObject", GO, Stripped);
756 Check(Stripped != GO,
757 "global values should not associate to themselves", GO,
763 if (
const MDNode *AbsoluteSymbol =
764 GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
765 verifyRangeLikeMetadata(*GO, AbsoluteSymbol,
766 DL.getIntPtrType(GO->getType()),
767 RangeLikeMetadataKind::AbsoluteSymbol);
772 "Only global variables can have appending linkage!", &GV);
777 "Only global arrays can have appending linkage!", GVar);
781 Check(!GV.
hasComdat(),
"Declaration may not be in a Comdat!", &GV);
785 "dllexport GlobalValue must have default or protected visibility",
790 "dllimport GlobalValue must have default visibility", &GV);
791 Check(!GV.
isDSOLocal(),
"GlobalValue with DLLImport Storage is dso_local!",
797 "Global is marked as dllimport, but not external", &GV);
802 "GlobalValue with local linkage or non-default "
803 "visibility must be dso_local!",
808 if (!
I->getParent() || !
I->getParent()->getParent())
809 CheckFailed(
"Global is referenced by parentless instruction!", &GV, &M,
811 else if (
I->getParent()->getParent()->getParent() != &M)
812 CheckFailed(
"Global is referenced in a different module!", &GV, &M,
I,
813 I->getParent()->getParent(),
814 I->getParent()->getParent()->getParent());
817 if (
F->getParent() != &M)
818 CheckFailed(
"Global is used by function in a different module", &GV, &M,
826void Verifier::visitGlobalVariable(
const GlobalVariable &GV) {
830 Check(
A->value() <= Value::MaximumAlignment,
831 "huge alignment values are unsupported", &GV);
836 "Global variable initializer type does not match global "
840 "Global variable initializer must be sized", &GV);
846 "'common' global must have a zero initializer!", &GV);
849 Check(!GV.
hasComdat(),
"'common' global may not be in a Comdat!", &GV);
854 GV.
getName() ==
"llvm.global_dtors")) {
856 "invalid linkage for intrinsic global variable", &GV);
858 "invalid uses of intrinsic global variable", &GV);
865 PointerType::get(
Context,
DL.getProgramAddressSpace());
869 "wrong type for intrinsic global variable", &GV);
871 "the third field of the element type is mandatory, "
872 "specify ptr null to migrate from the obsoleted 2-field form");
880 GV.
getName() ==
"llvm.compiler.used")) {
882 "invalid linkage for intrinsic global variable", &GV);
884 "invalid uses of intrinsic global variable", &GV);
888 Check(PTy,
"wrong type for intrinsic global variable", &GV);
892 Check(InitArray,
"wrong initializer for intrinsic global variable",
898 Twine(
"invalid ") + GV.
getName() +
" member", V);
900 Twine(
"members of ") + GV.
getName() +
" must be named", V);
909 for (
auto *MD : MDs) {
911 visitDIGlobalVariableExpression(*GVE);
913 CheckDI(
false,
"!dbg attachment of global variable must be a "
914 "DIGlobalVariableExpression");
924 "Global @" + GV.
getName() +
" has illegal target extension type",
928 visitGlobalValue(GV);
935 visitGlobalValue(GV);
938void Verifier::visitAliaseeSubExpr(
const GlobalAlias &GA,
const Constant &
C) {
939 SmallPtrSet<const GlobalAlias*, 4> Visited;
941 visitAliaseeSubExpr(Visited, GA,
C);
944void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
945 const GlobalAlias &GA,
const Constant &
C) {
949 "available_externally alias must point to available_externally "
960 Check(Visited.
insert(GA2).second,
"Aliases cannot form a cycle", &GA);
962 Check(!GA2->isInterposable(),
963 "Alias cannot point to an interposable alias", &GA);
972 visitConstantExprsRecursively(CE);
974 for (
const Use &U :
C.operands()) {
977 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
979 visitAliaseeSubExpr(Visited, GA, *C2);
983void Verifier::visitGlobalAlias(
const GlobalAlias &GA) {
985 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
986 "weak_odr, external, or available_externally linkage!",
989 Check(Aliasee,
"Aliasee cannot be NULL!", &GA);
991 "Alias and aliasee types should match!", &GA);
994 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
996 visitAliaseeSubExpr(GA, *Aliasee);
998 visitGlobalValue(GA);
1001void Verifier::visitGlobalIFunc(
const GlobalIFunc &GI) {
1002 visitGlobalValue(GI);
1006 for (
const auto &
I : MDs) {
1007 CheckDI(
I.first != LLVMContext::MD_dbg,
1008 "an ifunc may not have a !dbg attachment", &GI);
1009 Check(
I.first != LLVMContext::MD_prof,
1010 "an ifunc may not have a !prof attachment", &GI);
1011 visitMDNode(*
I.second, AreDebugLocsAllowed::No);
1015 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
1016 "weak_odr, or external linkage!",
1021 Check(Resolver,
"IFunc must have a Function resolver", &GI);
1023 "IFunc resolver must be a definition", &GI);
1030 "IFunc resolver must return a pointer", &GI);
1033 "IFunc resolver has incorrect type", &GI);
1036void Verifier::visitNamedMDNode(
const NamedMDNode &NMD) {
1041 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
1042 for (
const MDNode *MD : NMD.
operands()) {
1043 if (NMD.
getName() ==
"llvm.dbg.cu")
1049 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
1053void Verifier::visitMDNode(
const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
1056 if (!MDNodes.
insert(&MD).second)
1060 "MDNode context does not match Module context!", &MD);
1065 case Metadata::MDTupleKind:
1067#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
1068 case Metadata::CLASS##Kind: \
1069 visit##CLASS(cast<CLASS>(MD)); \
1071#include "llvm/IR/Metadata.def"
1080 "DILocation not allowed within this metadata node", &MD,
Op);
1082 visitMDNode(*
N, AllowLocs);
1086 visitValueAsMetadata(*V,
nullptr);
1098 "Expected second operand to be an integer constant of type i32 or "
1108void Verifier::visitValueAsMetadata(
const ValueAsMetadata &MD, Function *
F) {
1111 "Unexpected metadata round-trip through values", &MD, MD.
getValue());
1117 Check(
F,
"function-local metadata used outside a function", L);
1123 Check(
I->getParent(),
"function-local metadata not in basic block", L,
I);
1129 assert(ActualF &&
"Unimplemented function local metadata case!");
1131 Check(ActualF ==
F,
"function-local metadata used in wrong function", L);
1134void Verifier::visitDIArgList(
const DIArgList &AL, Function *
F) {
1135 for (
const ValueAsMetadata *VAM :
AL.getArgs())
1136 visitValueAsMetadata(*VAM,
F);
1139void Verifier::visitMetadataAsValue(
const MetadataAsValue &MDV, Function *
F) {
1142 visitMDNode(*
N, AreDebugLocsAllowed::No);
1148 if (!MDNodes.
insert(MD).second)
1152 visitValueAsMetadata(*V,
F);
1155 visitDIArgList(*AL,
F);
1162void Verifier::visitDILocation(
const DILocation &
N) {
1164 "location requires a valid scope", &
N,
N.getRawScope());
1165 if (
auto *IA =
N.getRawInlinedAt())
1168 CheckDI(
SP->isDefinition(),
"scope points into the type hierarchy", &
N);
1171void Verifier::visitGenericDINode(
const GenericDINode &
N) {
1175void Verifier::visitDIScope(
const DIScope &
N) {
1176 if (
auto *
F =
N.getRawFile())
1180void Verifier::visitDISubrangeType(
const DISubrangeType &
N) {
1181 CheckDI(
N.getTag() == dwarf::DW_TAG_subrange_type,
"invalid tag", &
N);
1184 auto *LBound =
N.getRawLowerBound();
1187 "LowerBound must be signed constant or DIVariable or DIExpression",
1189 auto *UBound =
N.getRawUpperBound();
1192 "UpperBound must be signed constant or DIVariable or DIExpression",
1194 auto *Stride =
N.getRawStride();
1197 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1198 auto *Bias =
N.getRawBias();
1201 "Bias must be signed constant or DIVariable or DIExpression", &
N);
1203 auto *
Size =
N.getRawSizeInBits();
1205 "SizeInBits must be a constant");
1208void Verifier::visitDISubrange(
const DISubrange &
N) {
1209 CheckDI(
N.getTag() == dwarf::DW_TAG_subrange_type,
"invalid tag", &
N);
1210 CheckDI(!
N.getRawCountNode() || !
N.getRawUpperBound(),
1211 "Subrange can have any one of count or upperBound", &
N);
1212 auto *CBound =
N.getRawCountNode();
1215 "Count must be signed constant or DIVariable or DIExpression", &
N);
1216 auto Count =
N.getCount();
1219 "invalid subrange count", &
N);
1220 auto *LBound =
N.getRawLowerBound();
1223 "LowerBound must be signed constant or DIVariable or DIExpression",
1225 auto *UBound =
N.getRawUpperBound();
1228 "UpperBound must be signed constant or DIVariable or DIExpression",
1230 auto *Stride =
N.getRawStride();
1233 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1236void Verifier::visitDIGenericSubrange(
const DIGenericSubrange &
N) {
1237 CheckDI(
N.getTag() == dwarf::DW_TAG_generic_subrange,
"invalid tag", &
N);
1238 CheckDI(!
N.getRawCountNode() || !
N.getRawUpperBound(),
1239 "GenericSubrange can have any one of count or upperBound", &
N);
1240 auto *CBound =
N.getRawCountNode();
1242 "Count must be signed constant or DIVariable or DIExpression", &
N);
1243 auto *LBound =
N.getRawLowerBound();
1244 CheckDI(LBound,
"GenericSubrange must contain lowerBound", &
N);
1246 "LowerBound must be signed constant or DIVariable or DIExpression",
1248 auto *UBound =
N.getRawUpperBound();
1250 "UpperBound must be signed constant or DIVariable or DIExpression",
1252 auto *Stride =
N.getRawStride();
1253 CheckDI(Stride,
"GenericSubrange must contain stride", &
N);
1255 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1258void Verifier::visitDIEnumerator(
const DIEnumerator &
N) {
1259 CheckDI(
N.getTag() == dwarf::DW_TAG_enumerator,
"invalid tag", &
N);
1262void Verifier::visitDIBasicType(
const DIBasicType &
N) {
1263 CheckDI(
N.getTag() == dwarf::DW_TAG_base_type ||
1264 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1265 N.getTag() == dwarf::DW_TAG_string_type,
1268 auto *
Size =
N.getRawSizeInBits();
1270 "SizeInBits must be a constant");
1273void Verifier::visitDIFixedPointType(
const DIFixedPointType &
N) {
1274 visitDIBasicType(
N);
1276 CheckDI(
N.getTag() == dwarf::DW_TAG_base_type,
"invalid tag", &
N);
1277 CheckDI(
N.getEncoding() == dwarf::DW_ATE_signed_fixed ||
1278 N.getEncoding() == dwarf::DW_ATE_unsigned_fixed,
1279 "invalid encoding", &
N);
1283 "invalid kind", &
N);
1285 N.getFactorRaw() == 0,
1286 "factor should be 0 for rationals", &
N);
1288 (
N.getNumeratorRaw() == 0 &&
N.getDenominatorRaw() == 0),
1289 "numerator and denominator should be 0 for non-rationals", &
N);
1292void Verifier::visitDIStringType(
const DIStringType &
N) {
1293 CheckDI(
N.getTag() == dwarf::DW_TAG_string_type,
"invalid tag", &
N);
1294 CheckDI(!(
N.isBigEndian() &&
N.isLittleEndian()),
"has conflicting flags",
1298void Verifier::visitDIDerivedType(
const DIDerivedType &
N) {
1302 CheckDI(
N.getTag() == dwarf::DW_TAG_typedef ||
1303 N.getTag() == dwarf::DW_TAG_pointer_type ||
1304 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1305 N.getTag() == dwarf::DW_TAG_reference_type ||
1306 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1307 N.getTag() == dwarf::DW_TAG_const_type ||
1308 N.getTag() == dwarf::DW_TAG_immutable_type ||
1309 N.getTag() == dwarf::DW_TAG_volatile_type ||
1310 N.getTag() == dwarf::DW_TAG_restrict_type ||
1311 N.getTag() == dwarf::DW_TAG_atomic_type ||
1312 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ||
1313 N.getTag() == dwarf::DW_TAG_member ||
1314 (
N.getTag() == dwarf::DW_TAG_variable &&
N.isStaticMember()) ||
1315 N.getTag() == dwarf::DW_TAG_inheritance ||
1316 N.getTag() == dwarf::DW_TAG_friend ||
1317 N.getTag() == dwarf::DW_TAG_set_type ||
1318 N.getTag() == dwarf::DW_TAG_template_alias,
1320 if (
N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1321 CheckDI(
isType(
N.getRawExtraData()),
"invalid pointer to member type", &
N,
1322 N.getRawExtraData());
1325 if (
N.getTag() == dwarf::DW_TAG_set_type) {
1326 if (
auto *
T =
N.getRawBaseType()) {
1331 (Enum &&
Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1332 (Subrange &&
Subrange->getTag() == dwarf::DW_TAG_subrange_type) ||
1333 (
Basic && (
Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1334 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1335 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1336 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1337 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1338 "invalid set base type", &
N,
T);
1344 N.getRawBaseType());
1346 if (
N.getDWARFAddressSpace()) {
1347 CheckDI(
N.getTag() == dwarf::DW_TAG_pointer_type ||
1348 N.getTag() == dwarf::DW_TAG_reference_type ||
1349 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1350 "DWARF address space only applies to pointer or reference types",
1354 auto *
Size =
N.getRawSizeInBits();
1357 "SizeInBits must be a constant or DIVariable or DIExpression");
1362 return ((Flags & DINode::FlagLValueReference) &&
1363 (Flags & DINode::FlagRValueReference)) ||
1364 ((Flags & DINode::FlagTypePassByValue) &&
1365 (Flags & DINode::FlagTypePassByReference));
1368void Verifier::visitTemplateParams(
const MDNode &
N,
const Metadata &RawParams) {
1370 CheckDI(Params,
"invalid template params", &
N, &RawParams);
1377void Verifier::visitDICompositeType(
const DICompositeType &
N) {
1381 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type ||
1382 N.getTag() == dwarf::DW_TAG_structure_type ||
1383 N.getTag() == dwarf::DW_TAG_union_type ||
1384 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1385 N.getTag() == dwarf::DW_TAG_class_type ||
1386 N.getTag() == dwarf::DW_TAG_variant_part ||
1387 N.getTag() == dwarf::DW_TAG_variant ||
1388 N.getTag() == dwarf::DW_TAG_namelist,
1393 N.getRawBaseType());
1396 "invalid composite elements", &
N,
N.getRawElements());
1398 N.getRawVTableHolder());
1400 "invalid reference flags", &
N);
1401 unsigned DIBlockByRefStruct = 1 << 4;
1402 CheckDI((
N.getFlags() & DIBlockByRefStruct) == 0,
1403 "DIBlockByRefStruct on DICompositeType is no longer supported", &
N);
1405 "DISubprogram contains null entry in `elements` field", &
N);
1408 const DINodeArray
Elements =
N.getElements();
1410 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1411 "invalid vector, expected one element of type subrange", &
N);
1414 if (
auto *Params =
N.getRawTemplateParams())
1415 visitTemplateParams(
N, *Params);
1417 if (
auto *
D =
N.getRawDiscriminator()) {
1419 "discriminator can only appear on variant part");
1422 if (
N.getRawDataLocation()) {
1423 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1424 "dataLocation can only appear in array type");
1427 if (
N.getRawAssociated()) {
1428 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1429 "associated can only appear in array type");
1432 if (
N.getRawAllocated()) {
1433 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1434 "allocated can only appear in array type");
1437 if (
N.getRawRank()) {
1438 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1439 "rank can only appear in array type");
1442 if (
N.getTag() == dwarf::DW_TAG_array_type) {
1443 CheckDI(
N.getRawBaseType(),
"array types must have a base type", &
N);
1446 auto *
Size =
N.getRawSizeInBits();
1449 "SizeInBits must be a constant or DIVariable or DIExpression");
1452void Verifier::visitDISubroutineType(
const DISubroutineType &
N) {
1453 CheckDI(
N.getTag() == dwarf::DW_TAG_subroutine_type,
"invalid tag", &
N);
1454 if (
auto *Types =
N.getRawTypeArray()) {
1456 for (
Metadata *Ty :
N.getTypeArray()->operands()) {
1457 CheckDI(
isType(Ty),
"invalid subroutine type ref", &
N, Types, Ty);
1461 "invalid reference flags", &
N);
1464void Verifier::visitDIFile(
const DIFile &
N) {
1465 CheckDI(
N.getTag() == dwarf::DW_TAG_file_type,
"invalid tag", &
N);
1466 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum =
N.getChecksum();
1468 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1469 "invalid checksum kind", &
N);
1471 switch (Checksum->Kind) {
1482 CheckDI(Checksum->Value.size() ==
Size,
"invalid checksum length", &
N);
1484 "invalid checksum", &
N);
1488void Verifier::visitDICompileUnit(
const DICompileUnit &
N) {
1489 CheckDI(
N.isDistinct(),
"compile units must be distinct", &
N);
1490 CheckDI(
N.getTag() == dwarf::DW_TAG_compile_unit,
"invalid tag", &
N);
1496 CheckDI(!
N.getFile()->getFilename().empty(),
"invalid filename", &
N,
1500 "invalid emission kind", &
N);
1502 if (
auto *Array =
N.getRawEnumTypes()) {
1504 for (
Metadata *
Op :
N.getEnumTypes()->operands()) {
1506 CheckDI(Enum &&
Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1507 "invalid enum type", &
N,
N.getEnumTypes(),
Op);
1510 if (
auto *Array =
N.getRawRetainedTypes()) {
1512 for (
Metadata *
Op :
N.getRetainedTypes()->operands()) {
1516 "invalid retained type", &
N,
Op);
1519 if (
auto *Array =
N.getRawGlobalVariables()) {
1521 for (
Metadata *
Op :
N.getGlobalVariables()->operands()) {
1523 "invalid global variable ref", &
N,
Op);
1526 if (
auto *Array =
N.getRawImportedEntities()) {
1528 for (
Metadata *
Op :
N.getImportedEntities()->operands()) {
1533 if (
auto *Array =
N.getRawMacros()) {
1542void Verifier::visitDISubprogram(
const DISubprogram &
N) {
1543 CheckDI(
N.getTag() == dwarf::DW_TAG_subprogram,
"invalid tag", &
N);
1545 if (
auto *
F =
N.getRawFile())
1548 CheckDI(
N.getLine() == 0,
"line specified with no file", &
N,
N.getLine());
1549 if (
auto *
T =
N.getRawType())
1551 CheckDI(
isType(
N.getRawContainingType()),
"invalid containing type", &
N,
1552 N.getRawContainingType());
1553 if (
auto *Params =
N.getRawTemplateParams())
1554 visitTemplateParams(
N, *Params);
1555 if (
auto *S =
N.getRawDeclaration())
1557 "invalid subprogram declaration", &
N, S);
1558 if (
auto *RawNode =
N.getRawRetainedNodes()) {
1560 CheckDI(Node,
"invalid retained nodes list", &
N, RawNode);
1564 "invalid retained nodes, expected DILocalVariable, DILabel or "
1570 "invalid reference flags", &
N);
1572 auto *
Unit =
N.getRawUnit();
1573 if (
N.isDefinition()) {
1575 CheckDI(
N.isDistinct(),
"subprogram definitions must be distinct", &
N);
1576 CheckDI(Unit,
"subprogram definitions must have a compile unit", &
N);
1581 if (CT && CT->getRawIdentifier() &&
1582 M.getContext().isODRUniquingDebugTypes())
1584 "definition subprograms cannot be nested within DICompositeType "
1585 "when enabling ODR",
1589 CheckDI(!Unit,
"subprogram declarations must not have a compile unit", &
N);
1591 "subprogram declaration must not have a declaration field");
1594 if (
auto *RawThrownTypes =
N.getRawThrownTypes()) {
1596 CheckDI(ThrownTypes,
"invalid thrown types list", &
N, RawThrownTypes);
1602 if (
N.areAllCallsDescribed())
1604 "DIFlagAllCallsDescribed must be attached to a definition");
1607void Verifier::visitDILexicalBlockBase(
const DILexicalBlockBase &
N) {
1608 CheckDI(
N.getTag() == dwarf::DW_TAG_lexical_block,
"invalid tag", &
N);
1610 "invalid local scope", &
N,
N.getRawScope());
1612 CheckDI(
SP->isDefinition(),
"scope points into the type hierarchy", &
N);
1615void Verifier::visitDILexicalBlock(
const DILexicalBlock &
N) {
1616 visitDILexicalBlockBase(
N);
1619 "cannot have column info without line info", &
N);
1622void Verifier::visitDILexicalBlockFile(
const DILexicalBlockFile &
N) {
1623 visitDILexicalBlockBase(
N);
1626void Verifier::visitDICommonBlock(
const DICommonBlock &
N) {
1627 CheckDI(
N.getTag() == dwarf::DW_TAG_common_block,
"invalid tag", &
N);
1628 if (
auto *S =
N.getRawScope())
1630 if (
auto *S =
N.getRawDecl())
1634void Verifier::visitDINamespace(
const DINamespace &
N) {
1635 CheckDI(
N.getTag() == dwarf::DW_TAG_namespace,
"invalid tag", &
N);
1636 if (
auto *S =
N.getRawScope())
1640void Verifier::visitDIMacro(
const DIMacro &
N) {
1643 "invalid macinfo type", &
N);
1644 CheckDI(!
N.getName().empty(),
"anonymous macro", &
N);
1645 if (!
N.getValue().empty()) {
1646 assert(
N.getValue().data()[0] !=
' ' &&
"Macro value has a space prefix");
1650void Verifier::visitDIMacroFile(
const DIMacroFile &
N) {
1652 "invalid macinfo type", &
N);
1653 if (
auto *
F =
N.getRawFile())
1656 if (
auto *Array =
N.getRawElements()) {
1658 for (
Metadata *
Op :
N.getElements()->operands()) {
1664void Verifier::visitDIModule(
const DIModule &
N) {
1665 CheckDI(
N.getTag() == dwarf::DW_TAG_module,
"invalid tag", &
N);
1666 CheckDI(!
N.getName().empty(),
"anonymous module", &
N);
1669void Verifier::visitDITemplateParameter(
const DITemplateParameter &
N) {
1673void Verifier::visitDITemplateTypeParameter(
const DITemplateTypeParameter &
N) {
1674 visitDITemplateParameter(
N);
1676 CheckDI(
N.getTag() == dwarf::DW_TAG_template_type_parameter,
"invalid tag",
1680void Verifier::visitDITemplateValueParameter(
1681 const DITemplateValueParameter &
N) {
1682 visitDITemplateParameter(
N);
1684 CheckDI(
N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1685 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1686 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1690void Verifier::visitDIVariable(
const DIVariable &
N) {
1691 if (
auto *S =
N.getRawScope())
1693 if (
auto *
F =
N.getRawFile())
1697void Verifier::visitDIGlobalVariable(
const DIGlobalVariable &
N) {
1701 CheckDI(
N.getTag() == dwarf::DW_TAG_variable,
"invalid tag", &
N);
1704 if (
N.isDefinition())
1705 CheckDI(
N.getType(),
"missing global variable type", &
N);
1706 if (
auto *Member =
N.getRawStaticDataMemberDeclaration()) {
1708 "invalid static data member declaration", &
N, Member);
1712void Verifier::visitDILocalVariable(
const DILocalVariable &
N) {
1717 CheckDI(
N.getTag() == dwarf::DW_TAG_variable,
"invalid tag", &
N);
1719 "local variable requires a valid scope", &
N,
N.getRawScope());
1720 if (
auto Ty =
N.getType())
1724void Verifier::visitDIAssignID(
const DIAssignID &
N) {
1725 CheckDI(!
N.getNumOperands(),
"DIAssignID has no arguments", &
N);
1726 CheckDI(
N.isDistinct(),
"DIAssignID must be distinct", &
N);
1729void Verifier::visitDILabel(
const DILabel &
N) {
1730 if (
auto *S =
N.getRawScope())
1732 if (
auto *
F =
N.getRawFile())
1735 CheckDI(
N.getTag() == dwarf::DW_TAG_label,
"invalid tag", &
N);
1737 "label requires a valid scope", &
N,
N.getRawScope());
1740void Verifier::visitDIExpression(
const DIExpression &
N) {
1741 CheckDI(
N.isValid(),
"invalid expression", &
N);
1744void Verifier::visitDIGlobalVariableExpression(
1745 const DIGlobalVariableExpression &GVE) {
1748 visitDIGlobalVariable(*Var);
1750 visitDIExpression(*Expr);
1751 if (
auto Fragment = Expr->getFragmentInfo())
1752 verifyFragmentExpression(*GVE.
getVariable(), *Fragment, &GVE);
1756void Verifier::visitDIObjCProperty(
const DIObjCProperty &
N) {
1757 CheckDI(
N.getTag() == dwarf::DW_TAG_APPLE_property,
"invalid tag", &
N);
1758 if (
auto *
T =
N.getRawType())
1760 if (
auto *
F =
N.getRawFile())
1764void Verifier::visitDIImportedEntity(
const DIImportedEntity &
N) {
1765 CheckDI(
N.getTag() == dwarf::DW_TAG_imported_module ||
1766 N.getTag() == dwarf::DW_TAG_imported_declaration,
1768 if (
auto *S =
N.getRawScope())
1774void Verifier::visitComdat(
const Comdat &
C) {
1777 if (
TT.isOSBinFormatCOFF())
1778 if (
const GlobalValue *GV =
M.getNamedValue(
C.getName()))
1783void Verifier::visitModuleIdents() {
1784 const NamedMDNode *Idents =
M.getNamedMetadata(
"llvm.ident");
1790 for (
const MDNode *
N : Idents->
operands()) {
1791 Check(
N->getNumOperands() == 1,
1792 "incorrect number of operands in llvm.ident metadata",
N);
1794 (
"invalid value for llvm.ident metadata entry operand"
1795 "(the operand should be a string)"),
1800void Verifier::visitModuleCommandLines() {
1801 const NamedMDNode *CommandLines =
M.getNamedMetadata(
"llvm.commandline");
1808 for (
const MDNode *
N : CommandLines->
operands()) {
1809 Check(
N->getNumOperands() == 1,
1810 "incorrect number of operands in llvm.commandline metadata",
N);
1812 (
"invalid value for llvm.commandline metadata entry operand"
1813 "(the operand should be a string)"),
1818void Verifier::visitModuleErrnoTBAA() {
1819 const NamedMDNode *ErrnoTBAA =
M.getNamedMetadata(
"llvm.errno.tbaa");
1824 "llvm.errno.tbaa must have at least one operand", ErrnoTBAA);
1826 for (
const MDNode *
N : ErrnoTBAA->
operands())
1830void Verifier::visitModuleFlags() {
1831 const NamedMDNode *
Flags =
M.getModuleFlagsMetadata();
1835 DenseMap<const MDString*, const MDNode*> SeenIDs;
1837 uint64_t PAuthABIPlatform = -1;
1838 uint64_t PAuthABIVersion = -1;
1839 for (
const MDNode *MDN :
Flags->operands()) {
1840 visitModuleFlag(MDN, SeenIDs, Requirements);
1841 if (MDN->getNumOperands() != 3)
1844 if (FlagName->getString() ==
"aarch64-elf-pauthabi-platform") {
1845 if (
const auto *PAP =
1847 PAuthABIPlatform = PAP->getZExtValue();
1848 }
else if (FlagName->getString() ==
"aarch64-elf-pauthabi-version") {
1849 if (
const auto *PAV =
1851 PAuthABIVersion = PAV->getZExtValue();
1856 if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1)))
1857 CheckFailed(
"either both or no 'aarch64-elf-pauthabi-platform' and "
1858 "'aarch64-elf-pauthabi-version' module flags must be present");
1861 for (
const MDNode *Requirement : Requirements) {
1863 const Metadata *ReqValue = Requirement->getOperand(1);
1865 const MDNode *
Op = SeenIDs.
lookup(Flag);
1867 CheckFailed(
"invalid requirement on flag, flag is not present in module",
1872 if (
Op->getOperand(2) != ReqValue) {
1873 CheckFailed((
"invalid requirement on flag, "
1874 "flag does not have the required value"),
1882Verifier::visitModuleFlag(
const MDNode *
Op,
1883 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1884 SmallVectorImpl<const MDNode *> &Requirements) {
1888 "incorrect number of operands in module flag",
Op);
1889 Module::ModFlagBehavior MFB;
1890 if (!Module::isValidModFlagBehavior(
Op->getOperand(0), MFB)) {
1892 "invalid behavior operand in module flag (expected constant integer)",
1895 "invalid behavior operand in module flag (unexpected constant)",
1899 Check(
ID,
"invalid ID operand in module flag (expected metadata string)",
1905 case Module::Warning:
1906 case Module::Override:
1912 Check(V &&
V->getValue().isNonNegative(),
1913 "invalid value for 'min' module flag (expected constant non-negative "
1921 "invalid value for 'max' module flag (expected constant integer)",
1926 case Module::Require: {
1931 "invalid value for 'require' module flag (expected metadata pair)",
1934 (
"invalid value for 'require' module flag "
1935 "(first value operand should be a string)"),
1936 Value->getOperand(0));
1944 case Module::Append:
1945 case Module::AppendUnique: {
1948 "invalid value for 'append'-type module flag "
1949 "(expected a metadata node)",
1956 if (MFB != Module::Require) {
1959 "module flag identifiers must be unique (or of 'require' type)",
ID);
1962 if (
ID->getString() ==
"wchar_size") {
1965 Check(
Value,
"wchar_size metadata requires constant integer argument");
1968 if (
ID->getString() ==
"Linker Options") {
1972 Check(
M.getNamedMetadata(
"llvm.linker.options"),
1973 "'Linker Options' named metadata no longer supported");
1976 if (
ID->getString() ==
"SemanticInterposition") {
1977 ConstantInt *
Value =
1980 "SemanticInterposition metadata requires constant integer argument");
1983 if (
ID->getString() ==
"CG Profile") {
1984 for (
const MDOperand &MDO :
cast<MDNode>(
Op->getOperand(2))->operands())
1985 visitModuleFlagCGProfileEntry(MDO);
1989void Verifier::visitModuleFlagCGProfileEntry(
const MDOperand &MDO) {
1990 auto CheckFunction = [&](
const MDOperand &FuncMDO) {
1995 "expected a Function or null", FuncMDO);
1998 Check(Node &&
Node->getNumOperands() == 3,
"expected a MDNode triple", MDO);
1999 CheckFunction(
Node->getOperand(0));
2000 CheckFunction(
Node->getOperand(1));
2003 "expected an integer constant",
Node->getOperand(2));
2006void Verifier::verifyAttributeTypes(AttributeSet Attrs,
const Value *V) {
2009 if (
A.isStringAttribute()) {
2010#define GET_ATTR_NAMES
2011#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
2012#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
2013 if (A.getKindAsString() == #DISPLAY_NAME) { \
2014 auto V = A.getValueAsString(); \
2015 if (!(V.empty() || V == "true" || V == "false")) \
2016 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
2020#include "llvm/IR/Attributes.inc"
2024 if (
A.isIntAttribute() != Attribute::isIntAttrKind(
A.getKindAsEnum())) {
2025 CheckFailed(
"Attribute '" +
A.getAsString() +
"' should have an Argument",
2034void Verifier::verifyParameterAttrs(AttributeSet Attrs,
Type *Ty,
2036 if (!
Attrs.hasAttributes())
2039 verifyAttributeTypes(Attrs, V);
2042 Check(Attr.isStringAttribute() ||
2043 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
2044 "Attribute '" + Attr.getAsString() +
"' does not apply to parameters",
2047 if (
Attrs.hasAttribute(Attribute::ImmArg)) {
2048 unsigned AttrCount =
2049 Attrs.getNumAttributes() -
Attrs.hasAttribute(Attribute::Range);
2050 Check(AttrCount == 1,
2051 "Attribute 'immarg' is incompatible with other attributes except the "
2052 "'range' attribute",
2058 unsigned AttrCount = 0;
2059 AttrCount +=
Attrs.hasAttribute(Attribute::ByVal);
2060 AttrCount +=
Attrs.hasAttribute(Attribute::InAlloca);
2061 AttrCount +=
Attrs.hasAttribute(Attribute::Preallocated);
2062 AttrCount +=
Attrs.hasAttribute(Attribute::StructRet) ||
2063 Attrs.hasAttribute(Attribute::InReg);
2064 AttrCount +=
Attrs.hasAttribute(Attribute::Nest);
2065 AttrCount +=
Attrs.hasAttribute(Attribute::ByRef);
2066 Check(AttrCount <= 1,
2067 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
2068 "'byref', and 'sret' are incompatible!",
2071 Check(!(
Attrs.hasAttribute(Attribute::InAlloca) &&
2072 Attrs.hasAttribute(Attribute::ReadOnly)),
2074 "'inalloca and readonly' are incompatible!",
2077 Check(!(
Attrs.hasAttribute(Attribute::StructRet) &&
2078 Attrs.hasAttribute(Attribute::Returned)),
2080 "'sret and returned' are incompatible!",
2083 Check(!(
Attrs.hasAttribute(Attribute::ZExt) &&
2084 Attrs.hasAttribute(Attribute::SExt)),
2086 "'zeroext and signext' are incompatible!",
2089 Check(!(
Attrs.hasAttribute(Attribute::ReadNone) &&
2090 Attrs.hasAttribute(Attribute::ReadOnly)),
2092 "'readnone and readonly' are incompatible!",
2095 Check(!(
Attrs.hasAttribute(Attribute::ReadNone) &&
2096 Attrs.hasAttribute(Attribute::WriteOnly)),
2098 "'readnone and writeonly' are incompatible!",
2101 Check(!(
Attrs.hasAttribute(Attribute::ReadOnly) &&
2102 Attrs.hasAttribute(Attribute::WriteOnly)),
2104 "'readonly and writeonly' are incompatible!",
2107 Check(!(
Attrs.hasAttribute(Attribute::NoInline) &&
2108 Attrs.hasAttribute(Attribute::AlwaysInline)),
2110 "'noinline and alwaysinline' are incompatible!",
2113 Check(!(
Attrs.hasAttribute(Attribute::Writable) &&
2114 Attrs.hasAttribute(Attribute::ReadNone)),
2115 "Attributes writable and readnone are incompatible!", V);
2117 Check(!(
Attrs.hasAttribute(Attribute::Writable) &&
2118 Attrs.hasAttribute(Attribute::ReadOnly)),
2119 "Attributes writable and readonly are incompatible!", V);
2121 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty, Attrs);
2123 if (!Attr.isStringAttribute() &&
2124 IncompatibleAttrs.
contains(Attr.getKindAsEnum())) {
2125 CheckFailed(
"Attribute '" + Attr.getAsString() +
2126 "' applied to incompatible type!", V);
2132 if (
Attrs.hasAttribute(Attribute::Alignment)) {
2133 Align AttrAlign =
Attrs.getAlignment().valueOrOne();
2134 Check(AttrAlign.
value() <= Value::MaximumAlignment,
2135 "huge alignment values are unsupported", V);
2137 if (
Attrs.hasAttribute(Attribute::ByVal)) {
2139 SmallPtrSet<Type *, 4> Visited;
2141 "Attribute 'byval' does not support unsized types!", V);
2145 "'byval' argument has illegal target extension type", V);
2146 Check(
DL.getTypeAllocSize(ByValTy).getKnownMinValue() < (1ULL << 32),
2147 "huge 'byval' arguments are unsupported", V);
2149 if (
Attrs.hasAttribute(Attribute::ByRef)) {
2150 SmallPtrSet<Type *, 4> Visited;
2151 Check(
Attrs.getByRefType()->isSized(&Visited),
2152 "Attribute 'byref' does not support unsized types!", V);
2153 Check(
DL.getTypeAllocSize(
Attrs.getByRefType()).getKnownMinValue() <
2155 "huge 'byref' arguments are unsupported", V);
2157 if (
Attrs.hasAttribute(Attribute::InAlloca)) {
2158 SmallPtrSet<Type *, 4> Visited;
2159 Check(
Attrs.getInAllocaType()->isSized(&Visited),
2160 "Attribute 'inalloca' does not support unsized types!", V);
2161 Check(
DL.getTypeAllocSize(
Attrs.getInAllocaType()).getKnownMinValue() <
2163 "huge 'inalloca' arguments are unsupported", V);
2165 if (
Attrs.hasAttribute(Attribute::Preallocated)) {
2166 SmallPtrSet<Type *, 4> Visited;
2167 Check(
Attrs.getPreallocatedType()->isSized(&Visited),
2168 "Attribute 'preallocated' does not support unsized types!", V);
2170 DL.getTypeAllocSize(
Attrs.getPreallocatedType()).getKnownMinValue() <
2172 "huge 'preallocated' arguments are unsupported", V);
2176 if (
Attrs.hasAttribute(Attribute::Initializes)) {
2177 auto Inits =
Attrs.getAttribute(Attribute::Initializes).getInitializes();
2178 Check(!Inits.empty(),
"Attribute 'initializes' does not support empty list",
2181 "Attribute 'initializes' does not support unordered ranges", V);
2184 if (
Attrs.hasAttribute(Attribute::NoFPClass)) {
2185 uint64_t Val =
Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
2186 Check(Val != 0,
"Attribute 'nofpclass' must have at least one test bit set",
2189 "Invalid value for 'nofpclass' test mask", V);
2191 if (
Attrs.hasAttribute(Attribute::Range)) {
2192 const ConstantRange &CR =
2193 Attrs.getAttribute(Attribute::Range).getValueAsConstantRange();
2195 "Range bit width must match type bit width!", V);
2199void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
2201 if (
Attrs.hasFnAttr(Attr)) {
2202 StringRef S =
Attrs.getFnAttr(Attr).getValueAsString();
2205 CheckFailed(
"\"" + Attr +
"\" takes an unsigned integer: " + S, V);
2211void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2212 const Value *V,
bool IsIntrinsic,
2214 if (
Attrs.isEmpty())
2217 if (AttributeListsVisited.
insert(
Attrs.getRawPointer()).second) {
2219 "Attribute list does not match Module context!", &Attrs, V);
2220 for (
const auto &AttrSet : Attrs) {
2221 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(
Context),
2222 "Attribute set does not match Module context!", &AttrSet, V);
2223 for (
const auto &
A : AttrSet) {
2225 "Attribute does not match Module context!", &
A, V);
2230 bool SawNest =
false;
2231 bool SawReturned =
false;
2232 bool SawSRet =
false;
2233 bool SawSwiftSelf =
false;
2234 bool SawSwiftAsync =
false;
2235 bool SawSwiftError =
false;
2238 AttributeSet RetAttrs =
Attrs.getRetAttrs();
2241 Attribute::canUseAsRetAttr(
RetAttr.getKindAsEnum()),
2242 "Attribute '" +
RetAttr.getAsString() +
2243 "' does not apply to function return values",
2246 unsigned MaxParameterWidth = 0;
2247 auto GetMaxParameterWidth = [&MaxParameterWidth](
Type *Ty) {
2250 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2251 if (
Size > MaxParameterWidth)
2252 MaxParameterWidth =
Size;
2256 GetMaxParameterWidth(FT->getReturnType());
2257 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2260 for (
unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2261 Type *Ty = FT->getParamType(i);
2262 AttributeSet ArgAttrs =
Attrs.getParamAttrs(i);
2266 "immarg attribute only applies to intrinsics", V);
2269 "Attribute 'elementtype' can only be applied to intrinsics"
2274 verifyParameterAttrs(ArgAttrs, Ty, V);
2275 GetMaxParameterWidth(Ty);
2278 Check(!SawNest,
"More than one parameter has attribute nest!", V);
2283 Check(!SawReturned,
"More than one parameter has attribute returned!", V);
2285 "Incompatible argument and return types for 'returned' attribute",
2291 Check(!SawSRet,
"Cannot have multiple 'sret' parameters!", V);
2292 Check(i == 0 || i == 1,
2293 "Attribute 'sret' is not on first or second parameter!", V);
2298 Check(!SawSwiftSelf,
"Cannot have multiple 'swiftself' parameters!", V);
2299 SawSwiftSelf =
true;
2303 Check(!SawSwiftAsync,
"Cannot have multiple 'swiftasync' parameters!", V);
2304 SawSwiftAsync =
true;
2308 Check(!SawSwiftError,
"Cannot have multiple 'swifterror' parameters!", V);
2309 SawSwiftError =
true;
2313 Check(i == FT->getNumParams() - 1,
2314 "inalloca isn't on the last parameter!", V);
2318 if (!
Attrs.hasFnAttrs())
2321 verifyAttributeTypes(
Attrs.getFnAttrs(), V);
2324 Attribute::canUseAsFnAttr(
FnAttr.getKindAsEnum()),
2325 "Attribute '" +
FnAttr.getAsString() +
2326 "' does not apply to functions!",
2329 Check(!(
Attrs.hasFnAttr(Attribute::NoInline) &&
2330 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2331 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2333 if (
Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2335 "Attribute 'optnone' requires 'noinline'!", V);
2337 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForSize),
2338 "Attributes 'optsize and optnone' are incompatible!", V);
2341 "Attributes 'minsize and optnone' are incompatible!", V);
2343 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2344 "Attributes 'optdebug and optnone' are incompatible!", V);
2347 Check(!(
Attrs.hasFnAttr(Attribute::SanitizeRealtime) &&
2348 Attrs.hasFnAttr(Attribute::SanitizeRealtimeBlocking)),
2350 "'sanitize_realtime and sanitize_realtime_blocking' are incompatible!",
2353 if (
Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2354 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForSize),
2355 "Attributes 'optsize and optdebug' are incompatible!", V);
2358 "Attributes 'minsize and optdebug' are incompatible!", V);
2361 Check(!
Attrs.hasAttrSomewhere(Attribute::Writable) ||
2362 isModSet(
Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2363 "Attribute writable and memory without argmem: write are incompatible!",
2366 if (
Attrs.hasFnAttr(
"aarch64_pstate_sm_enabled")) {
2367 Check(!
Attrs.hasFnAttr(
"aarch64_pstate_sm_compatible"),
2368 "Attributes 'aarch64_pstate_sm_enabled and "
2369 "aarch64_pstate_sm_compatible' are incompatible!",
2373 Check((
Attrs.hasFnAttr(
"aarch64_new_za") +
Attrs.hasFnAttr(
"aarch64_in_za") +
2374 Attrs.hasFnAttr(
"aarch64_inout_za") +
2375 Attrs.hasFnAttr(
"aarch64_out_za") +
2376 Attrs.hasFnAttr(
"aarch64_preserves_za") +
2377 Attrs.hasFnAttr(
"aarch64_za_state_agnostic")) <= 1,
2378 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2379 "'aarch64_inout_za', 'aarch64_preserves_za' and "
2380 "'aarch64_za_state_agnostic' are mutually exclusive",
2384 Attrs.hasFnAttr(
"aarch64_in_zt0") +
2385 Attrs.hasFnAttr(
"aarch64_inout_zt0") +
2386 Attrs.hasFnAttr(
"aarch64_out_zt0") +
2387 Attrs.hasFnAttr(
"aarch64_preserves_zt0") +
2388 Attrs.hasFnAttr(
"aarch64_za_state_agnostic")) <= 1,
2389 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2390 "'aarch64_inout_zt0', 'aarch64_preserves_zt0' and "
2391 "'aarch64_za_state_agnostic' are mutually exclusive",
2394 if (
Attrs.hasFnAttr(Attribute::JumpTable)) {
2397 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2400 if (
auto Args =
Attrs.getFnAttrs().getAllocSizeArgs()) {
2401 auto CheckParam = [&](StringRef
Name,
unsigned ParamNo) {
2402 if (ParamNo >= FT->getNumParams()) {
2403 CheckFailed(
"'allocsize' " + Name +
" argument is out of bounds", V);
2407 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2408 CheckFailed(
"'allocsize' " + Name +
2409 " argument must refer to an integer parameter",
2417 if (!CheckParam(
"element size",
Args->first))
2420 if (
Args->second && !CheckParam(
"number of elements", *
Args->second))
2424 if (
Attrs.hasFnAttr(Attribute::AllocKind)) {
2427 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2429 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2432 "'allockind()' requires exactly one of alloc, realloc, and free");
2433 if ((
Type == AllocFnKind::Free) &&
2434 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2435 AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2436 CheckFailed(
"'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2437 "or aligned modifiers.");
2438 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2439 if ((K & ZeroedUninit) == ZeroedUninit)
2440 CheckFailed(
"'allockind()' can't be both zeroed and uninitialized");
2444 StringRef S =
A.getValueAsString();
2445 Check(!S.
empty(),
"'alloc-variant-zeroed' must not be empty");
2453 "'alloc-variant-zeroed' must name a function belonging to the "
2454 "same 'alloc-family'");
2457 (
Variant->getFnAttribute(Attribute::AllocKind).getAllocKind() &
2458 AllocFnKind::Zeroed) != AllocFnKind::Unknown,
2459 "'alloc-variant-zeroed' must name a function with "
2460 "'allockind(\"zeroed\")'");
2463 "'alloc-variant-zeroed' must name a function with the same "
2468 if (
Attrs.hasFnAttr(Attribute::VScaleRange)) {
2469 unsigned VScaleMin =
Attrs.getFnAttrs().getVScaleRangeMin();
2471 CheckFailed(
"'vscale_range' minimum must be greater than 0", V);
2473 CheckFailed(
"'vscale_range' minimum must be power-of-two value", V);
2474 std::optional<unsigned> VScaleMax =
Attrs.getFnAttrs().getVScaleRangeMax();
2475 if (VScaleMax && VScaleMin > VScaleMax)
2476 CheckFailed(
"'vscale_range' minimum cannot be greater than maximum", V);
2478 CheckFailed(
"'vscale_range' maximum must be power-of-two value", V);
2481 if (
Attribute FPAttr =
Attrs.getFnAttr(
"frame-pointer"); FPAttr.isValid()) {
2482 StringRef
FP = FPAttr.getValueAsString();
2483 if (
FP !=
"all" &&
FP !=
"non-leaf" &&
FP !=
"none" &&
FP !=
"reserved")
2484 CheckFailed(
"invalid value for 'frame-pointer' attribute: " +
FP, V);
2487 checkUnsignedBaseTenFuncAttr(Attrs,
"patchable-function-prefix", V);
2488 checkUnsignedBaseTenFuncAttr(Attrs,
"patchable-function-entry", V);
2489 if (
Attrs.hasFnAttr(
"patchable-function-entry-section"))
2490 Check(!
Attrs.getFnAttr(
"patchable-function-entry-section")
2493 "\"patchable-function-entry-section\" must not be empty");
2494 checkUnsignedBaseTenFuncAttr(Attrs,
"warn-stack-size", V);
2496 if (
auto A =
Attrs.getFnAttr(
"sign-return-address");
A.isValid()) {
2497 StringRef S =
A.getValueAsString();
2498 if (S !=
"none" && S !=
"all" && S !=
"non-leaf")
2499 CheckFailed(
"invalid value for 'sign-return-address' attribute: " + S, V);
2502 if (
auto A =
Attrs.getFnAttr(
"sign-return-address-key");
A.isValid()) {
2503 StringRef S =
A.getValueAsString();
2504 if (S !=
"a_key" && S !=
"b_key")
2505 CheckFailed(
"invalid value for 'sign-return-address-key' attribute: " + S,
2507 if (
auto AA =
Attrs.getFnAttr(
"sign-return-address"); !AA.isValid()) {
2509 "'sign-return-address-key' present without `sign-return-address`");
2513 if (
auto A =
Attrs.getFnAttr(
"branch-target-enforcement");
A.isValid()) {
2514 StringRef S =
A.getValueAsString();
2515 if (S !=
"" && S !=
"true" && S !=
"false")
2517 "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2520 if (
auto A =
Attrs.getFnAttr(
"branch-protection-pauth-lr");
A.isValid()) {
2521 StringRef S =
A.getValueAsString();
2522 if (S !=
"" && S !=
"true" && S !=
"false")
2524 "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V);
2527 if (
auto A =
Attrs.getFnAttr(
"guarded-control-stack");
A.isValid()) {
2528 StringRef S =
A.getValueAsString();
2529 if (S !=
"" && S !=
"true" && S !=
"false")
2530 CheckFailed(
"invalid value for 'guarded-control-stack' attribute: " + S,
2534 if (
auto A =
Attrs.getFnAttr(
"vector-function-abi-variant");
A.isValid()) {
2535 StringRef S =
A.getValueAsString();
2538 CheckFailed(
"invalid name for a VFABI variant: " + S, V);
2541 if (
auto A =
Attrs.getFnAttr(
"denormal-fp-math");
A.isValid()) {
2542 StringRef S =
A.getValueAsString();
2544 CheckFailed(
"invalid value for 'denormal-fp-math' attribute: " + S, V);
2547 if (
auto A =
Attrs.getFnAttr(
"denormal-fp-math-f32");
A.isValid()) {
2548 StringRef S =
A.getValueAsString();
2550 CheckFailed(
"invalid value for 'denormal-fp-math-f32' attribute: " + S,
2554void Verifier::verifyUnknownProfileMetadata(MDNode *MD) {
2556 "'unknown' !prof should have a single additional operand", MD);
2559 "'unknown' !prof should have an additional operand of type "
2562 "the 'unknown' !prof operand should not be an empty string");
2565void Verifier::verifyFunctionMetadata(
2566 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2567 for (
const auto &Pair : MDs) {
2568 if (Pair.first == LLVMContext::MD_prof) {
2569 MDNode *MD = Pair.second;
2571 "!prof annotations should have no less than 2 operands", MD);
2576 verifyUnknownProfileMetadata(MD);
2581 Check(MD->
getOperand(0) !=
nullptr,
"first operand should not be null",
2584 "expected string with name of the !prof annotation", MD);
2589 "first operand should be 'function_entry_count'"
2590 " or 'synthetic_function_entry_count'",
2594 Check(MD->
getOperand(1) !=
nullptr,
"second operand should not be null",
2597 "expected integer argument to function_entry_count", MD);
2598 }
else if (Pair.first == LLVMContext::MD_kcfi_type) {
2599 MDNode *MD = Pair.second;
2601 "!kcfi_type must have exactly one operand", MD);
2602 Check(MD->
getOperand(0) !=
nullptr,
"!kcfi_type operand must not be null",
2605 "expected a constant operand for !kcfi_type", MD);
2608 "expected a constant integer operand for !kcfi_type", MD);
2610 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2615void Verifier::visitConstantExprsRecursively(
const Constant *EntryC) {
2616 if (!ConstantExprVisited.
insert(EntryC).second)
2620 Stack.push_back(EntryC);
2622 while (!
Stack.empty()) {
2627 visitConstantExpr(CE);
2630 visitConstantPtrAuth(CPA);
2635 Check(GV->
getParent() == &M,
"Referencing global in another module!",
2641 for (
const Use &U :
C->operands()) {
2645 if (!ConstantExprVisited.
insert(OpC).second)
2647 Stack.push_back(OpC);
2652void Verifier::visitConstantExpr(
const ConstantExpr *CE) {
2653 if (
CE->getOpcode() == Instruction::BitCast)
2656 "Invalid bitcast", CE);
2657 else if (
CE->getOpcode() == Instruction::PtrToAddr)
2658 checkPtrToAddr(
CE->getOperand(0)->getType(),
CE->getType(), *CE);
2661void Verifier::visitConstantPtrAuth(
const ConstantPtrAuth *CPA) {
2663 "signed ptrauth constant base pointer must have pointer type");
2666 "signed ptrauth constant must have same type as its base pointer");
2669 "signed ptrauth constant key must be i32 constant integer");
2672 "signed ptrauth constant address discriminator must be a pointer");
2675 "signed ptrauth constant discriminator must be i64 constant integer");
2678bool Verifier::verifyAttributeCount(AttributeList Attrs,
unsigned Params) {
2681 return Attrs.getNumAttrSets() <= Params + 2;
2684void Verifier::verifyInlineAsmCall(
const CallBase &
Call) {
2687 unsigned LabelNo = 0;
2688 for (
const InlineAsm::ConstraintInfo &CI :
IA->ParseConstraints()) {
2698 if (CI.isIndirect) {
2701 "Operand for indirect constraint must have pointer type", &
Call);
2704 "Operand for indirect constraint must have elementtype attribute",
2708 "Elementtype attribute can only be applied for indirect "
2717 Check(LabelNo == CallBr->getNumIndirectDests(),
2718 "Number of label constraints does not match number of callbr dests",
2721 Check(LabelNo == 0,
"Label constraints can only be used with callbr",
2727void Verifier::verifyStatepoint(
const CallBase &
Call) {
2732 "gc.statepoint must read and write all memory to preserve "
2733 "reordering restrictions required by safepoint semantics",
2736 const int64_t NumPatchBytes =
2739 Check(NumPatchBytes >= 0,
2740 "gc.statepoint number of patchable bytes must be "
2745 Check(TargetElemType,
2746 "gc.statepoint callee argument must have elementtype attribute",
Call);
2748 Check(TargetFuncType,
2749 "gc.statepoint callee elementtype must be function type",
Call);
2752 Check(NumCallArgs >= 0,
2753 "gc.statepoint number of arguments to underlying call "
2756 const int NumParams = (int)TargetFuncType->getNumParams();
2757 if (TargetFuncType->isVarArg()) {
2758 Check(NumCallArgs >= NumParams,
2759 "gc.statepoint mismatch in number of vararg call args",
Call);
2762 Check(TargetFuncType->getReturnType()->isVoidTy(),
2763 "gc.statepoint doesn't support wrapping non-void "
2764 "vararg functions yet",
2767 Check(NumCallArgs == NumParams,
2768 "gc.statepoint mismatch in number of call args",
Call);
2770 const uint64_t
Flags
2772 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2773 "unknown flag used in gc.statepoint flags argument",
Call);
2778 for (
int i = 0; i < NumParams; i++) {
2779 Type *ParamType = TargetFuncType->getParamType(i);
2781 Check(ArgType == ParamType,
2782 "gc.statepoint call argument does not match wrapped "
2786 if (TargetFuncType->isVarArg()) {
2787 AttributeSet ArgAttrs =
Attrs.getParamAttrs(5 + i);
2789 "Attribute 'sret' cannot be used for vararg call arguments!",
Call);
2793 const int EndCallArgsInx = 4 + NumCallArgs;
2797 "gc.statepoint number of transition arguments "
2798 "must be constant integer",
2800 const int NumTransitionArgs =
2802 Check(NumTransitionArgs == 0,
2803 "gc.statepoint w/inline transition bundle is deprecated",
Call);
2804 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2808 "gc.statepoint number of deoptimization arguments "
2809 "must be constant integer",
2812 Check(NumDeoptArgs == 0,
2813 "gc.statepoint w/inline deopt operands is deprecated",
Call);
2815 const int ExpectedNumArgs = 7 + NumCallArgs;
2817 "gc.statepoint too many arguments",
Call);
2824 Check(UserCall,
"illegal use of statepoint token",
Call, U);
2828 "gc.result or gc.relocate are the only value uses "
2829 "of a gc.statepoint",
2833 "gc.result connected to wrong gc.statepoint",
Call, UserCall);
2836 "gc.relocate connected to wrong gc.statepoint",
Call, UserCall);
2850void Verifier::verifyFrameRecoverIndices() {
2851 for (
auto &Counts : FrameEscapeInfo) {
2853 unsigned EscapedObjectCount = Counts.second.first;
2854 unsigned MaxRecoveredIndex = Counts.second.second;
2855 Check(MaxRecoveredIndex <= EscapedObjectCount,
2856 "all indices passed to llvm.localrecover must be less than the "
2857 "number of arguments passed to llvm.localescape in the parent "
2866 UnwindDest =
II->getUnwindDest();
2868 UnwindDest = CSI->getUnwindDest();
2874void Verifier::verifySiblingFuncletUnwinds() {
2875 llvm::TimeTraceScope timeScope(
"Verifier verify sibling funclet unwinds");
2876 SmallPtrSet<Instruction *, 8> Visited;
2877 SmallPtrSet<Instruction *, 8>
Active;
2878 for (
const auto &Pair : SiblingFuncletInfo) {
2880 if (Visited.
count(PredPad))
2886 if (
Active.count(SuccPad)) {
2889 SmallVector<Instruction *, 8> CycleNodes;
2892 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2893 if (CycleTerminator != CyclePad)
2896 }
while (CyclePad != SuccPad);
2897 Check(
false,
"EH pads can't handle each other's exceptions",
2901 if (!Visited.
insert(SuccPad).second)
2905 auto TermI = SiblingFuncletInfo.find(PredPad);
2906 if (TermI == SiblingFuncletInfo.end())
2919void Verifier::visitFunction(
const Function &
F) {
2920 visitGlobalValue(
F);
2923 FunctionType *FT =
F.getFunctionType();
2924 unsigned NumArgs =
F.arg_size();
2927 "Function context does not match Module context!", &
F);
2929 Check(!
F.hasCommonLinkage(),
"Functions may not have common linkage", &
F);
2930 Check(FT->getNumParams() == NumArgs,
2931 "# formal arguments must match # of arguments for function type!", &
F,
2933 Check(
F.getReturnType()->isFirstClassType() ||
2934 F.getReturnType()->isVoidTy() ||
F.getReturnType()->isStructTy(),
2935 "Functions cannot return aggregate values!", &
F);
2937 Check(!
F.hasStructRetAttr() ||
F.getReturnType()->isVoidTy(),
2938 "Invalid struct return type!", &
F);
2940 if (MaybeAlign
A =
F.getAlign()) {
2941 Check(
A->value() <= Value::MaximumAlignment,
2942 "huge alignment values are unsupported", &
F);
2945 AttributeList
Attrs =
F.getAttributes();
2947 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2948 "Attribute after last parameter!", &
F);
2950 bool IsIntrinsic =
F.isIntrinsic();
2953 verifyFunctionAttrs(FT, Attrs, &
F, IsIntrinsic,
false);
2959 "Attribute 'builtin' can only be applied to a callsite.", &
F);
2961 Check(!
Attrs.hasAttrSomewhere(Attribute::ElementType),
2962 "Attribute 'elementtype' can only be applied to a callsite.", &
F);
2965 "Attribute 'aarch64_zt0_undef' can only be applied to a callsite.");
2967 if (
Attrs.hasFnAttr(Attribute::Naked))
2968 for (
const Argument &Arg :
F.args())
2969 Check(Arg.use_empty(),
"cannot use argument of naked function", &Arg);
2974 switch (
F.getCallingConv()) {
2976 case CallingConv::C:
2978 case CallingConv::X86_INTR: {
2979 Check(
F.arg_empty() ||
Attrs.hasParamAttr(0, Attribute::ByVal),
2980 "Calling convention parameter requires byval", &
F);
2983 case CallingConv::AMDGPU_KERNEL:
2984 case CallingConv::SPIR_KERNEL:
2985 case CallingConv::AMDGPU_CS_Chain:
2986 case CallingConv::AMDGPU_CS_ChainPreserve:
2987 Check(
F.getReturnType()->isVoidTy(),
2988 "Calling convention requires void return type", &
F);
2990 case CallingConv::AMDGPU_VS:
2991 case CallingConv::AMDGPU_HS:
2992 case CallingConv::AMDGPU_GS:
2993 case CallingConv::AMDGPU_PS:
2994 case CallingConv::AMDGPU_CS:
2995 Check(!
F.hasStructRetAttr(),
"Calling convention does not allow sret", &
F);
2996 if (
F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2997 const unsigned StackAS =
DL.getAllocaAddrSpace();
2999 for (
const Argument &Arg :
F.args()) {
3000 Check(!
Attrs.hasParamAttr(i, Attribute::ByVal),
3001 "Calling convention disallows byval", &
F);
3002 Check(!
Attrs.hasParamAttr(i, Attribute::Preallocated),
3003 "Calling convention disallows preallocated", &
F);
3004 Check(!
Attrs.hasParamAttr(i, Attribute::InAlloca),
3005 "Calling convention disallows inalloca", &
F);
3007 if (
Attrs.hasParamAttr(i, Attribute::ByRef)) {
3010 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
3011 "Calling convention disallows stack byref", &
F);
3019 case CallingConv::Fast:
3020 case CallingConv::Cold:
3021 case CallingConv::Intel_OCL_BI:
3022 case CallingConv::PTX_Kernel:
3023 case CallingConv::PTX_Device:
3025 "Calling convention does not support varargs or "
3026 "perfect forwarding!",
3029 case CallingConv::AMDGPU_Gfx_WholeWave:
3030 Check(!
F.arg_empty() &&
F.arg_begin()->getType()->isIntegerTy(1),
3031 "Calling convention requires first argument to be i1", &
F);
3032 Check(!
F.arg_begin()->hasInRegAttr(),
3033 "Calling convention requires first argument to not be inreg", &
F);
3035 "Calling convention does not support varargs or "
3036 "perfect forwarding!",
3043 for (
const Argument &Arg :
F.args()) {
3044 Check(Arg.getType() == FT->getParamType(i),
3045 "Argument value does not match function argument type!", &Arg,
3046 FT->getParamType(i));
3047 Check(Arg.getType()->isFirstClassType(),
3048 "Function arguments must have first-class types!", &Arg);
3050 Check(!Arg.getType()->isMetadataTy(),
3051 "Function takes metadata but isn't an intrinsic", &Arg, &
F);
3052 Check(!Arg.getType()->isTokenLikeTy(),
3053 "Function takes token but isn't an intrinsic", &Arg, &
F);
3054 Check(!Arg.getType()->isX86_AMXTy(),
3055 "Function takes x86_amx but isn't an intrinsic", &Arg, &
F);
3059 if (
Attrs.hasParamAttr(i, Attribute::SwiftError)) {
3060 verifySwiftErrorValue(&Arg);
3066 Check(!
F.getReturnType()->isTokenLikeTy(),
3067 "Function returns a token but isn't an intrinsic", &
F);
3068 Check(!
F.getReturnType()->isX86_AMXTy(),
3069 "Function returns a x86_amx but isn't an intrinsic", &
F);
3074 F.getAllMetadata(MDs);
3075 assert(
F.hasMetadata() != MDs.
empty() &&
"Bit out-of-sync");
3076 verifyFunctionMetadata(MDs);
3079 if (
F.hasPersonalityFn()) {
3082 Check(Per->getParent() ==
F.getParent(),
3083 "Referencing personality function in another module!", &
F,
3084 F.getParent(), Per, Per->getParent());
3088 BlockEHFuncletColors.
clear();
3090 if (
F.isMaterializable()) {
3092 Check(MDs.
empty(),
"unmaterialized function cannot have metadata", &
F,
3094 }
else if (
F.isDeclaration()) {
3095 for (
const auto &
I : MDs) {
3097 CheckDI(
I.first != LLVMContext::MD_dbg ||
3099 "function declaration may only have a unique !dbg attachment",
3101 Check(
I.first != LLVMContext::MD_prof,
3102 "function declaration may not have a !prof attachment", &
F);
3105 visitMDNode(*
I.second, AreDebugLocsAllowed::Yes);
3107 Check(!
F.hasPersonalityFn(),
3108 "Function declaration shouldn't have a personality routine", &
F);
3112 Check(!IsIntrinsic,
"llvm intrinsics cannot be defined!", &
F);
3117 "Entry block to function must not have predecessors!", Entry);
3120 if (
Entry->hasAddressTaken()) {
3122 "blockaddress may not be used with the entry block!", Entry);
3125 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
3126 NumKCFIAttachments = 0;
3128 for (
const auto &
I : MDs) {
3130 auto AllowLocs = AreDebugLocsAllowed::No;
3134 case LLVMContext::MD_dbg: {
3135 ++NumDebugAttachments;
3136 CheckDI(NumDebugAttachments == 1,
3137 "function must have a single !dbg attachment", &
F,
I.second);
3139 "function !dbg attachment must be a subprogram", &
F,
I.second);
3141 "function definition may only have a distinct !dbg attachment",
3145 const Function *&AttachedTo = DISubprogramAttachments[
SP];
3146 CheckDI(!AttachedTo || AttachedTo == &
F,
3147 "DISubprogram attached to more than one function", SP, &
F);
3149 AllowLocs = AreDebugLocsAllowed::Yes;
3152 case LLVMContext::MD_prof:
3153 ++NumProfAttachments;
3154 Check(NumProfAttachments == 1,
3155 "function must have a single !prof attachment", &
F,
I.second);
3157 case LLVMContext::MD_kcfi_type:
3158 ++NumKCFIAttachments;
3159 Check(NumKCFIAttachments == 1,
3160 "function must have a single !kcfi_type attachment", &
F,
3166 visitMDNode(*
I.second, AllowLocs);
3174 if (
F.isIntrinsic() &&
F.getParent()->isMaterialized()) {
3176 if (
F.hasAddressTaken(&U,
false,
true,
false,
3178 Check(
false,
"Invalid user of intrinsic instruction!", U);
3182 switch (
F.getIntrinsicID()) {
3183 case Intrinsic::experimental_gc_get_pointer_base: {
3184 FunctionType *FT =
F.getFunctionType();
3185 Check(FT->getNumParams() == 1,
"wrong number of parameters",
F);
3187 "gc.get.pointer.base must return a pointer",
F);
3188 Check(FT->getParamType(0) ==
F.getReturnType(),
3189 "gc.get.pointer.base operand and result must be of the same type",
F);
3192 case Intrinsic::experimental_gc_get_pointer_offset: {
3193 FunctionType *FT =
F.getFunctionType();
3194 Check(FT->getNumParams() == 1,
"wrong number of parameters",
F);
3196 "gc.get.pointer.offset operand must be a pointer",
F);
3197 Check(
F.getReturnType()->isIntegerTy(),
3198 "gc.get.pointer.offset must return integer",
F);
3203 auto *
N =
F.getSubprogram();
3204 HasDebugInfo = (
N !=
nullptr);
3212 SmallPtrSet<const MDNode *, 32> Seen;
3224 "DILocation's scope must be a DILocalScope",
N, &
F, &
I,
DL, Parent);
3226 DILocalScope *
Scope =
DL->getInlinedAtScope();
3227 Check(Scope,
"Failed to find DILocalScope",
DL);
3229 if (!Seen.
insert(Scope).second)
3232 DISubprogram *
SP =
Scope->getSubprogram();
3236 if ((Scope != SP) && !Seen.
insert(SP).second)
3240 "!dbg attachment points at wrong subprogram for function",
N, &
F,
3244 for (
auto &
I : BB) {
3245 VisitDebugLoc(
I,
I.getDebugLoc().getAsMDNode());
3247 if (
auto MD =
I.getMetadata(LLVMContext::MD_loop))
3250 if (BrokenDebugInfo)
3257void Verifier::visitBasicBlock(BasicBlock &BB) {
3258 InstsInThisBlock.
clear();
3259 ConvergenceVerifyHelper.
visit(BB);
3270 for (
const PHINode &PN : BB.
phis()) {
3271 Check(PN.getNumIncomingValues() == Preds.size(),
3272 "PHINode should have one entry for each predecessor of its "
3273 "parent basic block!",
3278 Values.
reserve(PN.getNumIncomingValues());
3279 for (
unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
3281 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
3284 for (
unsigned i = 0, e = Values.
size(); i != e; ++i) {
3289 Check(i == 0 || Values[i].first != Values[i - 1].first ||
3290 Values[i].second == Values[i - 1].second,
3291 "PHI node has multiple entries for the same basic block with "
3292 "different incoming values!",
3293 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
3297 Check(Values[i].first == Preds[i],
3298 "PHI node entries do not match predecessors!", &PN,
3299 Values[i].first, Preds[i]);
3307 Check(
I.getParent() == &BB,
"Instruction has bogus parent pointer!");
3311 CheckDI(!BB.getTrailingDbgRecords(),
"Basic Block has trailing DbgRecords!",
3315void Verifier::visitTerminator(Instruction &
I) {
3317 Check(&
I ==
I.getParent()->getTerminator(),
3318 "Terminator found in the middle of a basic block!",
I.getParent());
3319 visitInstruction(
I);
3322void Verifier::visitBranchInst(BranchInst &BI) {
3325 "Branch condition is not 'i1' type!", &BI, BI.
getCondition());
3327 visitTerminator(BI);
3330void Verifier::visitReturnInst(ReturnInst &RI) {
3333 if (
F->getReturnType()->isVoidTy())
3335 "Found return instr that returns non-void in Function of void "
3337 &RI,
F->getReturnType());
3340 "Function return type does not match operand "
3341 "type of return inst!",
3342 &RI,
F->getReturnType());
3346 visitTerminator(RI);
3349void Verifier::visitSwitchInst(SwitchInst &SI) {
3350 Check(
SI.getType()->isVoidTy(),
"Switch must have void result type!", &SI);
3353 Type *SwitchTy =
SI.getCondition()->getType();
3354 SmallPtrSet<ConstantInt*, 32>
Constants;
3355 for (
auto &Case :
SI.cases()) {
3357 "Case value is not a constant integer.", &SI);
3358 Check(Case.getCaseValue()->getType() == SwitchTy,
3359 "Switch constants must all be same type as switch value!", &SI);
3361 "Duplicate integer as switch case", &SI, Case.getCaseValue());
3364 visitTerminator(SI);
3367void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3369 "Indirectbr operand must have pointer type!", &BI);
3372 "Indirectbr destinations must all have pointer type!", &BI);
3374 visitTerminator(BI);
3377void Verifier::visitCallBrInst(CallBrInst &CBI) {
3378 Check(CBI.
isInlineAsm(),
"Callbr is currently only used for asm-goto!", &CBI);
3380 Check(!
IA->canThrow(),
"Unwinding from Callbr is not allowed");
3382 verifyInlineAsmCall(CBI);
3383 visitTerminator(CBI);
3386void Verifier::visitSelectInst(SelectInst &SI) {
3389 "Invalid operands for select instruction!", &SI);
3391 Check(
SI.getTrueValue()->getType() ==
SI.getType(),
3392 "Select values must have same type as select instruction!", &SI);
3393 visitInstruction(SI);
3399void Verifier::visitUserOp1(Instruction &
I) {
3400 Check(
false,
"User-defined operators should not live outside of a pass!", &
I);
3403void Verifier::visitTruncInst(TruncInst &
I) {
3405 Type *SrcTy =
I.getOperand(0)->getType();
3406 Type *DestTy =
I.getType();
3415 "trunc source and destination must both be a vector or neither", &
I);
3416 Check(SrcBitSize > DestBitSize,
"DestTy too big for Trunc", &
I);
3418 visitInstruction(
I);
3421void Verifier::visitZExtInst(ZExtInst &
I) {
3423 Type *SrcTy =
I.getOperand(0)->getType();
3424 Type *DestTy =
I.getType();
3430 "zext source and destination must both be a vector or neither", &
I);
3434 Check(SrcBitSize < DestBitSize,
"Type too small for ZExt", &
I);
3436 visitInstruction(
I);
3439void Verifier::visitSExtInst(SExtInst &
I) {
3441 Type *SrcTy =
I.getOperand(0)->getType();
3442 Type *DestTy =
I.getType();
3451 "sext source and destination must both be a vector or neither", &
I);
3452 Check(SrcBitSize < DestBitSize,
"Type too small for SExt", &
I);
3454 visitInstruction(
I);
3457void Verifier::visitFPTruncInst(FPTruncInst &
I) {
3459 Type *SrcTy =
I.getOperand(0)->getType();
3460 Type *DestTy =
I.getType();
3468 "fptrunc source and destination must both be a vector or neither", &
I);
3469 Check(SrcBitSize > DestBitSize,
"DestTy too big for FPTrunc", &
I);
3471 visitInstruction(
I);
3474void Verifier::visitFPExtInst(FPExtInst &
I) {
3476 Type *SrcTy =
I.getOperand(0)->getType();
3477 Type *DestTy =
I.getType();
3486 "fpext source and destination must both be a vector or neither", &
I);
3487 Check(SrcBitSize < DestBitSize,
"DestTy too small for FPExt", &
I);
3489 visitInstruction(
I);
3492void Verifier::visitUIToFPInst(UIToFPInst &
I) {
3494 Type *SrcTy =
I.getOperand(0)->getType();
3495 Type *DestTy =
I.getType();
3500 Check(SrcVec == DstVec,
3501 "UIToFP source and dest must both be vector or scalar", &
I);
3503 "UIToFP source must be integer or integer vector", &
I);
3507 if (SrcVec && DstVec)
3510 "UIToFP source and dest vector length mismatch", &
I);
3512 visitInstruction(
I);
3515void Verifier::visitSIToFPInst(SIToFPInst &
I) {
3517 Type *SrcTy =
I.getOperand(0)->getType();
3518 Type *DestTy =
I.getType();
3523 Check(SrcVec == DstVec,
3524 "SIToFP source and dest must both be vector or scalar", &
I);
3526 "SIToFP source must be integer or integer vector", &
I);
3530 if (SrcVec && DstVec)
3533 "SIToFP source and dest vector length mismatch", &
I);
3535 visitInstruction(
I);
3538void Verifier::visitFPToUIInst(FPToUIInst &
I) {
3540 Type *SrcTy =
I.getOperand(0)->getType();
3541 Type *DestTy =
I.getType();
3546 Check(SrcVec == DstVec,
3547 "FPToUI source and dest must both be vector or scalar", &
I);
3550 "FPToUI result must be integer or integer vector", &
I);
3552 if (SrcVec && DstVec)
3555 "FPToUI source and dest vector length mismatch", &
I);
3557 visitInstruction(
I);
3560void Verifier::visitFPToSIInst(FPToSIInst &
I) {
3562 Type *SrcTy =
I.getOperand(0)->getType();
3563 Type *DestTy =
I.getType();
3568 Check(SrcVec == DstVec,
3569 "FPToSI source and dest must both be vector or scalar", &
I);
3572 "FPToSI result must be integer or integer vector", &
I);
3574 if (SrcVec && DstVec)
3577 "FPToSI source and dest vector length mismatch", &
I);
3579 visitInstruction(
I);
3582void Verifier::checkPtrToAddr(
Type *SrcTy,
Type *DestTy,
const Value &V) {
3591 Check(VSrc->getElementCount() == VDest->getElementCount(),
3592 "PtrToAddr vector length mismatch", V);
3595 Type *AddrTy =
DL.getAddressType(SrcTy);
3596 Check(AddrTy == DestTy,
"PtrToAddr result must be address width", V);
3599void Verifier::visitPtrToAddrInst(PtrToAddrInst &
I) {
3600 checkPtrToAddr(
I.getOperand(0)->getType(),
I.getType(),
I);
3601 visitInstruction(
I);
3604void Verifier::visitPtrToIntInst(PtrToIntInst &
I) {
3606 Type *SrcTy =
I.getOperand(0)->getType();
3607 Type *DestTy =
I.getType();
3618 Check(VSrc->getElementCount() == VDest->getElementCount(),
3619 "PtrToInt Vector length mismatch", &
I);
3622 visitInstruction(
I);
3625void Verifier::visitIntToPtrInst(IntToPtrInst &
I) {
3627 Type *SrcTy =
I.getOperand(0)->getType();
3628 Type *DestTy =
I.getType();
3638 Check(VSrc->getElementCount() == VDest->getElementCount(),
3639 "IntToPtr Vector length mismatch", &
I);
3641 visitInstruction(
I);
3644void Verifier::visitBitCastInst(BitCastInst &
I) {
3647 "Invalid bitcast", &
I);
3648 visitInstruction(
I);
3651void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &
I) {
3652 Type *SrcTy =
I.getOperand(0)->getType();
3653 Type *DestTy =
I.getType();
3660 "AddrSpaceCast must be between different address spaces", &
I);
3662 Check(SrcVTy->getElementCount() ==
3664 "AddrSpaceCast vector pointer number of elements mismatch", &
I);
3665 visitInstruction(
I);
3670void Verifier::visitPHINode(PHINode &PN) {
3677 "PHI nodes not grouped at top of basic block!", &PN, PN.
getParent());
3686 "PHI node operands are not the same type as the result!", &PN);
3691 visitInstruction(PN);
3694void Verifier::visitCallBase(CallBase &
Call) {
3696 "Called function must be a pointer!",
Call);
3700 if (FTy->isVarArg())
3702 "Called function requires more parameters than were provided!",
Call);
3705 "Incorrect number of arguments passed to called function!",
Call);
3708 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3710 "Call parameter type does not match function signature!",
3716 "Attribute after last parameter!",
Call);
3723 "Intrinsic called with incompatible signature",
Call);
3727 "calling convention does not permit calls",
Call);
3733 auto VerifyTypeAlign = [&](
Type *Ty,
const Twine &Message) {
3736 Align ABIAlign =
DL.getABITypeAlign(Ty);
3737 Check(ABIAlign.
value() <= Value::MaximumAlignment,
3738 "Incorrect alignment of " + Message +
" to called function!",
Call);
3742 VerifyTypeAlign(FTy->getReturnType(),
"return type");
3743 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3744 Type *Ty = FTy->getParamType(i);
3745 VerifyTypeAlign(Ty,
"argument passed");
3749 if (
Attrs.hasFnAttr(Attribute::Speculatable)) {
3753 "speculatable attribute may not apply to call sites",
Call);
3756 if (
Attrs.hasFnAttr(Attribute::Preallocated)) {
3758 "preallocated as a call site attribute can only be on "
3759 "llvm.call.preallocated.arg");
3771 Check(AI->isUsedWithInAlloca(),
3772 "inalloca argument for call has mismatched alloca", AI,
Call);
3778 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3782 Check(AI->isSwiftError(),
3783 "swifterror argument for call has mismatched alloca", AI,
Call);
3787 Check(ArgI,
"swifterror argument should come from an alloca or parameter",
3788 SwiftErrorArg,
Call);
3789 Check(ArgI->hasSwiftErrorAttr(),
3790 "swifterror argument for call has mismatched parameter", ArgI,
3794 if (
Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3797 Check(Callee &&
Callee->hasParamAttribute(i, Attribute::ImmArg),
3805 "immarg operand has non-immediate parameter", ArgVal,
Call);
3811 const ConstantRange &CR =
3814 "immarg value " + Twine(CI->getValue().getSExtValue()) +
3827 Check(hasOB != isMustTail,
3828 "preallocated operand either requires a preallocated bundle or "
3829 "the call to be musttail (but not both)",
3834 if (FTy->isVarArg()) {
3836 bool SawNest =
false;
3837 bool SawReturned =
false;
3839 for (
unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3840 if (
Attrs.hasParamAttr(Idx, Attribute::Nest))
3842 if (
Attrs.hasParamAttr(Idx, Attribute::Returned))
3847 for (
unsigned Idx = FTy->getNumParams(); Idx <
Call.
arg_size(); ++Idx) {
3849 AttributeSet ArgAttrs =
Attrs.getParamAttrs(Idx);
3850 verifyParameterAttrs(ArgAttrs, Ty, &
Call);
3853 Check(!SawNest,
"More than one parameter has attribute nest!",
Call);
3858 Check(!SawReturned,
"More than one parameter has attribute returned!",
3861 "Incompatible argument and return types for 'returned' "
3871 "Attribute 'sret' cannot be used for vararg call arguments!",
3876 "inalloca isn't on the last argument!",
Call);
3882 for (
Type *ParamTy : FTy->params()) {
3883 Check(!ParamTy->isMetadataTy(),
3884 "Function has metadata parameter but isn't an intrinsic",
Call);
3885 Check(!ParamTy->isTokenLikeTy(),
3886 "Function has token parameter but isn't an intrinsic",
Call);
3892 Check(!FTy->getReturnType()->isTokenLikeTy(),
3893 "Return type cannot be token for indirect call!");
3894 Check(!FTy->getReturnType()->isX86_AMXTy(),
3895 "Return type cannot be x86_amx for indirect call!");
3899 visitIntrinsicCall(
ID,
Call);
3904 bool FoundDeoptBundle =
false, FoundFuncletBundle =
false,
3905 FoundGCTransitionBundle =
false, FoundCFGuardTargetBundle =
false,
3906 FoundPreallocatedBundle =
false, FoundGCLiveBundle =
false,
3907 FoundPtrauthBundle =
false, FoundKCFIBundle =
false,
3908 FoundAttachedCallBundle =
false;
3913 Check(!FoundDeoptBundle,
"Multiple deopt operand bundles",
Call);
3914 FoundDeoptBundle =
true;
3916 Check(!FoundGCTransitionBundle,
"Multiple gc-transition operand bundles",
3918 FoundGCTransitionBundle =
true;
3920 Check(!FoundFuncletBundle,
"Multiple funclet operand bundles",
Call);
3921 FoundFuncletBundle =
true;
3923 "Expected exactly one funclet bundle operand",
Call);
3925 "Funclet bundle operands should correspond to a FuncletPadInst",
3928 Check(!FoundCFGuardTargetBundle,
"Multiple CFGuardTarget operand bundles",
3930 FoundCFGuardTargetBundle =
true;
3932 "Expected exactly one cfguardtarget bundle operand",
Call);
3934 Check(!FoundPtrauthBundle,
"Multiple ptrauth operand bundles",
Call);
3935 FoundPtrauthBundle =
true;
3937 "Expected exactly two ptrauth bundle operands",
Call);
3939 BU.
Inputs[0]->getType()->isIntegerTy(32),
3940 "Ptrauth bundle key operand must be an i32 constant",
Call);
3942 "Ptrauth bundle discriminator operand must be an i64",
Call);
3944 Check(!FoundKCFIBundle,
"Multiple kcfi operand bundles",
Call);
3945 FoundKCFIBundle =
true;
3946 Check(BU.
Inputs.size() == 1,
"Expected exactly one kcfi bundle operand",
3949 BU.
Inputs[0]->getType()->isIntegerTy(32),
3950 "Kcfi bundle operand must be an i32 constant",
Call);
3952 Check(!FoundPreallocatedBundle,
"Multiple preallocated operand bundles",
3954 FoundPreallocatedBundle =
true;
3956 "Expected exactly one preallocated bundle operand",
Call);
3959 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3960 "\"preallocated\" argument must be a token from "
3961 "llvm.call.preallocated.setup",
3964 Check(!FoundGCLiveBundle,
"Multiple gc-live operand bundles",
Call);
3965 FoundGCLiveBundle =
true;
3967 Check(!FoundAttachedCallBundle,
3968 "Multiple \"clang.arc.attachedcall\" operand bundles",
Call);
3969 FoundAttachedCallBundle =
true;
3970 verifyAttachedCallBundle(
Call, BU);
3976 "Direct call cannot have a ptrauth bundle",
Call);
3988 "inlinable function call in a function with "
3989 "debug info must have a !dbg location",
3993 verifyInlineAsmCall(
Call);
3997 visitInstruction(
Call);
4000void Verifier::verifyTailCCMustTailAttrs(
const AttrBuilder &Attrs,
4003 Twine(
"inalloca attribute not allowed in ") +
Context);
4005 Twine(
"inreg attribute not allowed in ") +
Context);
4006 Check(!
Attrs.contains(Attribute::SwiftError),
4007 Twine(
"swifterror attribute not allowed in ") +
Context);
4008 Check(!
Attrs.contains(Attribute::Preallocated),
4009 Twine(
"preallocated attribute not allowed in ") +
Context);
4011 Twine(
"byref attribute not allowed in ") +
Context);
4023 return PL->getAddressSpace() == PR->getAddressSpace();
4028 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
4029 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
4030 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
4032 AttrBuilder Copy(
C);
4033 for (
auto AK : ABIAttrs) {
4034 Attribute Attr = Attrs.getParamAttrs(
I).getAttribute(AK);
4036 Copy.addAttribute(Attr);
4040 if (Attrs.hasParamAttr(
I, Attribute::Alignment) &&
4041 (Attrs.hasParamAttr(
I, Attribute::ByVal) ||
4042 Attrs.hasParamAttr(
I, Attribute::ByRef)))
4043 Copy.addAlignmentAttr(Attrs.getParamAlignment(
I));
4047void Verifier::verifyMustTailCall(CallInst &CI) {
4051 FunctionType *CallerTy =
F->getFunctionType();
4053 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
4054 "cannot guarantee tail call due to mismatched varargs", &CI);
4056 "cannot guarantee tail call due to mismatched return types", &CI);
4060 "cannot guarantee tail call due to mismatched calling conv", &CI);
4066 Value *RetVal = &CI;
4072 "bitcast following musttail call must use the call", BI);
4079 Check(Ret,
"musttail call must precede a ret with an optional bitcast", &CI);
4080 Check(!
Ret->getReturnValue() ||
Ret->getReturnValue() == RetVal ||
4082 "musttail call result must be returned", Ret);
4084 AttributeList CallerAttrs =
F->getAttributes();
4089 CI.
getCallingConv() == CallingConv::Tail ?
"tailcc" :
"swifttailcc";
4093 for (
unsigned I = 0,
E = CallerTy->getNumParams();
I !=
E; ++
I) {
4095 SmallString<32>
Context{CCName, StringRef(
" musttail caller")};
4096 verifyTailCCMustTailAttrs(ABIAttrs,
Context);
4098 for (
unsigned I = 0,
E = CalleeTy->getNumParams();
I !=
E; ++
I) {
4100 SmallString<32>
Context{CCName, StringRef(
" musttail callee")};
4101 verifyTailCCMustTailAttrs(ABIAttrs,
Context);
4104 Check(!CallerTy->isVarArg(), Twine(
"cannot guarantee ") + CCName +
4105 " tail call for varargs function");
4113 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
4114 "cannot guarantee tail call due to mismatched parameter counts", &CI);
4115 for (
unsigned I = 0,
E = CallerTy->getNumParams();
I !=
E; ++
I) {
4118 "cannot guarantee tail call due to mismatched parameter types", &CI);
4124 for (
unsigned I = 0,
E = CallerTy->getNumParams();
I !=
E; ++
I) {
4127 Check(CallerABIAttrs == CalleeABIAttrs,
4128 "cannot guarantee tail call due to mismatched ABI impacting "
4129 "function attributes",
4134void Verifier::visitCallInst(CallInst &CI) {
4138 verifyMustTailCall(CI);
4141void Verifier::visitInvokeInst(InvokeInst &
II) {
4147 II.getUnwindDest()->isEHPad(),
4148 "The unwind destination does not have an exception handling instruction!",
4151 visitTerminator(
II);
4156void Verifier::visitUnaryOperator(UnaryOperator &U) {
4157 Check(
U.getType() ==
U.getOperand(0)->getType(),
4158 "Unary operators must have same type for"
4159 "operands and result!",
4162 switch (
U.getOpcode()) {
4165 case Instruction::FNeg:
4166 Check(
U.getType()->isFPOrFPVectorTy(),
4167 "FNeg operator only works with float types!", &U);
4173 visitInstruction(U);
4179void Verifier::visitBinaryOperator(BinaryOperator &
B) {
4180 Check(
B.getOperand(0)->getType() ==
B.getOperand(1)->getType(),
4181 "Both operands to a binary operator are not of the same type!", &
B);
4183 switch (
B.getOpcode()) {
4186 case Instruction::Add:
4187 case Instruction::Sub:
4188 case Instruction::Mul:
4189 case Instruction::SDiv:
4190 case Instruction::UDiv:
4191 case Instruction::SRem:
4192 case Instruction::URem:
4193 Check(
B.getType()->isIntOrIntVectorTy(),
4194 "Integer arithmetic operators only work with integral types!", &
B);
4195 Check(
B.getType() ==
B.getOperand(0)->getType(),
4196 "Integer arithmetic operators must have same type "
4197 "for operands and result!",
4202 case Instruction::FAdd:
4203 case Instruction::FSub:
4204 case Instruction::FMul:
4205 case Instruction::FDiv:
4206 case Instruction::FRem:
4207 Check(
B.getType()->isFPOrFPVectorTy(),
4208 "Floating-point arithmetic operators only work with "
4209 "floating-point types!",
4211 Check(
B.getType() ==
B.getOperand(0)->getType(),
4212 "Floating-point arithmetic operators must have same type "
4213 "for operands and result!",
4217 case Instruction::And:
4218 case Instruction::Or:
4219 case Instruction::Xor:
4220 Check(
B.getType()->isIntOrIntVectorTy(),
4221 "Logical operators only work with integral types!", &
B);
4222 Check(
B.getType() ==
B.getOperand(0)->getType(),
4223 "Logical operators must have same type for operands and result!", &
B);
4225 case Instruction::Shl:
4226 case Instruction::LShr:
4227 case Instruction::AShr:
4228 Check(
B.getType()->isIntOrIntVectorTy(),
4229 "Shifts only work with integral types!", &
B);
4230 Check(
B.getType() ==
B.getOperand(0)->getType(),
4231 "Shift return type must be same as operands!", &
B);
4237 visitInstruction(
B);
4240void Verifier::visitICmpInst(ICmpInst &IC) {
4244 Check(Op0Ty == Op1Ty,
4245 "Both operands to ICmp instruction are not of the same type!", &IC);
4248 "Invalid operand types for ICmp instruction", &IC);
4252 visitInstruction(IC);
4255void Verifier::visitFCmpInst(FCmpInst &FC) {
4257 Type *Op0Ty =
FC.getOperand(0)->getType();
4258 Type *Op1Ty =
FC.getOperand(1)->getType();
4259 Check(Op0Ty == Op1Ty,
4260 "Both operands to FCmp instruction are not of the same type!", &FC);
4265 Check(
FC.isFPPredicate(),
"Invalid predicate in FCmp instruction!", &FC);
4267 visitInstruction(FC);
4270void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
4272 "Invalid extractelement operands!", &EI);
4273 visitInstruction(EI);
4276void Verifier::visitInsertElementInst(InsertElementInst &IE) {
4279 "Invalid insertelement operands!", &IE);
4280 visitInstruction(IE);
4283void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
4286 "Invalid shufflevector operands!", &SV);
4287 visitInstruction(SV);
4290void Verifier::visitGetElementPtrInst(GetElementPtrInst &
GEP) {
4291 Type *TargetTy =
GEP.getPointerOperandType()->getScalarType();
4294 "GEP base pointer is not a vector or a vector of pointers", &
GEP);
4295 Check(
GEP.getSourceElementType()->isSized(),
"GEP into unsized type!", &
GEP);
4299 "getelementptr cannot target structure that contains scalable vector"
4304 SmallVector<Value *, 16> Idxs(
GEP.indices());
4306 all_of(Idxs, [](
Value *V) {
return V->getType()->isIntOrIntVectorTy(); }),
4307 "GEP indexes must be integers", &
GEP);
4310 Check(ElTy,
"Invalid indices for GEP pointer type!", &
GEP);
4314 Check(PtrTy &&
GEP.getResultElementType() == ElTy,
4315 "GEP is not of right type for indices!", &
GEP, ElTy);
4319 ElementCount GEPWidth = GEPVTy->getElementCount();
4320 if (
GEP.getPointerOperandType()->isVectorTy())
4324 "Vector GEP result width doesn't match operand's", &
GEP);
4325 for (
Value *Idx : Idxs) {
4326 Type *IndexTy = Idx->getType();
4328 ElementCount IndexWidth = IndexVTy->getElementCount();
4329 Check(IndexWidth == GEPWidth,
"Invalid GEP index vector width", &
GEP);
4332 "All GEP indices should be of integer type");
4336 Check(
GEP.getAddressSpace() == PtrTy->getAddressSpace(),
4337 "GEP address space doesn't match type", &
GEP);
4339 visitInstruction(
GEP);
4343 return A.getUpper() ==
B.getLower() ||
A.getLower() ==
B.getUpper();
4348void Verifier::verifyRangeLikeMetadata(
const Value &
I,
const MDNode *
Range,
4349 Type *Ty, RangeLikeMetadataKind Kind) {
4350 unsigned NumOperands =
Range->getNumOperands();
4351 Check(NumOperands % 2 == 0,
"Unfinished range!",
Range);
4352 unsigned NumRanges = NumOperands / 2;
4353 Check(NumRanges >= 1,
"It should have at least one range!",
Range);
4355 ConstantRange LastRange(1,
true);
4356 for (
unsigned i = 0; i < NumRanges; ++i) {
4359 Check(
Low,
"The lower limit must be an integer!",
Low);
4364 Check(
High->getType() ==
Low->getType(),
"Range pair types must match!",
4367 if (Kind == RangeLikeMetadataKind::NoaliasAddrspace) {
4369 "noalias.addrspace type must be i32!", &
I);
4372 "Range types must match instruction type!", &
I);
4375 APInt HighV =
High->getValue();
4376 APInt LowV =
Low->getValue();
4381 "The upper and lower limits cannot be the same value", &
I);
4383 ConstantRange CurRange(LowV, HighV);
4384 Check(!CurRange.isEmptySet() &&
4385 (Kind == RangeLikeMetadataKind::AbsoluteSymbol ||
4386 !CurRange.isFullSet()),
4387 "Range must not be empty!",
Range);
4389 Check(CurRange.intersectWith(LastRange).isEmptySet(),
4390 "Intervals are overlapping",
Range);
4391 Check(LowV.
sgt(LastRange.getLower()),
"Intervals are not in order",
4396 LastRange = ConstantRange(LowV, HighV);
4398 if (NumRanges > 2) {
4403 ConstantRange FirstRange(FirstLow, FirstHigh);
4404 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4405 "Intervals are overlapping",
Range);
4411void Verifier::visitRangeMetadata(Instruction &
I, MDNode *
Range,
Type *Ty) {
4413 "precondition violation");
4414 verifyRangeLikeMetadata(
I,
Range, Ty, RangeLikeMetadataKind::Range);
4417void Verifier::visitNoaliasAddrspaceMetadata(Instruction &
I, MDNode *
Range,
4420 "precondition violation");
4421 verifyRangeLikeMetadata(
I,
Range, Ty,
4422 RangeLikeMetadataKind::NoaliasAddrspace);
4425void Verifier::checkAtomicMemAccessSize(
Type *Ty,
const Instruction *
I) {
4426 unsigned Size =
DL.getTypeSizeInBits(Ty).getFixedValue();
4427 Check(
Size >= 8,
"atomic memory access' size must be byte-sized", Ty,
I);
4429 "atomic memory access' operand must have a power-of-two size", Ty,
I);
4432void Verifier::visitLoadInst(LoadInst &LI) {
4434 Check(PTy,
"Load operand must be a pointer.", &LI);
4437 Check(
A->value() <= Value::MaximumAlignment,
4438 "huge alignment values are unsupported", &LI);
4440 Check(ElTy->
isSized(),
"loading unsized types is not allowed", &LI);
4443 LI.
getOrdering() != AtomicOrdering::AcquireRelease,
4444 "Load cannot have Release ordering", &LI);
4447 "atomic load operand must have integer, pointer, floating point, "
4451 checkAtomicMemAccessSize(ElTy, &LI);
4454 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4457 visitInstruction(LI);
4460void Verifier::visitStoreInst(StoreInst &SI) {
4462 Check(PTy,
"Store operand must be a pointer.", &SI);
4463 Type *ElTy =
SI.getOperand(0)->getType();
4464 if (MaybeAlign
A =
SI.getAlign()) {
4465 Check(
A->value() <= Value::MaximumAlignment,
4466 "huge alignment values are unsupported", &SI);
4468 Check(ElTy->
isSized(),
"storing unsized types is not allowed", &SI);
4469 if (
SI.isAtomic()) {
4470 Check(
SI.getOrdering() != AtomicOrdering::Acquire &&
4471 SI.getOrdering() != AtomicOrdering::AcquireRelease,
4472 "Store cannot have Acquire ordering", &SI);
4475 "atomic store operand must have integer, pointer, floating point, "
4478 checkAtomicMemAccessSize(ElTy, &SI);
4481 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4483 visitInstruction(SI);
4487void Verifier::verifySwiftErrorCall(CallBase &
Call,
4488 const Value *SwiftErrorVal) {
4490 if (
I.value() == SwiftErrorVal) {
4492 "swifterror value when used in a callsite should be marked "
4493 "with swifterror attribute",
4494 SwiftErrorVal,
Call);
4499void Verifier::verifySwiftErrorValue(
const Value *SwiftErrorVal) {
4502 for (
const User *U : SwiftErrorVal->
users()) {
4505 "swifterror value can only be loaded and stored from, or "
4506 "as a swifterror argument!",
4510 Check(StoreI->getOperand(1) == SwiftErrorVal,
4511 "swifterror value should be the second operand when used "
4515 verifySwiftErrorCall(*
const_cast<CallBase *
>(
Call), SwiftErrorVal);
4519void Verifier::visitAllocaInst(AllocaInst &AI) {
4521 SmallPtrSet<Type*, 4> Visited;
4522 Check(Ty->
isSized(&Visited),
"Cannot allocate unsized type", &AI);
4526 "Alloca has illegal target extension type", &AI);
4528 "Alloca array size must have integer type", &AI);
4530 Check(
A->value() <= Value::MaximumAlignment,
4531 "huge alignment values are unsupported", &AI);
4537 "swifterror alloca must not be array allocation", &AI);
4538 verifySwiftErrorValue(&AI);
4541 if (
TT.isAMDGPU()) {
4543 "alloca on amdgpu must be in addrspace(5)", &AI);
4546 visitInstruction(AI);
4549void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4552 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4553 checkAtomicMemAccessSize(ElTy, &CXI);
4554 visitInstruction(CXI);
4557void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4559 "atomicrmw instructions cannot be unordered.", &RMWI);
4566 " operand must have integer or floating point type!",
4571 " operand must have floating-point or fixed vector of floating-point "
4577 " operand must have integer type!",
4580 checkAtomicMemAccessSize(ElTy, &RMWI);
4582 "Invalid binary operation!", &RMWI);
4583 visitInstruction(RMWI);
4586void Verifier::visitFenceInst(FenceInst &FI) {
4588 Check(Ordering == AtomicOrdering::Acquire ||
4589 Ordering == AtomicOrdering::Release ||
4590 Ordering == AtomicOrdering::AcquireRelease ||
4591 Ordering == AtomicOrdering::SequentiallyConsistent,
4592 "fence instructions may only have acquire, release, acq_rel, or "
4593 "seq_cst ordering.",
4595 visitInstruction(FI);
4598void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4601 "Invalid ExtractValueInst operands!", &EVI);
4603 visitInstruction(EVI);
4606void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4610 "Invalid InsertValueInst operands!", &IVI);
4612 visitInstruction(IVI);
4617 return FPI->getParentPad();
4622void Verifier::visitEHPadPredecessors(Instruction &
I) {
4628 Check(BB != &
F->getEntryBlock(),
"EH pad cannot be in entry block.", &
I);
4636 Check(
II &&
II->getUnwindDest() == BB &&
II->getNormalDest() != BB,
4637 "Block containing LandingPadInst must be jumped to "
4638 "only by the unwind edge of an invoke.",
4646 "Block containg CatchPadInst must be jumped to "
4647 "only by its catchswitch.",
4649 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4650 "Catchswitch cannot unwind to one of its catchpads",
4651 CPI->getCatchSwitch(), CPI);
4663 Check(
II->getUnwindDest() == BB &&
II->getNormalDest() != BB,
4664 "EH pad must be jumped to via an unwind edge", ToPad,
II);
4667 if (CalledFn && CalledFn->isIntrinsic() &&
II->doesNotThrow() &&
4671 FromPad = Bundle->Inputs[0];
4675 FromPad = CRI->getOperand(0);
4676 Check(FromPad != ToPadParent,
"A cleanupret must exit its cleanup", CRI);
4680 Check(
false,
"EH pad must be jumped to via an unwind edge", ToPad, TI);
4684 SmallPtrSet<Value *, 8> Seen;
4686 Check(FromPad != ToPad,
4687 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4688 if (FromPad == ToPadParent) {
4693 "A single unwind edge may only enter one EH pad", TI);
4694 Check(Seen.
insert(FromPad).second,
"EH pad jumps through a cycle of pads",
4700 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4705void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4709 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4711 visitEHPadPredecessors(LPI);
4713 if (!LandingPadResultTy)
4714 LandingPadResultTy = LPI.
getType();
4717 "The landingpad instruction should have a consistent result type "
4718 "inside a function.",
4722 Check(
F->hasPersonalityFn(),
4723 "LandingPadInst needs to be in a function with a personality.", &LPI);
4728 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4734 "Catch operand does not have pointer type!", &LPI);
4736 Check(LPI.
isFilter(i),
"Clause is neither catch nor filter!", &LPI);
4738 "Filter operand is not an array of constants!", &LPI);
4742 visitInstruction(LPI);
4745void Verifier::visitResumeInst(ResumeInst &RI) {
4747 "ResumeInst needs to be in a function with a personality.", &RI);
4749 if (!LandingPadResultTy)
4753 "The resume instruction should have a consistent result type "
4754 "inside a function.",
4757 visitTerminator(RI);
4760void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4764 Check(
F->hasPersonalityFn(),
4765 "CatchPadInst needs to be in a function with a personality.", &CPI);
4768 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4774 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4776 visitEHPadPredecessors(CPI);
4777 visitFuncletPadInst(CPI);
4780void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4782 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4785 visitTerminator(CatchReturn);
4788void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4792 Check(
F->hasPersonalityFn(),
4793 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4798 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4802 "CleanupPadInst has an invalid parent.", &CPI);
4804 visitEHPadPredecessors(CPI);
4805 visitFuncletPadInst(CPI);
4808void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4809 User *FirstUser =
nullptr;
4810 Value *FirstUnwindPad =
nullptr;
4812 SmallPtrSet<FuncletPadInst *, 8> Seen;
4814 while (!Worklist.empty()) {
4815 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4817 "FuncletPadInst must not be nested within itself", CurrentPad);
4818 Value *UnresolvedAncestorPad =
nullptr;
4819 for (User *U : CurrentPad->
users()) {
4822 UnwindDest = CRI->getUnwindDest();
4828 if (CSI->unwindsToCaller())
4830 UnwindDest = CSI->getUnwindDest();
4832 UnwindDest =
II->getUnwindDest();
4842 Worklist.push_back(CPI);
4857 if (UnwindParent == CurrentPad)
4863 Value *ExitedPad = CurrentPad;
4866 if (ExitedPad == &FPI) {
4871 UnresolvedAncestorPad = &FPI;
4875 if (ExitedParent == UnwindParent) {
4879 UnresolvedAncestorPad = ExitedParent;
4882 ExitedPad = ExitedParent;
4888 UnresolvedAncestorPad = &FPI;
4895 Check(UnwindPad == FirstUnwindPad,
4896 "Unwind edges out of a funclet "
4897 "pad must have the same unwind "
4899 &FPI, U, FirstUser);
4902 FirstUnwindPad = UnwindPad;
4911 if (CurrentPad != &FPI)
4914 if (UnresolvedAncestorPad) {
4915 if (CurrentPad == UnresolvedAncestorPad) {
4919 assert(CurrentPad == &FPI);
4927 Value *ResolvedPad = CurrentPad;
4928 while (!Worklist.empty()) {
4929 Value *UnclePad = Worklist.back();
4933 while (ResolvedPad != AncestorPad) {
4935 if (ResolvedParent == UnresolvedAncestorPad) {
4938 ResolvedPad = ResolvedParent;
4942 if (ResolvedPad != AncestorPad)
4945 Worklist.pop_back();
4950 if (FirstUnwindPad) {
4952 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4953 Value *SwitchUnwindPad;
4954 if (SwitchUnwindDest)
4958 Check(SwitchUnwindPad == FirstUnwindPad,
4959 "Unwind edges out of a catch must have the same unwind dest as "
4960 "the parent catchswitch",
4961 &FPI, FirstUser, CatchSwitch);
4965 visitInstruction(FPI);
4968void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4972 Check(
F->hasPersonalityFn(),
4973 "CatchSwitchInst needs to be in a function with a personality.",
4979 "CatchSwitchInst not the first non-PHI instruction in the block.",
4984 "CatchSwitchInst has an invalid parent.", ParentPad);
4989 "CatchSwitchInst must unwind to an EH block which is not a "
4995 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4999 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
5001 for (BasicBlock *Handler : CatchSwitch.
handlers()) {
5003 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
5006 visitEHPadPredecessors(CatchSwitch);
5007 visitTerminator(CatchSwitch);
5010void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
5012 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
5018 "CleanupReturnInst must unwind to an EH block which is not a "
5023 visitTerminator(CRI);
5026void Verifier::verifyDominatesUse(Instruction &
I,
unsigned i) {
5032 if (
II->getNormalDest() ==
II->getUnwindDest())
5046 const Use &
U =
I.getOperandUse(i);
5047 Check(DT.dominates(
Op, U),
"Instruction does not dominate all uses!",
Op, &
I);
5050void Verifier::visitDereferenceableMetadata(Instruction&
I, MDNode* MD) {
5051 Check(
I.getType()->isPointerTy(),
5052 "dereferenceable, dereferenceable_or_null "
5053 "apply only to pointer types",
5056 "dereferenceable, dereferenceable_or_null apply only to load"
5057 " and inttoptr instructions, use attributes for calls or invokes",
5060 "dereferenceable, dereferenceable_or_null "
5061 "take one operand!",
5066 "dereferenceable_or_null metadata value must be an i64!",
5070void Verifier::visitNofreeMetadata(Instruction &
I, MDNode *MD) {
5071 Check(
I.getType()->isPointerTy(),
"nofree applies only to pointer types", &
I);
5077void Verifier::visitProfMetadata(Instruction &
I, MDNode *MD) {
5078 auto GetBranchingTerminatorNumOperands = [&]() {
5079 unsigned ExpectedNumOperands = 0;
5083 ExpectedNumOperands =
SI->getNumSuccessors();
5085 ExpectedNumOperands = 1;
5087 ExpectedNumOperands = IBI->getNumDestinations();
5089 ExpectedNumOperands = 2;
5092 return ExpectedNumOperands;
5095 "!prof annotations should have at least 1 operand", MD);
5097 Check(MD->
getOperand(0) !=
nullptr,
"first operand should not be null", MD);
5099 "expected string with name of the !prof annotation", MD);
5105 "'unknown' !prof should only appear on instructions on which "
5106 "'branch_weights' would",
5108 verifyUnknownProfileMetadata(MD);
5113 "!prof annotations should have no less than 2 operands", MD);
5119 Check(NumBranchWeights == 1 || NumBranchWeights == 2,
5120 "Wrong number of InvokeInst branch_weights operands", MD);
5122 const unsigned ExpectedNumOperands = GetBranchingTerminatorNumOperands();
5123 if (ExpectedNumOperands == 0)
5124 CheckFailed(
"!prof branch_weights are not allowed for this instruction",
5127 Check(NumBranchWeights == ExpectedNumOperands,
"Wrong number of operands",
5133 Check(MDO,
"second operand should not be null", MD);
5135 "!prof brunch_weights operand is not a const int");
5140 Check(KindInt,
"VP !prof missing kind argument", MD);
5143 Check(Kind >= InstrProfValueKind::IPVK_First &&
5144 Kind <= InstrProfValueKind::IPVK_Last,
5145 "Invalid VP !prof kind", MD);
5147 "VP !prof should have an even number "
5148 "of arguments after 'VP'",
5150 if (Kind == InstrProfValueKind::IPVK_IndirectCallTarget ||
5151 Kind == InstrProfValueKind::IPVK_MemOPSize)
5153 "VP !prof indirect call or memop size expected to be applied to "
5154 "CallBase instructions only",
5157 CheckFailed(
"expected either branch_weights or VP profile name", MD);
5161void Verifier::visitDIAssignIDMetadata(Instruction &
I, MDNode *MD) {
5162 assert(
I.hasMetadata(LLVMContext::MD_DIAssignID));
5167 bool ExpectedInstTy =
5169 CheckDI(ExpectedInstTy,
"!DIAssignID attached to unexpected instruction kind",
5174 for (
auto *User : AsValue->users()) {
5176 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
5180 CheckDI(DAI->getFunction() ==
I.getFunction(),
5181 "dbg.assign not in same function as inst", DAI, &
I);
5184 for (DbgVariableRecord *DVR :
5187 "!DIAssignID should only be used by Assign DVRs.", MD, DVR);
5188 CheckDI(DVR->getFunction() ==
I.getFunction(),
5189 "DVRAssign not in same function as inst", DVR, &
I);
5193void Verifier::visitMMRAMetadata(Instruction &
I, MDNode *MD) {
5195 "!mmra metadata attached to unexpected instruction kind",
I, MD);
5206 for (
const MDOperand &MDOp : MD->
operands())
5208 "!mmra metadata tuple operand is not an MMRA tag",
I, MDOp.get());
5211void Verifier::visitCallStackMetadata(MDNode *MD) {
5215 "call stack metadata should have at least 1 operand", MD);
5219 "call stack metadata operand should be constant integer",
Op);
5222void Verifier::visitMemProfMetadata(Instruction &
I, MDNode *MD) {
5225 "!memprof annotations should have at least 1 metadata operand "
5230 for (
auto &MIBOp : MD->
operands()) {
5236 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
5240 "!memprof MemInfoBlock first operand should not be null", MIB);
5242 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
5244 visitCallStackMetadata(StackMD);
5251 "!memprof MemInfoBlock second operand should be an MDString",
5260 Check(OpNode,
"Not all !memprof MemInfoBlock operands 2 to N are MDNode",
5263 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with 2 "
5268 [](
const MDOperand &
Op) {
5269 return mdconst::hasa<ConstantInt>(Op);
5271 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with "
5272 "ConstantInt operands",
5278void Verifier::visitCallsiteMetadata(Instruction &
I, MDNode *MD) {
5282 visitCallStackMetadata(MD);
5291void Verifier::visitCalleeTypeMetadata(Instruction &
I, MDNode *MD) {
5296 "The callee_type metadata must be a list of type metadata nodes",
Op);
5298 Check(TypeMD->getNumOperands() == 2,
5299 "Well-formed generalized type metadata must contain exactly two "
5304 "The first operand of type metadata for functions must be zero",
Op);
5305 Check(TypeMD->hasGeneralizedMDString(),
5306 "Only generalized type metadata can be part of the callee_type "
5312void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
5315 "annotation must have at least one operand");
5317 bool TupleOfStrings =
5323 "operands must be a string or a tuple of strings");
5327void Verifier::visitAliasScopeMetadata(
const MDNode *MD) {
5332 "first scope operand must be self-referential or string", MD);
5335 "third scope operand must be string (if used)", MD);
5338 Check(
Domain !=
nullptr,
"second scope operand must be MDNode", MD);
5340 unsigned NumDomainOps =
Domain->getNumOperands();
5341 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
5342 "domain must have one or two operands",
Domain);
5345 "first domain operand must be self-referential or string",
Domain);
5346 if (NumDomainOps == 2)
5348 "second domain operand must be string (if used)",
Domain);
5351void Verifier::visitAliasScopeListMetadata(
const MDNode *MD) {
5354 Check(OpMD !=
nullptr,
"scope list must consist of MDNodes", MD);
5355 visitAliasScopeMetadata(OpMD);
5359void Verifier::visitAccessGroupMetadata(
const MDNode *MD) {
5360 auto IsValidAccessScope = [](
const MDNode *MD) {
5365 if (IsValidAccessScope(MD))
5371 Check(OpMD !=
nullptr,
"Access scope list must consist of MDNodes", MD);
5372 Check(IsValidAccessScope(OpMD),
5373 "Access scope list contains invalid access scope", MD);
5377void Verifier::visitCapturesMetadata(Instruction &
I,
const MDNode *Captures) {
5378 static const char *ValidArgs[] = {
"address_is_null",
"address",
5379 "read_provenance",
"provenance"};
5382 Check(SI,
"!captures metadata can only be applied to store instructions", &
I);
5383 Check(
SI->getValueOperand()->getType()->isPointerTy(),
5384 "!captures metadata can only be applied to store with value operand of "
5392 Check(Str,
"!captures metadata must be a list of strings", &
I);
5394 "invalid entry in !captures metadata", &
I, Str);
5398void Verifier::visitAllocTokenMetadata(Instruction &
I, MDNode *MD) {
5403 "expected integer constant", MD);
5408void Verifier::visitInstruction(Instruction &
I) {
5410 Check(BB,
"Instruction not embedded in basic block!", &
I);
5413 for (User *U :
I.users()) {
5414 Check(U != (User *)&
I || !DT.isReachableFromEntry(BB),
5415 "Only PHI nodes may reference their own value!", &
I);
5420 Check(!
I.getType()->isVoidTy() || !
I.hasName(),
5421 "Instruction has a name, but provides a void value!", &
I);
5425 Check(
I.getType()->isVoidTy() ||
I.getType()->isFirstClassType(),
5426 "Instruction returns a non-scalar type!", &
I);
5431 "Invalid use of metadata!", &
I);
5436 for (Use &U :
I.uses()) {
5439 "Instruction referencing"
5440 " instruction not embedded in a basic block!",
5443 CheckFailed(
"Use of instruction is not an instruction!", U);
5452 for (
unsigned i = 0, e =
I.getNumOperands(); i != e; ++i) {
5453 Check(
I.getOperand(i) !=
nullptr,
"Instruction has null operand!", &
I);
5457 if (!
I.getOperand(i)->getType()->isFirstClassType()) {
5458 Check(
false,
"Instruction operands must be first-class values!", &
I);
5464 auto IsAttachedCallOperand = [](
Function *
F,
const CallBase *CBI,
5466 return CBI && CBI->isOperandBundleOfType(
5474 Check((!
F->isIntrinsic() ||
5475 (CBI && &CBI->getCalledOperandUse() == &
I.getOperandUse(i)) ||
5476 IsAttachedCallOperand(
F, CBI, i)),
5477 "Cannot take the address of an intrinsic!", &
I);
5479 F->getIntrinsicID() == Intrinsic::donothing ||
5480 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
5481 F->getIntrinsicID() == Intrinsic::seh_try_end ||
5482 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
5483 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
5484 F->getIntrinsicID() == Intrinsic::coro_resume ||
5485 F->getIntrinsicID() == Intrinsic::coro_destroy ||
5486 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void ||
5487 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool ||
5488 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle ||
5489 F->getIntrinsicID() ==
5490 Intrinsic::experimental_patchpoint_void ||
5491 F->getIntrinsicID() == Intrinsic::experimental_patchpoint ||
5492 F->getIntrinsicID() == Intrinsic::fake_use ||
5493 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
5494 F->getIntrinsicID() == Intrinsic::wasm_throw ||
5495 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
5496 IsAttachedCallOperand(
F, CBI, i),
5497 "Cannot invoke an intrinsic other than donothing, patchpoint, "
5498 "statepoint, coro_resume, coro_destroy, clang.arc.attachedcall or "
5501 Check(
F->getParent() == &M,
"Referencing function in another module!", &
I,
5502 &M,
F,
F->getParent());
5505 "Referring to a basic block in another function!", &
I);
5508 "Referring to an argument in another function!", &
I);
5510 Check(GV->
getParent() == &M,
"Referencing global in another module!", &
I,
5514 "Referring to an instruction in another function!", &
I);
5515 verifyDominatesUse(
I, i);
5517 Check(CBI && &CBI->getCalledOperandUse() == &
I.getOperandUse(i),
5518 "Cannot take the address of an inline asm!", &
I);
5520 visitConstantExprsRecursively(CPA);
5522 if (
CE->getType()->isPtrOrPtrVectorTy()) {
5525 visitConstantExprsRecursively(CE);
5530 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_fpmath)) {
5531 Check(
I.getType()->isFPOrFPVectorTy(),
5532 "fpmath requires a floating point result!", &
I);
5534 if (ConstantFP *CFP0 =
5536 const APFloat &Accuracy = CFP0->getValueAPF();
5538 "fpmath accuracy must have float type", &
I);
5540 "fpmath accuracy not a positive number!", &
I);
5542 Check(
false,
"invalid fpmath accuracy!", &
I);
5546 if (MDNode *
Range =
I.getMetadata(LLVMContext::MD_range)) {
5548 "Ranges are only for loads, calls and invokes!", &
I);
5549 visitRangeMetadata(
I,
Range,
I.getType());
5552 if (MDNode *
Range =
I.getMetadata(LLVMContext::MD_noalias_addrspace)) {
5555 "noalias.addrspace are only for memory operations!", &
I);
5556 visitNoaliasAddrspaceMetadata(
I,
Range,
I.getType());
5559 if (
I.hasMetadata(LLVMContext::MD_invariant_group)) {
5561 "invariant.group metadata is only for loads and stores", &
I);
5564 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_nonnull)) {
5565 Check(
I.getType()->isPointerTy(),
"nonnull applies only to pointer types",
5568 "nonnull applies only to load instructions, use attributes"
5569 " for calls or invokes",
5574 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_dereferenceable))
5575 visitDereferenceableMetadata(
I, MD);
5577 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
5578 visitDereferenceableMetadata(
I, MD);
5580 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_nofree))
5581 visitNofreeMetadata(
I, MD);
5583 if (MDNode *TBAA =
I.getMetadata(LLVMContext::MD_tbaa))
5586 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_noalias))
5587 visitAliasScopeListMetadata(MD);
5588 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_alias_scope))
5589 visitAliasScopeListMetadata(MD);
5591 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_access_group))
5592 visitAccessGroupMetadata(MD);
5594 if (MDNode *AlignMD =
I.getMetadata(LLVMContext::MD_align)) {
5595 Check(
I.getType()->isPointerTy(),
"align applies only to pointer types",
5598 "align applies only to load instructions, "
5599 "use attributes for calls or invokes",
5601 Check(AlignMD->getNumOperands() == 1,
"align takes one operand!", &
I);
5604 "align metadata value must be an i64!", &
I);
5608 Check(Align <= Value::MaximumAlignment,
5609 "alignment is larger that implementation defined limit", &
I);
5612 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_prof))
5613 visitProfMetadata(
I, MD);
5615 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_memprof))
5616 visitMemProfMetadata(
I, MD);
5618 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_callsite))
5619 visitCallsiteMetadata(
I, MD);
5621 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_callee_type))
5622 visitCalleeTypeMetadata(
I, MD);
5624 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_DIAssignID))
5625 visitDIAssignIDMetadata(
I, MD);
5627 if (MDNode *MMRA =
I.getMetadata(LLVMContext::MD_mmra))
5628 visitMMRAMetadata(
I, MMRA);
5630 if (MDNode *Annotation =
I.getMetadata(LLVMContext::MD_annotation))
5631 visitAnnotationMetadata(Annotation);
5633 if (MDNode *Captures =
I.getMetadata(LLVMContext::MD_captures))
5634 visitCapturesMetadata(
I, Captures);
5636 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_alloc_token))
5637 visitAllocTokenMetadata(
I, MD);
5639 if (MDNode *
N =
I.getDebugLoc().getAsMDNode()) {
5641 visitMDNode(*
N, AreDebugLocsAllowed::Yes);
5644 if (
DL->getAtomGroup()) {
5645 CheckDI(
DL->getScope()->getSubprogram()->getKeyInstructionsEnabled(),
5646 "DbgLoc uses atomGroup but DISubprogram doesn't have Key "
5647 "Instructions enabled",
5648 DL,
DL->getScope()->getSubprogram());
5654 I.getAllMetadata(MDs);
5655 for (
auto Attachment : MDs) {
5656 unsigned Kind = Attachment.first;
5658 (
Kind == LLVMContext::MD_dbg ||
Kind == LLVMContext::MD_loop)
5659 ? AreDebugLocsAllowed::Yes
5660 : AreDebugLocsAllowed::
No;
5661 visitMDNode(*Attachment.second, AllowLocs);
5670 Check(
IF->isDeclaration(),
"Intrinsic functions should never be defined!",
5675 FunctionType *IFTy =
IF->getFunctionType();
5676 bool IsVarArg = IFTy->isVarArg();
5687 "Intrinsic has incorrect return type!", IF);
5689 "Intrinsic has incorrect argument type!", IF);
5694 "Intrinsic was not defined with variable arguments!", IF);
5697 "Callsite was not defined with variable arguments!", IF);
5706 const std::string ExpectedName =
5708 Check(ExpectedName ==
IF->getName(),
5709 "Intrinsic name not mangled correctly for type arguments! "
5721 "const x86_amx is not allowed in argument!");
5727 case Intrinsic::assume: {
5731 "assume with operand bundles must have i1 true condition",
Call);
5734 unsigned ArgCount = Elem.End - Elem.Begin;
5737 if (Elem.Tag->getKey() ==
"separate_storage") {
5738 Check(ArgCount == 2,
5739 "separate_storage assumptions should have 2 arguments",
Call);
5742 "arguments to separate_storage assumptions should be pointers",
5746 Check(Elem.Tag->getKey() ==
"ignore" ||
5747 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5748 "tags must be valid attribute names",
Call);
5749 Attribute::AttrKind
Kind =
5750 Attribute::getAttrKindFromName(Elem.Tag->getKey());
5751 if (Kind == Attribute::Alignment) {
5752 Check(ArgCount <= 3 && ArgCount >= 2,
5753 "alignment assumptions should have 2 or 3 arguments",
Call);
5755 "first argument should be a pointer",
Call);
5757 "second argument should be an integer",
Call);
5760 "third argument should be an integer if present",
Call);
5763 if (Kind == Attribute::Dereferenceable) {
5764 Check(ArgCount == 2,
5765 "dereferenceable assumptions should have 2 arguments",
Call);
5767 "first argument should be a pointer",
Call);
5769 "second argument should be an integer",
Call);
5772 Check(ArgCount <= 2,
"too many arguments",
Call);
5773 if (Kind == Attribute::None)
5775 if (Attribute::isIntAttrKind(Kind)) {
5776 Check(ArgCount == 2,
"this attribute should have 2 arguments",
Call);
5778 "the second argument should be a constant integral value",
Call);
5779 }
else if (Attribute::canUseAsParamAttr(Kind)) {
5780 Check((ArgCount) == 1,
"this attribute should have one argument",
Call);
5781 }
else if (Attribute::canUseAsFnAttr(Kind)) {
5782 Check((ArgCount) == 0,
"this attribute has no argument",
Call);
5787 case Intrinsic::ucmp:
5788 case Intrinsic::scmp: {
5793 "result type must be at least 2 bits wide",
Call);
5795 bool IsDestTypeVector = DestTy->
isVectorTy();
5797 "ucmp/scmp argument and result types must both be either vector or "
5800 if (IsDestTypeVector) {
5803 Check(SrcVecLen == DestVecLen,
5804 "return type and arguments must have the same number of "
5810 case Intrinsic::coro_id: {
5816 "info argument of llvm.coro.id must refer to an initialized "
5820 "info argument of llvm.coro.id must refer to either a struct or "
5824 case Intrinsic::is_fpclass: {
5827 "unsupported bits for llvm.is.fpclass test mask");
5830 case Intrinsic::fptrunc_round: {
5835 MD = MAV->getMetadata();
5837 Check(MD !=
nullptr,
"missing rounding mode argument",
Call);
5840 (
"invalid value for llvm.fptrunc.round metadata operand"
5841 " (the operand should be a string)"),
5844 std::optional<RoundingMode> RoundMode =
5846 Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5847 "unsupported rounding mode argument",
Call);
5850#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5851#include "llvm/IR/VPIntrinsics.def"
5852#undef BEGIN_REGISTER_VP_INTRINSIC
5855#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5856 case Intrinsic::INTRINSIC:
5857#include "llvm/IR/ConstrainedOps.def"
5861 case Intrinsic::dbg_declare:
5862 case Intrinsic::dbg_value:
5863 case Intrinsic::dbg_assign:
5864 case Intrinsic::dbg_label:
5871 case Intrinsic::memcpy:
5872 case Intrinsic::memcpy_inline:
5873 case Intrinsic::memmove:
5874 case Intrinsic::memset:
5875 case Intrinsic::memset_inline:
5877 case Intrinsic::experimental_memset_pattern: {
5879 Check(Memset->getValue()->getType()->isSized(),
5880 "unsized types cannot be used as memset patterns",
Call);
5883 case Intrinsic::memcpy_element_unordered_atomic:
5884 case Intrinsic::memmove_element_unordered_atomic:
5885 case Intrinsic::memset_element_unordered_atomic: {
5888 ConstantInt *ElementSizeCI =
5890 const APInt &ElementSizeVal = ElementSizeCI->
getValue();
5892 "element size of the element-wise atomic memory intrinsic "
5893 "must be a power of 2",
5896 auto IsValidAlignment = [&](MaybeAlign Alignment) {
5897 return Alignment && ElementSizeVal.
ule(Alignment->value());
5899 Check(IsValidAlignment(AMI->getDestAlign()),
5900 "incorrect alignment of the destination argument",
Call);
5902 Check(IsValidAlignment(AMT->getSourceAlign()),
5903 "incorrect alignment of the source argument",
Call);
5907 case Intrinsic::call_preallocated_setup: {
5909 bool FoundCall =
false;
5912 Check(UseCall !=
nullptr,
5913 "Uses of llvm.call.preallocated.setup must be calls");
5915 if (IID == Intrinsic::call_preallocated_arg) {
5917 Check(AllocArgIndex !=
nullptr,
5918 "llvm.call.preallocated.alloc arg index must be a constant");
5919 auto AllocArgIndexInt = AllocArgIndex->getValue();
5920 Check(AllocArgIndexInt.sge(0) &&
5921 AllocArgIndexInt.slt(NumArgs->getValue()),
5922 "llvm.call.preallocated.alloc arg index must be between 0 and "
5924 "llvm.call.preallocated.setup's argument count");
5925 }
else if (IID == Intrinsic::call_preallocated_teardown) {
5928 Check(!FoundCall,
"Can have at most one call corresponding to a "
5929 "llvm.call.preallocated.setup");
5931 size_t NumPreallocatedArgs = 0;
5932 for (
unsigned i = 0; i < UseCall->arg_size(); i++) {
5933 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5934 ++NumPreallocatedArgs;
5937 Check(NumPreallocatedArgs != 0,
5938 "cannot use preallocated intrinsics on a call without "
5939 "preallocated arguments");
5940 Check(NumArgs->equalsInt(NumPreallocatedArgs),
5941 "llvm.call.preallocated.setup arg size must be equal to number "
5942 "of preallocated arguments "
5952 auto PreallocatedBundle =
5954 Check(PreallocatedBundle,
5955 "Use of llvm.call.preallocated.setup outside intrinsics "
5956 "must be in \"preallocated\" operand bundle");
5957 Check(PreallocatedBundle->Inputs.front().get() == &
Call,
5958 "preallocated bundle must have token from corresponding "
5959 "llvm.call.preallocated.setup");
5964 case Intrinsic::call_preallocated_arg: {
5967 Token->getIntrinsicID() == Intrinsic::call_preallocated_setup,
5968 "llvm.call.preallocated.arg token argument must be a "
5969 "llvm.call.preallocated.setup");
5971 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5972 "call site attribute");
5975 case Intrinsic::call_preallocated_teardown: {
5978 Token->getIntrinsicID() == Intrinsic::call_preallocated_setup,
5979 "llvm.call.preallocated.teardown token argument must be a "
5980 "llvm.call.preallocated.setup");
5983 case Intrinsic::gcroot:
5984 case Intrinsic::gcwrite:
5985 case Intrinsic::gcread:
5986 if (
ID == Intrinsic::gcroot) {
5989 Check(AI,
"llvm.gcroot parameter #1 must be an alloca.",
Call);
5991 "llvm.gcroot parameter #2 must be a constant.",
Call);
5994 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5995 "or argument #2 must be a non-null constant.",
6001 "Enclosing function does not use GC.",
Call);
6003 case Intrinsic::init_trampoline:
6005 "llvm.init_trampoline parameter #2 must resolve to a function.",
6008 case Intrinsic::prefetch:
6010 "rw argument to llvm.prefetch must be 0-1",
Call);
6012 "locality argument to llvm.prefetch must be 0-3",
Call);
6014 "cache type argument to llvm.prefetch must be 0-1",
Call);
6016 case Intrinsic::reloc_none: {
6019 "llvm.reloc.none argument must be a metadata string", &
Call);
6022 case Intrinsic::stackprotector:
6024 "llvm.stackprotector parameter #2 must resolve to an alloca.",
Call);
6026 case Intrinsic::localescape: {
6030 Check(!SawFrameEscape,
"multiple calls to llvm.localescape in one function",
6037 "llvm.localescape only accepts static allocas",
Call);
6040 SawFrameEscape =
true;
6043 case Intrinsic::localrecover: {
6047 "llvm.localrecover first "
6048 "argument must be function defined in this module",
6051 auto &
Entry = FrameEscapeInfo[Fn];
6052 Entry.second = unsigned(
6053 std::max(uint64_t(
Entry.second), IdxArg->getLimitedValue(~0U) + 1));
6057 case Intrinsic::experimental_gc_statepoint:
6059 Check(!CI->isInlineAsm(),
6060 "gc.statepoint support for inline assembly unimplemented", CI);
6062 "Enclosing function does not use GC.",
Call);
6064 verifyStatepoint(
Call);
6066 case Intrinsic::experimental_gc_result: {
6068 "Enclosing function does not use GC.",
Call);
6076 Check(StatepointCall && StatepointCall->getIntrinsicID() ==
6077 Intrinsic::experimental_gc_statepoint,
6078 "gc.result operand #1 must be from a statepoint",
Call,
6082 auto *TargetFuncType =
6085 "gc.result result type does not match wrapped callee",
Call);
6088 case Intrinsic::experimental_gc_relocate: {
6092 "gc.relocate must return a pointer or a vector of pointers",
Call);
6097 if (LandingPadInst *LandingPad =
6101 LandingPad->getParent()->getUniquePredecessor();
6105 Check(InvokeBB,
"safepoints should have unique landingpads",
6106 LandingPad->getParent());
6110 "gc relocate should be linked to a statepoint", InvokeBB);
6117 "gc relocate is incorrectly tied to the statepoint",
Call, Token);
6126 "gc.relocate operand #2 must be integer offset",
Call);
6130 "gc.relocate operand #3 must be integer offset",
Call);
6140 Check(BaseIndex < Opt->Inputs.size(),
6141 "gc.relocate: statepoint base index out of bounds",
Call);
6142 Check(DerivedIndex < Opt->Inputs.size(),
6143 "gc.relocate: statepoint derived index out of bounds",
Call);
6156 "gc.relocate: relocated value must be a pointer",
Call);
6157 Check(DerivedType->isPtrOrPtrVectorTy(),
6158 "gc.relocate: relocated value must be a pointer",
Call);
6160 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
6161 "gc.relocate: vector relocates to vector and pointer to pointer",
6164 ResultType->getPointerAddressSpace() ==
6165 DerivedType->getPointerAddressSpace(),
6166 "gc.relocate: relocating a pointer shouldn't change its address space",
6170 Check(GC,
"gc.relocate: calling function must have GCStrategy",
6173 auto isGCPtr = [&
GC](
Type *PTy) {
6174 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(
true);
6176 Check(isGCPtr(ResultType),
"gc.relocate: must return gc pointer",
Call);
6178 "gc.relocate: relocated value must be a gc pointer",
Call);
6179 Check(isGCPtr(DerivedType),
6180 "gc.relocate: relocated value must be a gc pointer",
Call);
6184 case Intrinsic::experimental_patchpoint: {
6187 "patchpoint: invalid return type used with anyregcc",
Call);
6191 case Intrinsic::eh_exceptioncode:
6192 case Intrinsic::eh_exceptionpointer: {
6194 "eh.exceptionpointer argument must be a catchpad",
Call);
6197 case Intrinsic::get_active_lane_mask: {
6199 "get_active_lane_mask: must return a "
6203 Check(ElemTy->isIntegerTy(1),
6204 "get_active_lane_mask: element type is not "
6209 case Intrinsic::experimental_get_vector_length: {
6212 "get_vector_length: VF must be positive",
Call);
6215 case Intrinsic::masked_load: {
6221 Check(
Mask->getType()->isVectorTy(),
"masked_load: mask must be vector",
6224 "masked_load: pass through and return type must match",
Call);
6227 "masked_load: vector mask must be same length as return",
Call);
6230 case Intrinsic::masked_store: {
6233 Check(
Mask->getType()->isVectorTy(),
"masked_store: mask must be vector",
6237 "masked_store: vector mask must be same length as value",
Call);
6241 case Intrinsic::experimental_guard: {
6244 "experimental_guard must have exactly one "
6245 "\"deopt\" operand bundle");
6249 case Intrinsic::experimental_deoptimize: {
6253 "experimental_deoptimize must have exactly one "
6254 "\"deopt\" operand bundle");
6256 "experimental_deoptimize return type must match caller return type");
6261 "calls to experimental_deoptimize must be followed by a return");
6265 "calls to experimental_deoptimize must be followed by a return "
6266 "of the value computed by experimental_deoptimize");
6271 case Intrinsic::vastart: {
6273 "va_start called in a non-varargs function");
6276 case Intrinsic::get_dynamic_area_offset: {
6278 Check(IntTy &&
DL.getPointerSizeInBits(
DL.getAllocaAddrSpace()) ==
6279 IntTy->getBitWidth(),
6280 "get_dynamic_area_offset result type must be scalar integer matching "
6281 "alloca address space width",
6285 case Intrinsic::vector_reduce_and:
6286 case Intrinsic::vector_reduce_or:
6287 case Intrinsic::vector_reduce_xor:
6288 case Intrinsic::vector_reduce_add:
6289 case Intrinsic::vector_reduce_mul:
6290 case Intrinsic::vector_reduce_smax:
6291 case Intrinsic::vector_reduce_smin:
6292 case Intrinsic::vector_reduce_umax:
6293 case Intrinsic::vector_reduce_umin: {
6296 "Intrinsic has incorrect argument type!");
6299 case Intrinsic::vector_reduce_fmax:
6300 case Intrinsic::vector_reduce_fmin: {
6303 "Intrinsic has incorrect argument type!");
6306 case Intrinsic::vector_reduce_fadd:
6307 case Intrinsic::vector_reduce_fmul: {
6312 "Intrinsic has incorrect argument type!");
6315 case Intrinsic::smul_fix:
6316 case Intrinsic::smul_fix_sat:
6317 case Intrinsic::umul_fix:
6318 case Intrinsic::umul_fix_sat:
6319 case Intrinsic::sdiv_fix:
6320 case Intrinsic::sdiv_fix_sat:
6321 case Intrinsic::udiv_fix:
6322 case Intrinsic::udiv_fix_sat: {
6326 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
6329 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
6333 Check(Op3->getType()->isIntegerTy(),
6334 "third operand of [us][mul|div]_fix[_sat] must be an int type");
6335 Check(Op3->getBitWidth() <= 32,
6336 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
6338 if (
ID == Intrinsic::smul_fix ||
ID == Intrinsic::smul_fix_sat ||
6339 ID == Intrinsic::sdiv_fix ||
ID == Intrinsic::sdiv_fix_sat) {
6341 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
6345 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
6346 "to the width of the operands");
6350 case Intrinsic::lrint:
6351 case Intrinsic::llrint:
6352 case Intrinsic::lround:
6353 case Intrinsic::llround: {
6359 ExpectedName +
": argument must be floating-point or vector "
6360 "of floating-points, and result must be integer or "
6361 "vector of integers",
6364 ExpectedName +
": argument and result disagree on vector use", &
Call);
6366 Check(VTy->getElementCount() == RTy->getElementCount(),
6367 ExpectedName +
": argument must be same length as result", &
Call);
6371 case Intrinsic::bswap: {
6374 Check(
Size % 16 == 0,
"bswap must be an even number of bytes", &
Call);
6377 case Intrinsic::invariant_start: {
6379 Check(InvariantSize &&
6381 "invariant_start parameter must be -1, 0 or a positive number",
6385 case Intrinsic::matrix_multiply:
6386 case Intrinsic::matrix_transpose:
6387 case Intrinsic::matrix_column_major_load:
6388 case Intrinsic::matrix_column_major_store: {
6390 ConstantInt *Stride =
nullptr;
6391 ConstantInt *NumRows;
6392 ConstantInt *NumColumns;
6394 Type *Op0ElemTy =
nullptr;
6395 Type *Op1ElemTy =
nullptr;
6397 case Intrinsic::matrix_multiply: {
6402 ->getNumElements() ==
6404 "First argument of a matrix operation does not match specified "
6407 ->getNumElements() ==
6409 "Second argument of a matrix operation does not match specified "
6419 case Intrinsic::matrix_transpose:
6426 case Intrinsic::matrix_column_major_load: {
6433 case Intrinsic::matrix_column_major_store: {
6446 Check(ResultTy->getElementType()->isIntegerTy() ||
6447 ResultTy->getElementType()->isFloatingPointTy(),
6448 "Result type must be an integer or floating-point type!", IF);
6451 Check(ResultTy->getElementType() == Op0ElemTy,
6452 "Vector element type mismatch of the result and first operand "
6457 Check(ResultTy->getElementType() == Op1ElemTy,
6458 "Vector element type mismatch of the result and second operand "
6464 "Result of a matrix operation does not fit in the returned vector!");
6470 "Stride must be greater or equal than the number of rows!", IF);
6475 case Intrinsic::vector_splice: {
6478 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
6481 if (
Attrs.hasFnAttr(Attribute::VScaleRange))
6482 KnownMinNumElements *=
Attrs.getFnAttrs().getVScaleRangeMin();
6484 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
6485 (Idx >= 0 && Idx < KnownMinNumElements),
6486 "The splice index exceeds the range [-VL, VL-1] where VL is the "
6487 "known minimum number of elements in the vector. For scalable "
6488 "vectors the minimum number of elements is determined from "
6493 case Intrinsic::stepvector: {
6495 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
6496 VecTy->getScalarSizeInBits() >= 8,
6497 "stepvector only supported for vectors of integers "
6498 "with a bitwidth of at least 8.",
6502 case Intrinsic::experimental_vector_match: {
6511 Check(Op1Ty && Op2Ty && MaskTy,
"Operands must be vectors.", &
Call);
6513 "Second operand must be a fixed length vector.", &
Call);
6514 Check(Op1Ty->getElementType()->isIntegerTy(),
6515 "First operand must be a vector of integers.", &
Call);
6516 Check(Op1Ty->getElementType() == Op2Ty->getElementType(),
6517 "First two operands must have the same element type.", &
Call);
6518 Check(Op1Ty->getElementCount() == MaskTy->getElementCount(),
6519 "First operand and mask must have the same number of elements.",
6521 Check(MaskTy->getElementType()->isIntegerTy(1),
6522 "Mask must be a vector of i1's.", &
Call);
6527 case Intrinsic::vector_insert: {
6536 ElementCount VecEC = VecTy->getElementCount();
6537 ElementCount SubVecEC = SubVecTy->getElementCount();
6538 Check(VecTy->getElementType() == SubVecTy->getElementType(),
6539 "vector_insert parameters must have the same element "
6543 "vector_insert index must be a constant multiple of "
6544 "the subvector's known minimum vector length.");
6552 "subvector operand of vector_insert would overrun the "
6553 "vector being inserted into.");
6557 case Intrinsic::vector_extract: {
6565 ElementCount VecEC = VecTy->getElementCount();
6566 ElementCount ResultEC = ResultTy->getElementCount();
6568 Check(ResultTy->getElementType() == VecTy->getElementType(),
6569 "vector_extract result must have the same element "
6570 "type as the input vector.",
6573 "vector_extract index must be a constant multiple of "
6574 "the result type's known minimum vector length.");
6582 "vector_extract would overrun.");
6586 case Intrinsic::vector_partial_reduce_fadd:
6587 case Intrinsic::vector_partial_reduce_add: {
6591 unsigned VecWidth = VecTy->getElementCount().getKnownMinValue();
6592 unsigned AccWidth = AccTy->getElementCount().getKnownMinValue();
6594 Check((VecWidth % AccWidth) == 0,
6595 "Invalid vector widths for partial "
6596 "reduction. The width of the input vector "
6597 "must be a positive integer multiple of "
6598 "the width of the accumulator vector.");
6601 case Intrinsic::experimental_noalias_scope_decl: {
6605 case Intrinsic::preserve_array_access_index:
6606 case Intrinsic::preserve_struct_access_index:
6607 case Intrinsic::aarch64_ldaxr:
6608 case Intrinsic::aarch64_ldxr:
6609 case Intrinsic::arm_ldaex:
6610 case Intrinsic::arm_ldrex: {
6612 Check(ElemTy,
"Intrinsic requires elementtype attribute on first argument.",
6616 case Intrinsic::aarch64_stlxr:
6617 case Intrinsic::aarch64_stxr:
6618 case Intrinsic::arm_stlex:
6619 case Intrinsic::arm_strex: {
6622 "Intrinsic requires elementtype attribute on second argument.",
6626 case Intrinsic::aarch64_prefetch: {
6628 "write argument to llvm.aarch64.prefetch must be 0 or 1",
Call);
6630 "target argument to llvm.aarch64.prefetch must be 0-3",
Call);
6632 "stream argument to llvm.aarch64.prefetch must be 0 or 1",
Call);
6634 "isdata argument to llvm.aarch64.prefetch must be 0 or 1",
Call);
6637 case Intrinsic::callbr_landingpad: {
6639 Check(CBR,
"intrinstic requires callbr operand", &
Call);
6646 CheckFailed(
"Intrinsic in block must have 1 unique predecessor", &
Call);
6650 CheckFailed(
"Intrinsic must have corresponding callbr in predecessor",
6655 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6656 "block in indirect destination list",
6659 Check(&
First == &
Call,
"No other instructions may proceed intrinsic",
6663 case Intrinsic::amdgcn_cs_chain: {
6666 case CallingConv::AMDGPU_CS:
6667 case CallingConv::AMDGPU_CS_Chain:
6668 case CallingConv::AMDGPU_CS_ChainPreserve:
6671 CheckFailed(
"Intrinsic can only be used from functions with the "
6672 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6673 "calling conventions",
6679 "SGPR arguments must have the `inreg` attribute", &
Call);
6681 "VGPR arguments must not have the `inreg` attribute", &
Call);
6686 Intrinsic::amdgcn_unreachable;
6688 "llvm.amdgcn.cs.chain must be followed by unreachable", &
Call);
6691 case Intrinsic::amdgcn_init_exec_from_input: {
6694 "only inreg arguments to the parent function are valid as inputs to "
6699 case Intrinsic::amdgcn_set_inactive_chain_arg: {
6702 case CallingConv::AMDGPU_CS_Chain:
6703 case CallingConv::AMDGPU_CS_ChainPreserve:
6706 CheckFailed(
"Intrinsic can only be used from functions with the "
6707 "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6708 "calling conventions",
6713 unsigned InactiveIdx = 1;
6715 "Value for inactive lanes must not have the `inreg` attribute",
6718 "Value for inactive lanes must be a function argument", &
Call);
6720 "Value for inactive lanes must be a VGPR function argument", &
Call);
6723 case Intrinsic::amdgcn_call_whole_wave: {
6725 Check(
F,
"Indirect whole wave calls are not allowed", &
Call);
6727 CallingConv::ID CC =
F->getCallingConv();
6728 Check(CC == CallingConv::AMDGPU_Gfx_WholeWave,
6729 "Callee must have the amdgpu_gfx_whole_wave calling convention",
6732 Check(!
F->isVarArg(),
"Variadic whole wave calls are not allowed", &
Call);
6735 "Call argument count must match callee argument count", &
Call);
6739 Check(
F->arg_begin()->getType()->isIntegerTy(1),
6740 "Callee must have i1 as its first argument", &
Call);
6741 for (
auto [CallArg, FuncArg] :
6743 Check(CallArg->getType() == FuncArg.getType(),
6744 "Argument types must match", &
Call);
6748 FuncArg.hasInRegAttr(),
6749 "Argument inreg attributes must match", &
Call);
6753 case Intrinsic::amdgcn_s_prefetch_data: {
6757 "llvm.amdgcn.s.prefetch.data only supports global or constant memory");
6760 case Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4:
6761 case Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4: {
6767 Check(CBSZ <= 4,
"invalid value for cbsz format",
Call,
6769 Check(BLGP <= 4,
"invalid value for blgp format",
Call,
6773 auto getFormatNumRegs = [](
unsigned FormatVal) {
6774 switch (FormatVal) {
6788 auto isValidSrcASrcBVector = [](FixedVectorType *Ty) {
6789 if (!Ty || !Ty->getElementType()->
isIntegerTy(32))
6791 unsigned NumElts = Ty->getNumElements();
6792 return NumElts == 4 || NumElts == 6 || NumElts == 8;
6797 Check(isValidSrcASrcBVector(Src0Ty),
6798 "operand 0 must be 4, 6 or 8 element i32 vector", &
Call, Src0);
6799 Check(isValidSrcASrcBVector(Src1Ty),
6800 "operand 1 must be 4, 6 or 8 element i32 vector", &
Call, Src1);
6803 Check(Src0Ty->getNumElements() >= getFormatNumRegs(CBSZ),
6805 Check(Src1Ty->getNumElements() >= getFormatNumRegs(BLGP),
6809 case Intrinsic::amdgcn_wmma_f32_16x16x128_f8f6f4:
6810 case Intrinsic::amdgcn_wmma_scale_f32_16x16x128_f8f6f4:
6811 case Intrinsic::amdgcn_wmma_scale16_f32_16x16x128_f8f6f4: {
6817 Check(FmtA <= 4,
"invalid value for matrix format",
Call,
6819 Check(FmtB <= 4,
"invalid value for matrix format",
Call,
6823 auto getFormatNumRegs = [](
unsigned FormatVal) {
6824 switch (FormatVal) {
6838 auto isValidSrcASrcBVector = [](FixedVectorType *Ty) {
6839 if (!Ty || !Ty->getElementType()->
isIntegerTy(32))
6841 unsigned NumElts = Ty->getNumElements();
6842 return NumElts == 16 || NumElts == 12 || NumElts == 8;
6847 Check(isValidSrcASrcBVector(Src0Ty),
6848 "operand 1 must be 8, 12 or 16 element i32 vector", &
Call, Src0);
6849 Check(isValidSrcASrcBVector(Src1Ty),
6850 "operand 3 must be 8, 12 or 16 element i32 vector", &
Call, Src1);
6853 Check(Src0Ty->getNumElements() >= getFormatNumRegs(FmtA),
6855 Check(Src1Ty->getNumElements() >= getFormatNumRegs(FmtB),
6859 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
6860 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
6861 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
6862 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
6863 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
6864 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B: {
6869 "cooperative atomic intrinsics require a generic or global pointer",
6876 "cooperative atomic intrinsics require that the last argument is a "
6881 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6882 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6885 Check(RegCount % 8 == 0,
6886 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6889 case Intrinsic::experimental_convergence_entry:
6890 case Intrinsic::experimental_convergence_anchor:
6892 case Intrinsic::experimental_convergence_loop:
6894 case Intrinsic::ptrmask: {
6898 "llvm.ptrmask intrinsic first argument must be pointer or vector "
6903 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6908 "llvm.ptrmask intrinsic arguments must have the same number of "
6912 "llvm.ptrmask intrinsic second argument bitwidth must match "
6913 "pointer index type size of first argument",
6917 case Intrinsic::thread_pointer: {
6919 DL.getDefaultGlobalsAddressSpace(),
6920 "llvm.thread.pointer intrinsic return type must be for the globals "
6925 case Intrinsic::threadlocal_address: {
6928 "llvm.threadlocal.address first argument must be a GlobalValue");
6930 "llvm.threadlocal.address operand isThreadLocal() must be true");
6933 case Intrinsic::lifetime_start:
6934 case Intrinsic::lifetime_end: {
6937 "llvm.lifetime.start/end can only be used on alloca or poison",
6946 if (
F->hasPersonalityFn() &&
6950 if (BlockEHFuncletColors.
empty())
6954 bool InEHFunclet =
false;
6958 for (BasicBlock *ColorFirstBB : CV)
6959 if (
auto It = ColorFirstBB->getFirstNonPHIIt();
6960 It != ColorFirstBB->end())
6965 bool HasToken =
false;
6972 Check(HasToken,
"Missing funclet token on intrinsic call", &
Call);
6996void Verifier::visit(DbgLabelRecord &DLR) {
6998 "invalid #dbg_label intrinsic variable", &DLR, DLR.
getRawLabel());
7011 CheckDI(Loc,
"#dbg_label record requires a !dbg attachment", &DLR, BB,
F);
7015 if (!LabelSP || !LocSP)
7019 "mismatched subprogram between #dbg_label label and !dbg attachment",
7020 &DLR, BB,
F, Label,
Label->getScope()->getSubprogram(), Loc,
7021 Loc->getScope()->getSubprogram());
7024void Verifier::visit(DbgVariableRecord &DVR) {
7028 CheckDI(DVR.
getType() == DbgVariableRecord::LocationType::Value ||
7029 DVR.
getType() == DbgVariableRecord::LocationType::Declare ||
7030 DVR.
getType() == DbgVariableRecord::LocationType::Assign,
7031 "invalid #dbg record type", &DVR, DVR.
getType(), BB,
F);
7039 "invalid #dbg record address/value", &DVR, MD, BB,
F);
7041 visitValueAsMetadata(*VAM,
F);
7044 Type *Ty = VAM->getValue()->getType();
7046 "location of #dbg_declare must be a pointer or int", &DVR, MD, BB,
7050 visitDIArgList(*AL,
F);
7064 "invalid #dbg_assign DIAssignID", &DVR, DVR.
getRawAssignID(), BB,
7067 AreDebugLocsAllowed::No);
7076 "invalid #dbg_assign address", &DVR, DVR.
getRawAddress(), BB,
F);
7078 visitValueAsMetadata(*VAM,
F);
7081 "invalid #dbg_assign address expression", &DVR,
7088 "inst not in same function as #dbg_assign",
I, &DVR, BB,
F);
7098 &DVR, DLNode, BB,
F);
7104 if (!VarSP || !LocSP)
7108 "mismatched subprogram between #dbg record variable and DILocation",
7110 Loc->getScope()->getSubprogram(), BB,
F);
7115void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
7119 Check(RetTy->getElementCount() == ValTy->getElementCount(),
7120 "VP cast intrinsic first argument and result vector lengths must be "
7124 switch (VPCast->getIntrinsicID()) {
7127 case Intrinsic::vp_trunc:
7129 "llvm.vp.trunc intrinsic first argument and result element type "
7133 "llvm.vp.trunc intrinsic the bit size of first argument must be "
7134 "larger than the bit size of the return type",
7137 case Intrinsic::vp_zext:
7138 case Intrinsic::vp_sext:
7140 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
7141 "element type must be integer",
7144 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
7145 "argument must be smaller than the bit size of the return type",
7148 case Intrinsic::vp_fptoui:
7149 case Intrinsic::vp_fptosi:
7150 case Intrinsic::vp_lrint:
7151 case Intrinsic::vp_llrint:
7154 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element "
7155 "type must be floating-point and result element type must be integer",
7158 case Intrinsic::vp_uitofp:
7159 case Intrinsic::vp_sitofp:
7162 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
7163 "type must be integer and result element type must be floating-point",
7166 case Intrinsic::vp_fptrunc:
7168 "llvm.vp.fptrunc intrinsic first argument and result element type "
7169 "must be floating-point",
7172 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
7173 "larger than the bit size of the return type",
7176 case Intrinsic::vp_fpext:
7178 "llvm.vp.fpext intrinsic first argument and result element type "
7179 "must be floating-point",
7182 "llvm.vp.fpext intrinsic the bit size of first argument must be "
7183 "smaller than the bit size of the return type",
7186 case Intrinsic::vp_ptrtoint:
7188 "llvm.vp.ptrtoint intrinsic first argument element type must be "
7189 "pointer and result element type must be integer",
7192 case Intrinsic::vp_inttoptr:
7194 "llvm.vp.inttoptr intrinsic first argument element type must be "
7195 "integer and result element type must be pointer",
7202 case Intrinsic::vp_fcmp: {
7205 "invalid predicate for VP FP comparison intrinsic", &VPI);
7208 case Intrinsic::vp_icmp: {
7211 "invalid predicate for VP integer comparison intrinsic", &VPI);
7214 case Intrinsic::vp_is_fpclass: {
7217 "unsupported bits for llvm.vp.is.fpclass test mask");
7220 case Intrinsic::experimental_vp_splice: {
7223 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
7225 AttributeList
Attrs = VPI.
getParent()->getParent()->getAttributes();
7226 if (
Attrs.hasFnAttr(Attribute::VScaleRange))
7227 KnownMinNumElements *=
Attrs.getFnAttrs().getVScaleRangeMin();
7229 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
7230 (Idx >= 0 && Idx < KnownMinNumElements),
7231 "The splice index exceeds the range [-VL, VL-1] where VL is the "
7232 "known minimum number of elements in the vector. For scalable "
7233 "vectors the minimum number of elements is determined from "
7241void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
7243 bool HasRoundingMD =
7247 NumOperands += (1 + HasRoundingMD);
7253 "invalid arguments for constrained FP intrinsic", &FPI);
7256 case Intrinsic::experimental_constrained_lrint:
7257 case Intrinsic::experimental_constrained_llrint: {
7261 "Intrinsic does not support vectors", &FPI);
7265 case Intrinsic::experimental_constrained_lround:
7266 case Intrinsic::experimental_constrained_llround: {
7270 "Intrinsic does not support vectors", &FPI);
7274 case Intrinsic::experimental_constrained_fcmp:
7275 case Intrinsic::experimental_constrained_fcmps: {
7278 "invalid predicate for constrained FP comparison intrinsic", &FPI);
7282 case Intrinsic::experimental_constrained_fptosi:
7283 case Intrinsic::experimental_constrained_fptoui: {
7287 "Intrinsic first argument must be floating point", &FPI);
7294 "Intrinsic first argument and result disagree on vector use", &FPI);
7296 "Intrinsic result must be an integer", &FPI);
7299 "Intrinsic first argument and result vector lengths must be equal",
7305 case Intrinsic::experimental_constrained_sitofp:
7306 case Intrinsic::experimental_constrained_uitofp: {
7310 "Intrinsic first argument must be integer", &FPI);
7317 "Intrinsic first argument and result disagree on vector use", &FPI);
7319 "Intrinsic result must be a floating point", &FPI);
7322 "Intrinsic first argument and result vector lengths must be equal",
7328 case Intrinsic::experimental_constrained_fptrunc:
7329 case Intrinsic::experimental_constrained_fpext: {
7335 "Intrinsic first argument must be FP or FP vector", &FPI);
7337 "Intrinsic result must be FP or FP vector", &FPI);
7339 "Intrinsic first argument and result disagree on vector use", &FPI);
7343 "Intrinsic first argument and result vector lengths must be equal",
7346 if (FPI.
getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
7348 "Intrinsic first argument's type must be larger than result type",
7352 "Intrinsic first argument's type must be smaller than result type",
7368 "invalid exception behavior argument", &FPI);
7369 if (HasRoundingMD) {
7375void Verifier::verifyFragmentExpression(
const DbgVariableRecord &DVR) {
7380 if (!V || !
E || !
E->isValid())
7384 auto Fragment =
E->getFragmentInfo();
7394 if (
V->isArtificial())
7397 verifyFragmentExpression(*V, *Fragment, &DVR);
7400template <
typename ValueOrMetadata>
7401void Verifier::verifyFragmentExpression(
const DIVariable &V,
7403 ValueOrMetadata *
Desc) {
7406 auto VarSize =
V.getSizeInBits();
7412 CheckDI(FragSize + FragOffset <= *VarSize,
7413 "fragment is larger than or outside of variable",
Desc, &V);
7414 CheckDI(FragSize != *VarSize,
"fragment covers entire variable",
Desc, &V);
7417void Verifier::verifyFnArgs(
const DbgVariableRecord &DVR) {
7429 CheckDI(Var,
"#dbg record without variable");
7431 unsigned ArgNo = Var->
getArg();
7437 if (DebugFnArgs.
size() < ArgNo)
7438 DebugFnArgs.
resize(ArgNo,
nullptr);
7440 auto *Prev = DebugFnArgs[ArgNo - 1];
7441 DebugFnArgs[ArgNo - 1] = Var;
7442 CheckDI(!Prev || (Prev == Var),
"conflicting debug info for argument", &DVR,
7446void Verifier::verifyNotEntryValue(
const DbgVariableRecord &DVR) {
7450 if (!
E || !
E->isValid())
7460 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
7465 "Entry values are only allowed in MIR unless they target a "
7466 "swiftasync Argument",
7470void Verifier::verifyCompileUnits() {
7474 if (
M.getContext().isODRUniquingDebugTypes())
7476 auto *CUs =
M.getNamedMetadata(
"llvm.dbg.cu");
7477 SmallPtrSet<const Metadata *, 2> Listed;
7480 for (
const auto *CU : CUVisited)
7481 CheckDI(Listed.
count(CU),
"DICompileUnit not listed in llvm.dbg.cu", CU);
7485void Verifier::verifyDeoptimizeCallingConvs() {
7486 if (DeoptimizeDeclarations.
empty())
7490 for (
const auto *
F :
ArrayRef(DeoptimizeDeclarations).slice(1)) {
7491 Check(
First->getCallingConv() ==
F->getCallingConv(),
7492 "All llvm.experimental.deoptimize declarations must have the same "
7493 "calling convention",
7498void Verifier::verifyAttachedCallBundle(
const CallBase &
Call,
7499 const OperandBundleUse &BU) {
7502 Check((FTy->getReturnType()->isPointerTy() ||
7504 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
7505 "function returning a pointer or a non-returning function that has a "
7510 "operand bundle \"clang.arc.attachedcall\" requires one function as "
7518 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
7519 IID == Intrinsic::objc_claimAutoreleasedReturnValue ||
7520 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
7521 "invalid function argument",
Call);
7523 StringRef FnName = Fn->
getName();
7524 Check((FnName ==
"objc_retainAutoreleasedReturnValue" ||
7525 FnName ==
"objc_claimAutoreleasedReturnValue" ||
7526 FnName ==
"objc_unsafeClaimAutoreleasedReturnValue"),
7527 "invalid function argument",
Call);
7531void Verifier::verifyNoAliasScopeDecl() {
7532 if (NoAliasScopeDecls.
empty())
7536 for (
auto *
II : NoAliasScopeDecls) {
7537 assert(
II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
7538 "Not a llvm.experimental.noalias.scope.decl ?");
7541 Check(ScopeListMV !=
nullptr,
7542 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
7547 Check(ScopeListMD !=
nullptr,
"!id.scope.list must point to an MDNode",
II);
7548 Check(ScopeListMD->getNumOperands() == 1,
7549 "!id.scope.list must point to a list with a single scope",
II);
7550 visitAliasScopeListMetadata(ScopeListMD);
7560 auto GetScope = [](IntrinsicInst *
II) {
7563 return &
cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
7568 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
7569 return GetScope(Lhs) < GetScope(Rhs);
7576 auto ItCurrent = NoAliasScopeDecls.begin();
7577 while (ItCurrent != NoAliasScopeDecls.end()) {
7578 auto CurScope = GetScope(*ItCurrent);
7579 auto ItNext = ItCurrent;
7582 }
while (ItNext != NoAliasScopeDecls.end() &&
7583 GetScope(*ItNext) == CurScope);
7588 if (ItNext - ItCurrent < 32)
7592 Check(!DT.dominates(
I, J),
7593 "llvm.experimental.noalias.scope.decl dominates another one "
7594 "with the same scope",
7608 Verifier V(OS,
true, *f.getParent());
7612 return !V.verify(
F);
7616 bool *BrokenDebugInfo) {
7618 Verifier V(OS, !BrokenDebugInfo, M);
7620 bool Broken =
false;
7622 Broken |= !V.verify(
F);
7624 Broken |= !V.verify();
7625 if (BrokenDebugInfo)
7626 *BrokenDebugInfo = V.hasBrokenDebugInfo();
7637 std::unique_ptr<Verifier> V;
7638 bool FatalErrors =
true;
7643 explicit VerifierLegacyPass(
bool FatalErrors)
7645 FatalErrors(FatalErrors) {
7649 bool doInitialization(
Module &M)
override {
7650 V = std::make_unique<Verifier>(
7656 if (!
V->verify(
F) && FatalErrors) {
7657 errs() <<
"in function " <<
F.getName() <<
'\n';
7663 bool doFinalization(
Module &M)
override {
7664 bool HasErrors =
false;
7665 for (Function &
F : M)
7666 if (
F.isDeclaration())
7667 HasErrors |= !
V->verify(
F);
7669 HasErrors |= !
V->verify();
7670 if (FatalErrors && (HasErrors ||
V->hasBrokenDebugInfo()))
7675 void getAnalysisUsage(AnalysisUsage &AU)
const override {
7683template <
typename... Tys>
void TBAAVerifier::CheckFailed(Tys &&... Args) {
7685 return Diagnostic->CheckFailed(
Args...);
7688#define CheckTBAA(C, ...) \
7691 CheckFailed(__VA_ARGS__); \
7699TBAAVerifier::TBAABaseNodeSummary
7703 CheckFailed(
"Base nodes must have at least two operands",
I, BaseNode);
7707 auto Itr = TBAABaseNodes.find(BaseNode);
7708 if (Itr != TBAABaseNodes.end())
7711 auto Result = verifyTBAABaseNodeImpl(
I, BaseNode, IsNewFormat);
7712 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
7714 assert(InsertResult.second &&
"We just checked!");
7718TBAAVerifier::TBAABaseNodeSummary
7719TBAAVerifier::verifyTBAABaseNodeImpl(
const Instruction *
I,
7720 const MDNode *BaseNode,
bool IsNewFormat) {
7721 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {
true, ~0
u};
7725 return isValidScalarTBAANode(BaseNode)
7726 ? TBAAVerifier::TBAABaseNodeSummary({
false, 0})
7732 CheckFailed(
"Access tag nodes must have the number of operands that is a "
7733 "multiple of 3!", BaseNode);
7738 CheckFailed(
"Struct tag nodes must have an odd number of operands!",
7748 if (!TypeSizeNode) {
7749 CheckFailed(
"Type size nodes must be constants!",
I, BaseNode);
7756 CheckFailed(
"Struct tag nodes have a string as their first operand",
7763 std::optional<APInt> PrevOffset;
7768 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7769 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7770 for (
unsigned Idx = FirstFieldOpNo; Idx < BaseNode->
getNumOperands();
7771 Idx += NumOpsPerField) {
7772 const MDOperand &FieldTy = BaseNode->
getOperand(Idx);
7773 const MDOperand &FieldOffset = BaseNode->
getOperand(Idx + 1);
7775 CheckFailed(
"Incorrect field entry in struct type node!",
I, BaseNode);
7780 auto *OffsetEntryCI =
7782 if (!OffsetEntryCI) {
7783 CheckFailed(
"Offset entries must be constants!",
I, BaseNode);
7789 BitWidth = OffsetEntryCI->getBitWidth();
7791 if (OffsetEntryCI->getBitWidth() !=
BitWidth) {
7793 "Bitwidth between the offsets and struct type entries must match",
I,
7805 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
7808 CheckFailed(
"Offsets must be increasing!",
I, BaseNode);
7812 PrevOffset = OffsetEntryCI->getValue();
7817 if (!MemberSizeNode) {
7818 CheckFailed(
"Member size entries must be constants!",
I, BaseNode);
7825 return Failed ? InvalidNode
7826 : TBAAVerifier::TBAABaseNodeSummary(
false,
BitWidth);
7848 return Parent && Visited.
insert(Parent).second &&
7852bool TBAAVerifier::isValidScalarTBAANode(
const MDNode *MD) {
7853 auto ResultIt = TBAAScalarNodes.find(MD);
7854 if (ResultIt != TBAAScalarNodes.end())
7855 return ResultIt->second;
7857 SmallPtrSet<const MDNode *, 4> Visited;
7859 auto InsertResult = TBAAScalarNodes.insert({MD,
Result});
7861 assert(InsertResult.second &&
"Just checked!");
7870MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(
const Instruction *
I,
7871 const MDNode *BaseNode,
7882 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7883 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7884 for (
unsigned Idx = FirstFieldOpNo; Idx < BaseNode->
getNumOperands();
7885 Idx += NumOpsPerField) {
7886 auto *OffsetEntryCI =
7888 if (OffsetEntryCI->getValue().ugt(
Offset)) {
7889 if (Idx == FirstFieldOpNo) {
7890 CheckFailed(
"Could not find TBAA parent in struct type node",
I,
7895 unsigned PrevIdx = Idx - NumOpsPerField;
7896 auto *PrevOffsetEntryCI =
7898 Offset -= PrevOffsetEntryCI->getValue();
7906 Offset -= LastOffsetEntryCI->getValue();
7911 if (!
Type ||
Type->getNumOperands() < 3)
7927 "This instruction shall not have a TBAA access tag!",
I);
7929 bool IsStructPathTBAA =
7933 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7943 "Access tag metadata must have either 4 or 5 operands",
I, MD);
7946 "Struct tag metadata must have either 3 or 4 operands",
I, MD);
7953 CheckTBAA(AccessSizeNode,
"Access size field must be a constant",
I, MD);
7957 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7962 "Immutability tag on struct tag metadata must be a constant",
I,
7965 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7966 "Immutability part of the struct tag metadata must be either 0 or 1",
I,
7971 "Malformed struct tag metadata: base and access-type "
7972 "should be non-null and point to Metadata nodes",
7973 I, MD, BaseNode, AccessType);
7976 CheckTBAA(isValidScalarTBAANode(AccessType),
7977 "Access type node must be a valid scalar type",
I, MD,
7982 CheckTBAA(OffsetCI,
"Offset must be constant integer",
I, MD);
7985 bool SeenAccessTypeInPath =
false;
7991 getFieldNodeFromTBAABaseNode(
I, BaseNode,
Offset, IsNewFormat)) {
7992 if (!StructPath.
insert(BaseNode).second) {
7993 CheckFailed(
"Cycle detected in struct path",
I, MD);
7998 unsigned BaseNodeBitWidth;
7999 std::tie(
Invalid, BaseNodeBitWidth) =
8000 verifyTBAABaseNode(
I, BaseNode, IsNewFormat);
8007 SeenAccessTypeInPath |= BaseNode == AccessType;
8009 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
8014 (BaseNodeBitWidth == 0 &&
Offset == 0) ||
8015 (IsNewFormat && BaseNodeBitWidth == ~0u),
8016 "Access bit-width not the same as description bit-width",
I, MD,
8017 BaseNodeBitWidth,
Offset.getBitWidth());
8019 if (IsNewFormat && SeenAccessTypeInPath)
8023 CheckTBAA(SeenAccessTypeInPath,
"Did not see access type in access path!",
I,
8028char VerifierLegacyPass::ID = 0;
8029INITIALIZE_PASS(VerifierLegacyPass,
"verify",
"Module Verifier",
false,
false)
8032 return new VerifierLegacyPass(FatalErrors);
8050 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
8058 if (res.IRBroken && FatalErrors)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU address space definition.
ArrayRef< TableEntry > TableRef
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file declares the LLVM IR specialization of the GenericConvergenceVerifier template.
static DISubprogram * getSubprogram(bool IsDistinct, Ts &&...Args)
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
static bool runOnFunction(Function &F, bool PostInlining)
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
Machine Check Debug Module
This file implements a map that provides insertion order iteration.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static unsigned getNumElements(Type *Ty)
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
verify safepoint Safepoint IR Verifier
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool IsScalarTBAANodeImpl(const MDNode *MD, SmallPtrSetImpl< const MDNode * > &Visited)
static bool isType(const Metadata *MD)
static Instruction * getSuccPad(Instruction *Terminator)
static bool isNewFormatTBAATypeNode(llvm::MDNode *Type)
#define CheckDI(C,...)
We know that a debug info condition should be true, if not print an error message.
static void forEachUser(const Value *User, SmallPtrSet< const Value *, 32 > &Visited, llvm::function_ref< bool(const Value *)> Callback)
static bool isDINode(const Metadata *MD)
static bool isScope(const Metadata *MD)
static cl::opt< bool > VerifyNoAliasScopeDomination("verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " "scopes are not dominating"))
static bool isTypeCongruent(Type *L, Type *R)
Two types are "congruent" if they are identical, or if they are both pointer types with different poi...
static bool isConstantIntMetadataOperand(const Metadata *MD)
static bool IsRootTBAANode(const MDNode *MD)
static Value * getParentPad(Value *EHPad)
static bool hasConflictingReferenceFlags(unsigned Flags)
Detect mutually exclusive flags.
static AttrBuilder getParameterABIAttributes(LLVMContext &C, unsigned I, AttributeList Attrs)
static const char PassName[]
bool isFiniteNonZero() const
const fltSemantics & getSemantics() const
Class for arbitrary precision integers.
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isMinValue() const
Determine if this is the smallest unsigned value.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
int64_t getSExtValue() const
Get sign extended value.
bool isMaxValue() const
Determine if this is the largest unsigned value.
This class represents a conversion between pointers from one address space to another.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
const Value * getArraySize() const
Get the number of elements allocated.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
void setPreservesAll()
Set by analyses that do not transform their input at all.
LLVM_ABI bool hasInRegAttr() const
Return true if this argument has the inreg attribute.
bool empty() const
empty - Check if the array is empty.
static bool isFPOperation(BinOp Op)
BinOp getOperation() const
static LLVM_ABI StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
bool contains(Attribute::AttrKind A) const
Return true if the builder has the specified attribute.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
LLVM_ABI std::string getAsString(bool InAttrGrp=false) const
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI const ConstantRange & getValueAsConstantRange() const
Return the attribute's value as a ConstantRange.
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const Instruction & front() const
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a no-op cast from one type to another.
static LLVM_ABI BlockAddress * lookup(const BasicBlock *BB)
Lookup an existing BlockAddress constant for the given BasicBlock.
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
bool isInlineAsm() const
Check if this call is an inline asm statement.
bool hasInAllocaArgument() const
Determine if there are is an inalloca argument.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool doesNotAccessMemory(unsigned OpNo) const
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Get the attribute of a given kind from a given arg.
iterator_range< bundle_op_iterator > bundle_op_infos()
Return the range [bundle_op_info_begin, bundle_op_info_end).
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Type * getParamElementType(unsigned ArgNo) const
Extract the elementtype type for a parameter.
Value * getArgOperand(unsigned i) const
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
bool doesNotReturn() const
Determine if the call cannot return.
LLVM_ABI bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
bool isMustTailCall() const
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
unsigned getNumHandlers() const
return the number of 'handlers' in this catchswitch instruction, except the default handler
Value * getParentPad() const
BasicBlock * getUnwindDest() const
handler_range handlers()
iteration adapter for range-for loops.
BasicBlock * getUnwindDest() const
bool isFPPredicate() const
bool isIntPredicate() const
static bool isIntPredicate(Predicate P)
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
Constant * getAddrDiscriminator() const
The address discriminator if any, or the null constant.
Constant * getPointer() const
The pointer that is signed in this ptrauth signed pointer.
ConstantInt * getKey() const
The Key ID, an i32 constant.
ConstantInt * getDiscriminator() const
The integer discriminator, an i64 constant, or 0.
static LLVM_ABI bool isOrderedRanges(ArrayRef< ConstantRange > RangesRef)
This class represents a range of values.
const APInt & getLower() const
Return the lower value for this range.
const APInt & getUpper() const
Return the upper value for this range.
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static LLVM_ABI ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
LLVM_ABI unsigned getNonMetadataArgCount() const
DbgVariableFragmentInfo FragmentInfo
@ FixedPointBinary
Scale factor 2^Factor.
@ FixedPointDecimal
Scale factor 10^Factor.
@ FixedPointRational
Arbitrary rational scale factor.
DIGlobalVariable * getVariable() const
DIExpression * getExpression() const
LLVM_ABI DISubprogram * getSubprogram() const
Get the subprogram for this scope.
DILocalScope * getScope() const
Get the local scope for this variable.
Metadata * getRawScope() const
Base class for scope-like contexts.
Subprogram description. Uses SubclassData1.
Base class for template parameters.
Base class for variables.
Metadata * getRawType() const
Metadata * getRawScope() const
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
Records a position in IR for a source label (DILabel).
MDNode * getRawLabel() const
DILabel * getLabel() const
Base class for non-instruction debug metadata records that have positions within IR.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
DebugLoc getDebugLoc() const
LLVM_ABI const BasicBlock * getParent() const
LLVM_ABI Function * getFunction()
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
Metadata * getRawAssignID() const
MDNode * getRawVariable() const
DILocalVariable * getVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
bool isDbgDeclare() const
Metadata * getRawAddress() const
@ End
Marks the end of the concrete types.
@ Any
To indicate all LocationTypes in searches.
DIExpression * getAddressExpression() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
This instruction compares its operands according to the predicate given to the constructor.
This class represents an extension of floating point types.
This class represents a cast from floating point to signed integer.
This class represents a cast from floating point to unsigned integer.
This class represents a truncation of floating point types.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Value * getParentPad() const
Convenience accessors.
FunctionPass class - This class is used to implement most global optimizations.
Type * getReturnType() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
DISubprogram * getSubprogram() const
Get the attached subprogram.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
bool hasPersonalityFn() const
Check whether this function has a personality function.
const Function & getFunction() const
const std::string & getGC() const
Type * getReturnType() const
Returns the type of the ret val.
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
void visit(const BlockT &BB)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static bool isValidLinkage(LinkageTypes L)
const Constant * getAliasee() const
LLVM_ABI const Function * getResolverFunction() const
static bool isValidLinkage(LinkageTypes L)
const Constant * getResolver() const
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
bool hasExternalLinkage() const
bool isImplicitDSOLocal() const
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
bool hasValidDeclarationLinkage() const
LinkageTypes getLinkage() const
bool hasDefaultVisibility() const
bool hasPrivateLinkage() const
bool hasHiddenVisibility() const
bool hasExternalWeakLinkage() const
bool hasDLLImportStorageClass() const
bool hasDLLExportStorageClass() const
bool isDeclarationForLinker() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
LLVM_ABI bool isInterposable() const
Return true if this global's definition can be substituted with an arbitrary definition at link time ...
bool hasCommonLinkage() const
bool hasGlobalUnnamedAddr() const
bool hasAppendingLinkage() const
bool hasAvailableExternallyLinkage() const
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool hasInitializer() const
Definitions have initializers, declarations don't.
MaybeAlign getAlign() const
Returns the alignment of the given variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
BasicBlock * getDestination(unsigned i)
Return the specified destination.
unsigned getNumDestinations() const
return the number of possible destinations in this indirectbr instruction.
unsigned getNumSuccessors() const
This instruction inserts a single (scalar) element into a VectorType value.
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
Value * getAggregateOperand()
ArrayRef< unsigned > getIndices() const
Base class for instruction visitors.
void visit(Iterator Start, Iterator End)
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
This class represents a cast from an integer to a pointer.
static LLVM_ABI bool mayLowerToFunctionCall(Intrinsic::ID IID)
Check if the intrinsic might lower into a regular function call in the course of IR transformations.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
@ OB_clang_arc_attachedcall
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
Align getAlign() const
Return the alignment of the access that is being performed.
const MDOperand & getOperand(unsigned I) const
ArrayRef< MDOperand > operands() const
unsigned getNumOperands() const
Return number of MDNode operands.
bool isResolved() const
Check if node is fully resolved.
LLVMContext & getContext() const
bool equalsStr(StringRef Str) const
LLVM_ABI StringRef getString() const
This class implements a map that also provides access to all stored values in a deterministic order.
Manage lifetime of a slot tracker for printing IR.
A Module instance is used to store all the information related to an LLVM module.
LLVM_ABI StringRef getName() const
LLVM_ABI void print(raw_ostream &ROS, bool IsForDebug=false) const
LLVM_ABI unsigned getNumOperands() const
iterator_range< op_iterator > operands()
op_range incoming_values()
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
This class represents a cast from a pointer to an address (non-capturing ptrtoint).
This class represents a cast from a pointer to an integer.
Value * getValue() const
Convenience accessor.
This class represents a sign extension of integer types.
This class represents a cast from signed integer to floating point.
static LLVM_ABI const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
This instruction constructs a fixed permutation of two input vectors.
static LLVM_ABI bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
void insert_range(Range &&R)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void reserve(size_type N)
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
static constexpr size_t npos
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr bool empty() const
empty - Check if the string is empty.
unsigned getNumElements() const
Random access to the elements.
LLVM_ABI Type * getTypeAtIndex(const Value *V) const
Given an index value into the type, return the type of the element.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Returns true if this struct contains a scalable vector.
Verify that the TBAA Metadatas are valid.
LLVM_ABI bool visitTBAAMetadata(const Instruction *I, const MDNode *MD)
Visit an instruction, or a TBAA node itself as part of a metadata, and return true if it is valid,...
Triple - Helper class for working with autoconf configuration names.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool containsNonGlobalTargetExtType(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this type is or contains a target extension type that disallows being used as a global...
bool isArrayTy() const
True if this is an instance of ArrayType.
LLVM_ABI bool containsNonLocalTargetExtType(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this type is or contains a target extension type that disallows being used as a local.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
bool isLabelTy() const
Return true if this is 'label'.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isTokenLikeTy() const
Returns true if this is 'token' or a token-like target type.s.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
LLVM_ABI bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
bool isVoidTy() const
Return true if this is 'void'.
bool isMetadataTy() const
Return true if this is 'metadata'.
This class represents a cast unsigned integer to floating point.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM Value Representation.
iterator_range< user_iterator > materialized_users()
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripInBoundsOffsets(function_ref< void(const Value *)> Func=[](const Value *) {}) const
Strip off pointer casts and inbounds GEPs.
iterator_range< user_iterator > users()
bool materialized_use_empty() const
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Check a module for errors, and report separate error states for IR and debug info errors.
LLVM_ABI Result run(Module &M, ModuleAnalysisManager &)
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
This class represents zero extension of integer types.
constexpr bool isNonZero() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
This class implements an extremely fast bulk output stream that can only output to a stream.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ PRIVATE_ADDRESS
Address space for private memory.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
bool isFlatGlobalAddrSpace(unsigned AS)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI MatchIntrinsicTypesResult matchIntrinsicSignature(FunctionType *FTy, ArrayRef< IITDescriptor > &Infos, SmallVectorImpl< Type * > &ArgTys)
Match the specified function type with the type constraints specified by the .td file.
LLVM_ABI void getIntrinsicInfoTableEntries(ID id, SmallVectorImpl< IITDescriptor > &T)
Return the IIT table descriptor for the specified intrinsic into an array of IITDescriptors.
MatchIntrinsicTypesResult
@ MatchIntrinsicTypes_NoMatchRet
@ MatchIntrinsicTypes_NoMatchArg
LLVM_ABI bool hasConstrainedFPRoundingModeOperand(ID QID)
Returns true if the intrinsic ID is for one of the "ConstrainedFloating-Point Intrinsics" that take r...
LLVM_ABI StringRef getName(ID id)
Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
static const int NoAliasScopeDeclScopeArg
LLVM_ABI bool matchIntrinsicVarArg(bool isVarArg, ArrayRef< IITDescriptor > &Infos)
Verify if the intrinsic has variable arguments.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
@ System
Synchronized with respect to all concurrently executing threads.
LLVM_ABI std::optional< VFInfo > tryDemangleForVFABI(StringRef MangledName, const FunctionType *FTy)
Function to construct a VFInfo out of a mangled names in the following format:
@ CE
Windows NT (Windows on ARM)
LLVM_ABI AssignmentInstRange getAssignmentInsts(DIAssignID *ID)
Return a range of instructions (typically just one) that have ID as an attachment.
initializer< Ty > init(const Ty &Val)
Scope
Defines the scope in which this symbol should be visible: Default – Visible in the public interface o...
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > dyn_extract_or_null(Y &&MD)
Extract a Value from Metadata, if any, allowing null.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > dyn_extract(Y &&MD)
Extract a Value from Metadata, if any.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
@ User
could "use" a pointer
NodeAddr< UseNode * > Use
NodeAddr< NodeBase * > Node
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool canInstructionHaveMMRAs(const Instruction &I)
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
LLVM_ABI unsigned getBranchWeightOffset(const MDNode *ProfileData)
Return the offset to the first branch weight data.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
testing::Matcher< const detail::ErrorHolder & > Failed()
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI DenseMap< BasicBlock *, ColorVector > colorEHFunclets(Function &F)
If an EH funclet personality is in use (see isFuncletEHPersonality), this will recompute which blocks...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
bool isa_and_nonnull(const Y &Val)
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
auto dyn_cast_or_null(const Y &Val)
GenericConvergenceVerifier< SSAContext > ConvergenceVerifier
LLVM_ABI void initializeVerifierLegacyPassPass(PassRegistry &)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
FunctionAddr VTableAddr Count
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isValueProfileMD(const MDNode *ProfileData)
Checks if an MDNode contains value profiling Metadata.
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_ABI unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI FunctionPass * createVerifierPass(bool FatalErrors=true)
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
TinyPtrVector< BasicBlock * > ColorVector
LLVM_ABI const char * LLVMLoopEstimatedTripCount
Profile-based loop metadata that should be accessed only by using llvm::getLoopEstimatedTripCount and...
DenormalMode parseDenormalFPAttribute(StringRef Str)
Returns the denormal mode to use for inputs and outputs.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
LLVM_ABI std::unique_ptr< GCStrategy > getGCStrategy(const StringRef Name)
Lookup the GCStrategy object associated with the given gc name.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
bool isHexDigit(char C)
Checks if character C is a hexadecimal numeric character.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
constexpr bool isCallableCC(CallingConv::ID CC)
LLVM_ABI bool verifyModule(const Module &M, raw_ostream *OS=nullptr, bool *BrokenDebugInfo=nullptr)
Check a module for errors.
AnalysisManager< Module > ModuleAnalysisManager
Convenience typedef for the Module analysis manager.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI const char * SyntheticFunctionEntryCount
static LLVM_ABI const char * UnknownBranchWeightsMarker
static LLVM_ABI const char * ValueProfile
static LLVM_ABI const char * FunctionEntryCount
static LLVM_ABI const char * BranchWeights
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
void DebugInfoCheckFailed(const Twine &Message)
A debug info check failed.
VerifierSupport(raw_ostream *OS, const Module &M)
bool Broken
Track the brokenness of the module while recursively visiting.
void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs)
A check failed (with values to print).
bool BrokenDebugInfo
Broken debug info can be "recovered" from by stripping the debug info.
bool TreatBrokenDebugInfoAsError
Whether to treat broken debug info as an error.
void CheckFailed(const Twine &Message)
A check failed, so printout out the condition and the message.
void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs)
A debug info check failed (with values to print).