LLVM 22.0.0git
X86ExpandPseudo.cpp
Go to the documentation of this file.
1//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass that expands pseudo instructions into target
10// instructions to allow proper scheduling, if-conversion, other late
11// optimizations, or simply the encoding of the instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86FrameLowering.h"
17#include "X86InstrInfo.h"
19#include "X86Subtarget.h"
27#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
28#include "llvm/IR/Analysis.h"
30#include "llvm/IR/GlobalValue.h"
32using namespace llvm;
33
34#define DEBUG_TYPE "x86-expand-pseudo"
35#define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
36
37namespace {
38class X86ExpandPseudoImpl {
39public:
40 const X86Subtarget *STI = nullptr;
41 const X86InstrInfo *TII = nullptr;
42 const X86RegisterInfo *TRI = nullptr;
43 const X86MachineFunctionInfo *X86FI = nullptr;
44 const X86FrameLowering *X86FL = nullptr;
45
46 bool runOnMachineFunction(MachineFunction &MF);
47
48private:
49 void expandICallBranchFunnel(MachineBasicBlock *MBB,
51 void expandCALL_RVMARKER(MachineBasicBlock &MBB,
54 bool expandMBB(MachineBasicBlock &MBB);
55
56 /// This function expands pseudos which affects control flow.
57 /// It is done in separate pass to simplify blocks navigation in main
58 /// pass(calling expandMBB).
59 bool expandPseudosWhichAffectControlFlow(MachineFunction &MF);
60
61 /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
62 /// placed into separate block guarded by check for al register(for SystemV
63 /// abi).
64 void expandVastartSaveXmmRegs(
65 MachineBasicBlock *EntryBlk,
66 MachineBasicBlock::iterator VAStartPseudoInstr) const;
67};
68
69class X86ExpandPseudoLegacy : public MachineFunctionPass {
70public:
71 static char ID;
72 X86ExpandPseudoLegacy() : MachineFunctionPass(ID) {}
73
74 void getAnalysisUsage(AnalysisUsage &AU) const override {
75 AU.setPreservesCFG();
79 }
80
81 const X86Subtarget *STI = nullptr;
82 const X86InstrInfo *TII = nullptr;
83 const X86RegisterInfo *TRI = nullptr;
84 const X86MachineFunctionInfo *X86FI = nullptr;
85 const X86FrameLowering *X86FL = nullptr;
86
87 bool runOnMachineFunction(MachineFunction &MF) override;
88
89 MachineFunctionProperties getRequiredProperties() const override {
90 return MachineFunctionProperties().setNoVRegs();
91 }
92
93 StringRef getPassName() const override {
94 return "X86 pseudo instruction expansion pass";
95 }
96};
97char X86ExpandPseudoLegacy::ID = 0;
98} // End anonymous namespace.
99
101 false, false)
102
103void X86ExpandPseudoImpl::expandICallBranchFunnel(
105 MachineBasicBlock *JTMBB = MBB;
106 MachineInstr *JTInst = &*MBBI;
107 MachineFunction *MF = MBB->getParent();
108 const BasicBlock *BB = MBB->getBasicBlock();
109 auto InsPt = MachineFunction::iterator(MBB);
110 ++InsPt;
111
112 std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
113 const DebugLoc &DL = JTInst->getDebugLoc();
114 MachineOperand Selector = JTInst->getOperand(0);
115 const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
116
117 auto CmpTarget = [&](unsigned Target) {
118 if (Selector.isReg())
119 MBB->addLiveIn(Selector.getReg());
120 BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
121 .addReg(X86::RIP)
122 .addImm(1)
123 .addReg(0)
124 .addGlobalAddress(CombinedGlobal,
125 JTInst->getOperand(2 + 2 * Target).getImm())
126 .addReg(0);
127 BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
128 .add(Selector)
129 .addReg(X86::R11);
130 };
131
132 auto CreateMBB = [&]() {
133 auto *NewMBB = MF->CreateMachineBasicBlock(BB);
134 MBB->addSuccessor(NewMBB);
135 if (!MBB->isLiveIn(X86::EFLAGS))
136 MBB->addLiveIn(X86::EFLAGS);
137 return NewMBB;
138 };
139
140 auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
141 BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
142
143 auto *ElseMBB = CreateMBB();
144 MF->insert(InsPt, ElseMBB);
145 MBB = ElseMBB;
146 MBBI = MBB->end();
147 };
148
149 auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
150 auto *ThenMBB = CreateMBB();
151 TargetMBBs.push_back({ThenMBB, Target});
152 EmitCondJump(CC, ThenMBB);
153 };
154
155 auto EmitTailCall = [&](unsigned Target) {
156 BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
157 .add(JTInst->getOperand(3 + 2 * Target));
158 };
159
160 std::function<void(unsigned, unsigned)> EmitBranchFunnel =
161 [&](unsigned FirstTarget, unsigned NumTargets) {
162 if (NumTargets == 1) {
163 EmitTailCall(FirstTarget);
164 return;
165 }
166
167 if (NumTargets == 2) {
168 CmpTarget(FirstTarget + 1);
169 EmitCondJumpTarget(X86::COND_B, FirstTarget);
170 EmitTailCall(FirstTarget + 1);
171 return;
172 }
173
174 if (NumTargets < 6) {
175 CmpTarget(FirstTarget + 1);
176 EmitCondJumpTarget(X86::COND_B, FirstTarget);
177 EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
178 EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
179 return;
180 }
181
182 auto *ThenMBB = CreateMBB();
183 CmpTarget(FirstTarget + (NumTargets / 2));
184 EmitCondJump(X86::COND_B, ThenMBB);
185 EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
186 EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
187 NumTargets - (NumTargets / 2) - 1);
188
189 MF->insert(InsPt, ThenMBB);
190 MBB = ThenMBB;
191 MBBI = MBB->end();
192 EmitBranchFunnel(FirstTarget, NumTargets / 2);
193 };
194
195 EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
196 for (auto P : TargetMBBs) {
197 MF->insert(InsPt, P.first);
198 BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
199 .add(JTInst->getOperand(3 + 2 * P.second));
200 }
201 JTMBB->erase(JTInst);
202}
203
204void X86ExpandPseudoImpl::expandCALL_RVMARKER(
206 // Expand CALL_RVMARKER pseudo to call instruction, followed by the special
207 //"movq %rax, %rdi" marker.
208 MachineInstr &MI = *MBBI;
209
210 MachineInstr *OriginalCall;
211 assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
212 "invalid operand for regular call");
213 unsigned Opc = -1;
214 if (MI.getOpcode() == X86::CALL64m_RVMARKER)
215 Opc = X86::CALL64m;
216 else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
217 Opc = X86::CALL64r;
218 else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
219 Opc = X86::CALL64pcrel32;
220 else
221 llvm_unreachable("unexpected opcode");
222
223 OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
224 bool RAXImplicitDead = false;
225 for (MachineOperand &Op : llvm::drop_begin(MI.operands())) {
226 // RAX may be 'implicit dead', if there are no other users of the return
227 // value. We introduce a new use, so change it to 'implicit def'.
228 if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
229 TRI->regsOverlap(Op.getReg(), X86::RAX)) {
230 Op.setIsDead(false);
231 Op.setIsDef(true);
232 RAXImplicitDead = true;
233 }
234 OriginalCall->addOperand(Op);
235 }
236
237 // Emit marker "movq %rax, %rdi". %rdi is not callee-saved, so it cannot be
238 // live across the earlier call. The call to the ObjC runtime function returns
239 // the first argument, so the value of %rax is unchanged after the ObjC
240 // runtime call. On Windows targets, the runtime call follows the regular
241 // x64 calling convention and expects the first argument in %rcx.
242 auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI;
243 auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
244 .addReg(TargetReg, RegState::Define)
245 .addReg(X86::RAX)
246 .getInstr();
247 if (MI.shouldUpdateAdditionalCallInfo())
249
250 // Emit call to ObjC runtime.
251 const uint32_t *RegMask =
252 TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
253 MachineInstr *RtCall =
254 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
255 .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0)
256 .addRegMask(RegMask)
257 .addReg(X86::RAX,
259 (RAXImplicitDead ? (RegState::Dead | RegState::Define)
261 .getInstr();
262 MI.eraseFromParent();
263
264 auto &TM = MBB.getParent()->getTarget();
265 // On Darwin platforms, wrap the expanded sequence in a bundle to prevent
266 // later optimizations from breaking up the sequence.
267 if (TM.getTargetTriple().isOSDarwin())
268 finalizeBundle(MBB, OriginalCall->getIterator(),
269 std::next(RtCall->getIterator()));
270}
271
272/// If \p MBBI is a pseudo instruction, this method expands
273/// it to the corresponding (sequence of) actual instruction(s).
274/// \returns true if \p MBBI has been expanded.
275bool X86ExpandPseudoImpl::expandMI(MachineBasicBlock &MBB,
277 MachineInstr &MI = *MBBI;
278 unsigned Opcode = MI.getOpcode();
279 const DebugLoc &DL = MBBI->getDebugLoc();
280#define GET_EGPR_IF_ENABLED(OPC) (STI->hasEGPR() ? OPC##_EVEX : OPC)
281 switch (Opcode) {
282 default:
283 return false;
284 case X86::TCRETURNdi:
285 case X86::TCRETURNdicc:
286 case X86::TCRETURNri:
287 case X86::TCRETURN_WIN64ri:
288 case X86::TCRETURN_HIPE32ri:
289 case X86::TCRETURNmi:
290 case X86::TCRETURNdi64:
291 case X86::TCRETURNdi64cc:
292 case X86::TCRETURNri64:
293 case X86::TCRETURNri64_ImpCall:
294 case X86::TCRETURNmi64:
295 case X86::TCRETURN_WINmi64: {
296 bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64 ||
297 Opcode == X86::TCRETURN_WINmi64;
298 MachineOperand &JumpTarget = MBBI->getOperand(0);
299 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
300 : 1);
301 assert(StackAdjust.isImm() && "Expecting immediate value.");
302
303 // Adjust stack pointer.
304 int StackAdj = StackAdjust.getImm();
305 int MaxTCDelta = X86FI->getTCReturnAddrDelta();
306 int64_t Offset = 0;
307 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
308
309 // Incoporate the retaddr area.
310 Offset = StackAdj - MaxTCDelta;
311 assert(Offset >= 0 && "Offset should never be negative");
312
313 if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
314 assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
315 }
316
317 if (Offset) {
318 // Check for possible merge with preceding ADD instruction.
319 Offset = X86FL->mergeSPAdd(MBB, MBBI, Offset, true);
320 X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
321 }
322
323 // Use this predicate to set REX prefix for X86_64 targets.
324 bool IsX64 = STI->isTargetWin64() || STI->isTargetUEFI64();
325 // Jump to label or value in register.
326 if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
327 Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
328 unsigned Op;
329 switch (Opcode) {
330 case X86::TCRETURNdi:
331 Op = X86::TAILJMPd;
332 break;
333 case X86::TCRETURNdicc:
334 Op = X86::TAILJMPd_CC;
335 break;
336 case X86::TCRETURNdi64cc:
338 "Conditional tail calls confuse "
339 "the Win64 unwinder.");
340 Op = X86::TAILJMPd64_CC;
341 break;
342 default:
343 // Note: Win64 uses REX prefixes indirect jumps out of functions, but
344 // not direct ones.
345 Op = X86::TAILJMPd64;
346 break;
347 }
348 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
349 if (JumpTarget.isGlobal()) {
350 MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
351 JumpTarget.getTargetFlags());
352 } else {
353 assert(JumpTarget.isSymbol());
354 MIB.addExternalSymbol(JumpTarget.getSymbolName(),
355 JumpTarget.getTargetFlags());
356 }
357 if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
358 MIB.addImm(MBBI->getOperand(2).getImm());
359 }
360
361 } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64 ||
362 Opcode == X86::TCRETURN_WINmi64) {
363 unsigned Op = (Opcode == X86::TCRETURNmi)
364 ? X86::TAILJMPm
365 : (IsX64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
366 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
367 for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
368 MIB.add(MBBI->getOperand(i));
369 } else if (Opcode == X86::TCRETURNri64 ||
370 Opcode == X86::TCRETURNri64_ImpCall ||
371 Opcode == X86::TCRETURN_WIN64ri) {
372 JumpTarget.setIsKill();
373 BuildMI(MBB, MBBI, DL,
374 TII->get(IsX64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
375 .add(JumpTarget);
376 } else {
377 assert(!IsX64 && "Win64 and UEFI64 require REX for indirect jumps.");
378 JumpTarget.setIsKill();
379 BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
380 .add(JumpTarget);
381 }
382
383 MachineInstr &NewMI = *std::prev(MBBI);
384 NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
385 NewMI.setCFIType(*MBB.getParent(), MI.getCFIType());
386
387 // Update the call info.
388 if (MBBI->isCandidateForAdditionalCallInfo())
390
391 // Delete the pseudo instruction TCRETURN.
392 MBB.erase(MBBI);
393
394 return true;
395 }
396 case X86::EH_RETURN:
397 case X86::EH_RETURN64: {
398 MachineOperand &DestAddr = MBBI->getOperand(0);
399 assert(DestAddr.isReg() && "Offset should be in register!");
400 const bool Uses64BitFramePtr = STI->isTarget64BitLP64();
401 Register StackPtr = TRI->getStackRegister();
402 BuildMI(MBB, MBBI, DL,
403 TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
404 .addReg(DestAddr.getReg());
405 // The EH_RETURN pseudo is really removed during the MC Lowering.
406 return true;
407 }
408 case X86::IRET: {
409 // Adjust stack to erase error code
410 int64_t StackAdj = MBBI->getOperand(0).getImm();
411 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
412 // Replace pseudo with machine iret
413 unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
414 // Use UIRET if UINTR is present (except for building kernel)
415 if (STI->is64Bit() && STI->hasUINTR() &&
417 RetOp = X86::UIRET;
418 BuildMI(MBB, MBBI, DL, TII->get(RetOp));
419 MBB.erase(MBBI);
420 return true;
421 }
422 case X86::RET: {
423 // Adjust stack to erase error code
424 int64_t StackAdj = MBBI->getOperand(0).getImm();
425 MachineInstrBuilder MIB;
426 if (StackAdj == 0) {
427 MIB = BuildMI(MBB, MBBI, DL,
428 TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32));
429 } else if (isUInt<16>(StackAdj)) {
430 MIB = BuildMI(MBB, MBBI, DL,
431 TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32))
432 .addImm(StackAdj);
433 } else {
434 assert(!STI->is64Bit() &&
435 "shouldn't need to do this for x86_64 targets!");
436 // A ret can only handle immediates as big as 2**16-1. If we need to pop
437 // off bytes before the return address, we must do it manually.
438 BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
439 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
440 BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
441 MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32));
442 }
443 for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
444 MIB.add(MBBI->getOperand(I));
445 MBB.erase(MBBI);
446 return true;
447 }
448 case X86::LCMPXCHG16B_SAVE_RBX: {
449 // Perform the following transformation.
450 // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
451 // =>
452 // RBX = InArg
453 // actualcmpxchg Addr
454 // RBX = SaveRbx
455 const MachineOperand &InArg = MBBI->getOperand(6);
456 Register SaveRbx = MBBI->getOperand(7).getReg();
457
458 // Copy the input argument of the pseudo into the argument of the
459 // actual instruction.
460 // NOTE: We don't copy the kill flag since the input might be the same reg
461 // as one of the other operands of LCMPXCHG16B.
462 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
463 // Create the actual instruction.
464 MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
465 // Copy the operands related to the address. If we access a frame variable,
466 // we need to replace the RBX base with SaveRbx, as RBX has another value.
467 const MachineOperand &Base = MBBI->getOperand(1);
468 if (Base.getReg() == X86::RBX || Base.getReg() == X86::EBX)
470 Base.getReg() == X86::RBX
471 ? SaveRbx
472 : Register(TRI->getSubReg(SaveRbx, X86::sub_32bit)),
473 /*IsDef=*/false));
474 else
475 NewInstr->addOperand(Base);
476 for (unsigned Idx = 1 + 1; Idx < 1 + X86::AddrNumOperands; ++Idx)
477 NewInstr->addOperand(MBBI->getOperand(Idx));
478 // Finally, restore the value of RBX.
479 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
480 /*SrcIsKill*/ true);
481
482 // Delete the pseudo.
484 return true;
485 }
486 // Loading/storing mask pairs requires two kmov operations. The second one of
487 // these needs a 2 byte displacement relative to the specified address (with
488 // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
489 // same spill size, they all are stored using MASKPAIR16STORE, loaded using
490 // MASKPAIR16LOAD.
491 //
492 // The displacement value might wrap around in theory, thus the asserts in
493 // both cases.
494 case X86::MASKPAIR16LOAD: {
495 int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
496 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
497 Register Reg = MBBI->getOperand(0).getReg();
498 bool DstIsDead = MBBI->getOperand(0).isDead();
499 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
500 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
501
502 auto MIBLo =
503 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
504 .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
505 auto MIBHi =
506 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
507 .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
508
509 for (int i = 0; i < X86::AddrNumOperands; ++i) {
510 MIBLo.add(MBBI->getOperand(1 + i));
511 if (i == X86::AddrDisp)
512 MIBHi.addImm(Disp + 2);
513 else
514 MIBHi.add(MBBI->getOperand(1 + i));
515 }
516
517 // Split the memory operand, adjusting the offset and size for the halves.
518 MachineMemOperand *OldMMO = MBBI->memoperands().front();
519 MachineFunction *MF = MBB.getParent();
520 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
521 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
522
523 MIBLo.setMemRefs(MMOLo);
524 MIBHi.setMemRefs(MMOHi);
525
526 // Delete the pseudo.
527 MBB.erase(MBBI);
528 return true;
529 }
530 case X86::MASKPAIR16STORE: {
531 int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
532 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
533 Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
534 bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
535 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
536 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
537
538 auto MIBLo =
539 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
540 auto MIBHi =
541 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
542
543 for (int i = 0; i < X86::AddrNumOperands; ++i) {
544 MIBLo.add(MBBI->getOperand(i));
545 if (i == X86::AddrDisp)
546 MIBHi.addImm(Disp + 2);
547 else
548 MIBHi.add(MBBI->getOperand(i));
549 }
550 MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
551 MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
552
553 // Split the memory operand, adjusting the offset and size for the halves.
554 MachineMemOperand *OldMMO = MBBI->memoperands().front();
555 MachineFunction *MF = MBB.getParent();
556 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
557 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
558
559 MIBLo.setMemRefs(MMOLo);
560 MIBHi.setMemRefs(MMOHi);
561
562 // Delete the pseudo.
563 MBB.erase(MBBI);
564 return true;
565 }
566 case X86::MWAITX_SAVE_RBX: {
567 // Perform the following transformation.
568 // SaveRbx = pseudomwaitx InArg, SaveRbx
569 // =>
570 // [E|R]BX = InArg
571 // actualmwaitx
572 // [E|R]BX = SaveRbx
573 const MachineOperand &InArg = MBBI->getOperand(1);
574 // Copy the input argument of the pseudo into the argument of the
575 // actual instruction.
576 TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
577 // Create the actual instruction.
578 BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
579 // Finally, restore the value of RBX.
580 Register SaveRbx = MBBI->getOperand(2).getReg();
581 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
582 // Delete the pseudo.
584 return true;
585 }
586 case TargetOpcode::ICALL_BRANCH_FUNNEL:
587 expandICallBranchFunnel(&MBB, MBBI);
588 return true;
589 case X86::PLDTILECFGV: {
590 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::LDTILECFG)));
591 return true;
592 }
593 case X86::PTILELOADDV:
594 case X86::PTILELOADDT1V:
595 case X86::PTILELOADDRSV:
596 case X86::PTILELOADDRST1V:
597 case X86::PTCVTROWD2PSrreV:
598 case X86::PTCVTROWD2PSrriV:
599 case X86::PTCVTROWPS2BF16HrreV:
600 case X86::PTCVTROWPS2BF16HrriV:
601 case X86::PTCVTROWPS2BF16LrreV:
602 case X86::PTCVTROWPS2BF16LrriV:
603 case X86::PTCVTROWPS2PHHrreV:
604 case X86::PTCVTROWPS2PHHrriV:
605 case X86::PTCVTROWPS2PHLrreV:
606 case X86::PTCVTROWPS2PHLrriV:
607 case X86::PTILEMOVROWrreV:
608 case X86::PTILEMOVROWrriV: {
609 for (unsigned i = 2; i > 0; --i)
610 MI.removeOperand(i);
611 unsigned Opc;
612 switch (Opcode) {
613 case X86::PTILELOADDRSV:
614 Opc = GET_EGPR_IF_ENABLED(X86::TILELOADDRS);
615 break;
616 case X86::PTILELOADDRST1V:
617 Opc = GET_EGPR_IF_ENABLED(X86::TILELOADDRST1);
618 break;
619 case X86::PTILELOADDV:
620 Opc = GET_EGPR_IF_ENABLED(X86::TILELOADD);
621 break;
622 case X86::PTILELOADDT1V:
623 Opc = GET_EGPR_IF_ENABLED(X86::TILELOADDT1);
624 break;
625 case X86::PTCVTROWD2PSrreV:
626 Opc = X86::TCVTROWD2PSrte;
627 break;
628 case X86::PTCVTROWD2PSrriV:
629 Opc = X86::TCVTROWD2PSrti;
630 break;
631 case X86::PTCVTROWPS2BF16HrreV:
632 Opc = X86::TCVTROWPS2BF16Hrte;
633 break;
634 case X86::PTCVTROWPS2BF16HrriV:
635 Opc = X86::TCVTROWPS2BF16Hrti;
636 break;
637 case X86::PTCVTROWPS2BF16LrreV:
638 Opc = X86::TCVTROWPS2BF16Lrte;
639 break;
640 case X86::PTCVTROWPS2BF16LrriV:
641 Opc = X86::TCVTROWPS2BF16Lrti;
642 break;
643 case X86::PTCVTROWPS2PHHrreV:
644 Opc = X86::TCVTROWPS2PHHrte;
645 break;
646 case X86::PTCVTROWPS2PHHrriV:
647 Opc = X86::TCVTROWPS2PHHrti;
648 break;
649 case X86::PTCVTROWPS2PHLrreV:
650 Opc = X86::TCVTROWPS2PHLrte;
651 break;
652 case X86::PTCVTROWPS2PHLrriV:
653 Opc = X86::TCVTROWPS2PHLrti;
654 break;
655 case X86::PTILEMOVROWrreV:
656 Opc = X86::TILEMOVROWrte;
657 break;
658 case X86::PTILEMOVROWrriV:
659 Opc = X86::TILEMOVROWrti;
660 break;
661 default:
662 llvm_unreachable("Unexpected Opcode");
663 }
664 MI.setDesc(TII->get(Opc));
665 return true;
666 }
667 case X86::PTCMMIMFP16PSV:
668 case X86::PTCMMRLFP16PSV:
669 case X86::PTDPBSSDV:
670 case X86::PTDPBSUDV:
671 case X86::PTDPBUSDV:
672 case X86::PTDPBUUDV:
673 case X86::PTDPBF16PSV:
674 case X86::PTDPFP16PSV:
675 case X86::PTMMULTF32PSV:
676 case X86::PTDPBF8PSV:
677 case X86::PTDPBHF8PSV:
678 case X86::PTDPHBF8PSV:
679 case X86::PTDPHF8PSV: {
680 MI.untieRegOperand(4);
681 for (unsigned i = 3; i > 0; --i)
682 MI.removeOperand(i);
683 unsigned Opc;
684 switch (Opcode) {
685 // clang-format off
686 case X86::PTCMMIMFP16PSV: Opc = X86::TCMMIMFP16PS; break;
687 case X86::PTCMMRLFP16PSV: Opc = X86::TCMMRLFP16PS; break;
688 case X86::PTDPBSSDV: Opc = X86::TDPBSSD; break;
689 case X86::PTDPBSUDV: Opc = X86::TDPBSUD; break;
690 case X86::PTDPBUSDV: Opc = X86::TDPBUSD; break;
691 case X86::PTDPBUUDV: Opc = X86::TDPBUUD; break;
692 case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
693 case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break;
694 case X86::PTMMULTF32PSV: Opc = X86::TMMULTF32PS; break;
695 case X86::PTDPBF8PSV: Opc = X86::TDPBF8PS; break;
696 case X86::PTDPBHF8PSV: Opc = X86::TDPBHF8PS; break;
697 case X86::PTDPHBF8PSV: Opc = X86::TDPHBF8PS; break;
698 case X86::PTDPHF8PSV: Opc = X86::TDPHF8PS; break;
699 // clang-format on
700 default:
701 llvm_unreachable("Unexpected Opcode");
702 }
703 MI.setDesc(TII->get(Opc));
704 MI.tieOperands(0, 1);
705 return true;
706 }
707 case X86::PTILESTOREDV: {
708 for (int i = 1; i >= 0; --i)
709 MI.removeOperand(i);
710 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::TILESTORED)));
711 return true;
712 }
713#undef GET_EGPR_IF_ENABLED
714 case X86::PTILEZEROV: {
715 for (int i = 2; i > 0; --i) // Remove row, col
716 MI.removeOperand(i);
717 MI.setDesc(TII->get(X86::TILEZERO));
718 return true;
719 }
720 case X86::CALL64pcrel32_RVMARKER:
721 case X86::CALL64r_RVMARKER:
722 case X86::CALL64m_RVMARKER:
723 expandCALL_RVMARKER(MBB, MBBI);
724 return true;
725 case X86::CALL64r_ImpCall:
726 MI.setDesc(TII->get(X86::CALL64r));
727 return true;
728 case X86::ADD32mi_ND:
729 case X86::ADD64mi32_ND:
730 case X86::SUB32mi_ND:
731 case X86::SUB64mi32_ND:
732 case X86::AND32mi_ND:
733 case X86::AND64mi32_ND:
734 case X86::OR32mi_ND:
735 case X86::OR64mi32_ND:
736 case X86::XOR32mi_ND:
737 case X86::XOR64mi32_ND:
738 case X86::ADC32mi_ND:
739 case X86::ADC64mi32_ND:
740 case X86::SBB32mi_ND:
741 case X86::SBB64mi32_ND: {
742 // It's possible for an EVEX-encoded legacy instruction to reach the 15-byte
743 // instruction length limit: 4 bytes of EVEX prefix + 1 byte of opcode + 1
744 // byte of ModRM + 1 byte of SIB + 4 bytes of displacement + 4 bytes of
745 // immediate = 15 bytes in total, e.g.
746 //
747 // subq $184, %fs:257(%rbx, %rcx), %rax
748 //
749 // In such a case, no additional (ADSIZE or segment override) prefix can be
750 // used. To resolve the issue, we split the “long” instruction into 2
751 // instructions:
752 //
753 // movq %fs:257(%rbx, %rcx),%rax
754 // subq $184, %rax
755 //
756 // Therefore we consider the OPmi_ND to be a pseudo instruction to some
757 // extent.
758 const MachineOperand &ImmOp =
759 MI.getOperand(MI.getNumExplicitOperands() - 1);
760 // If the immediate is a expr, conservatively estimate 4 bytes.
761 if (ImmOp.isImm() && isInt<8>(ImmOp.getImm()))
762 return false;
763 int MemOpNo = X86::getFirstAddrOperandIdx(MI);
764 const MachineOperand &DispOp = MI.getOperand(MemOpNo + X86::AddrDisp);
765 Register Base = MI.getOperand(MemOpNo + X86::AddrBaseReg).getReg();
766 // If the displacement is a expr, conservatively estimate 4 bytes.
767 if (Base && DispOp.isImm() && isInt<8>(DispOp.getImm()))
768 return false;
769 // There can only be one of three: SIB, segment override register, ADSIZE
770 Register Index = MI.getOperand(MemOpNo + X86::AddrIndexReg).getReg();
771 unsigned Count = !!MI.getOperand(MemOpNo + X86::AddrSegmentReg).getReg();
772 if (X86II::needSIB(Base, Index, /*In64BitMode=*/true))
773 ++Count;
774 if (X86MCRegisterClasses[X86::GR32RegClassID].contains(Base) ||
775 X86MCRegisterClasses[X86::GR32RegClassID].contains(Index))
776 ++Count;
777 if (Count < 2)
778 return false;
779 unsigned Opc, LoadOpc;
780 switch (Opcode) {
781#define MI_TO_RI(OP) \
782 case X86::OP##32mi_ND: \
783 Opc = X86::OP##32ri; \
784 LoadOpc = X86::MOV32rm; \
785 break; \
786 case X86::OP##64mi32_ND: \
787 Opc = X86::OP##64ri32; \
788 LoadOpc = X86::MOV64rm; \
789 break;
790
791 default:
792 llvm_unreachable("Unexpected Opcode");
793 MI_TO_RI(ADD);
794 MI_TO_RI(SUB);
795 MI_TO_RI(AND);
796 MI_TO_RI(OR);
797 MI_TO_RI(XOR);
798 MI_TO_RI(ADC);
799 MI_TO_RI(SBB);
800#undef MI_TO_RI
801 }
802 // Insert OPri.
803 Register DestReg = MI.getOperand(0).getReg();
804 BuildMI(MBB, std::next(MBBI), DL, TII->get(Opc), DestReg)
805 .addReg(DestReg)
806 .add(ImmOp);
807 // Change OPmi_ND to MOVrm.
808 for (unsigned I = MI.getNumImplicitOperands() + 1; I != 0; --I)
809 MI.removeOperand(MI.getNumOperands() - 1);
810 MI.setDesc(TII->get(LoadOpc));
811 return true;
812 }
813 }
814 llvm_unreachable("Previous switch has a fallthrough?");
815}
816
817// This function creates additional block for storing varargs guarded
818// registers. It adds check for %al into entry block, to skip
819// GuardedRegsBlk if xmm registers should not be stored.
820//
821// EntryBlk[VAStartPseudoInstr] EntryBlk
822// | | .
823// | | .
824// | | GuardedRegsBlk
825// | => | .
826// | | .
827// | TailBlk
828// | |
829// | |
830//
831void X86ExpandPseudoImpl::expandVastartSaveXmmRegs(
832 MachineBasicBlock *EntryBlk,
833 MachineBasicBlock::iterator VAStartPseudoInstr) const {
834 assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
835
836 MachineFunction *Func = EntryBlk->getParent();
837 const TargetInstrInfo *TII = STI->getInstrInfo();
838 const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
839 Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
840
841 // Calculate liveins for newly created blocks.
842 LivePhysRegs LiveRegs(*STI->getRegisterInfo());
844
845 LiveRegs.addLiveIns(*EntryBlk);
846 for (MachineInstr &MI : EntryBlk->instrs()) {
847 if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
848 break;
849
850 LiveRegs.stepForward(MI, Clobbers);
851 }
852
853 // Create the new basic blocks. One block contains all the XMM stores,
854 // and another block is the final destination regardless of whether any
855 // stores were performed.
856 const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
857 MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
858 MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
859 MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
860 Func->insert(EntryBlkIter, GuardedRegsBlk);
861 Func->insert(EntryBlkIter, TailBlk);
862
863 // Transfer the remainder of EntryBlk and its successor edges to TailBlk.
864 TailBlk->splice(TailBlk->begin(), EntryBlk,
865 std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
866 EntryBlk->end());
867 TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
868
869 uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm();
870 uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm();
871
872 // TODO: add support for YMM and ZMM here.
873 unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
874
875 // In the XMM save block, save all the XMM argument registers.
876 for (int64_t OpndIdx = 7, RegIdx = 0;
877 OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
878 OpndIdx++, RegIdx++) {
879 auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc));
880 for (int i = 0; i < X86::AddrNumOperands; ++i) {
881 if (i == X86::AddrDisp)
882 NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16);
883 else
884 NewMI.add(VAStartPseudoInstr->getOperand(i + 1));
885 }
886 NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg());
887 assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical());
888 }
889
890 // The original block will now fall through to the GuardedRegsBlk.
891 EntryBlk->addSuccessor(GuardedRegsBlk);
892 // The GuardedRegsBlk will fall through to the TailBlk.
893 GuardedRegsBlk->addSuccessor(TailBlk);
894
895 if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
896 // If %al is 0, branch around the XMM save block.
897 BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
898 .addReg(CountReg)
899 .addReg(CountReg);
900 BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
901 .addMBB(TailBlk)
903 EntryBlk->addSuccessor(TailBlk);
904 }
905
906 // Add liveins to the created block.
907 addLiveIns(*GuardedRegsBlk, LiveRegs);
908 addLiveIns(*TailBlk, LiveRegs);
909
910 // Delete the pseudo.
911 VAStartPseudoInstr->eraseFromParent();
912}
913
914/// Expand all pseudo instructions contained in \p MBB.
915/// \returns true if any expansion occurred for \p MBB.
916bool X86ExpandPseudoImpl::expandMBB(MachineBasicBlock &MBB) {
917 bool Modified = false;
918
919 // MBBI may be invalidated by the expansion.
921 while (MBBI != E) {
922 MachineBasicBlock::iterator NMBBI = std::next(MBBI);
923 Modified |= expandMI(MBB, MBBI);
924 MBBI = NMBBI;
925 }
926
927 return Modified;
928}
929
930bool X86ExpandPseudoImpl::expandPseudosWhichAffectControlFlow(
931 MachineFunction &MF) {
932 // Currently pseudo which affects control flow is only
933 // X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
934 // So we do not need to evaluate other blocks.
935 for (MachineInstr &Instr : MF.front().instrs()) {
936 if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
937 expandVastartSaveXmmRegs(&(MF.front()), Instr);
938 return true;
939 }
940 }
941
942 return false;
943}
944
945bool X86ExpandPseudoImpl::runOnMachineFunction(MachineFunction &MF) {
946 STI = &MF.getSubtarget<X86Subtarget>();
947 TII = STI->getInstrInfo();
948 TRI = STI->getRegisterInfo();
949 X86FI = MF.getInfo<X86MachineFunctionInfo>();
950 X86FL = STI->getFrameLowering();
951
952 bool Modified = expandPseudosWhichAffectControlFlow(MF);
953
954 for (MachineBasicBlock &MBB : MF)
955 Modified |= expandMBB(MBB);
956 return Modified;
957}
958
959/// Returns an instance of the pseudo instruction expansion pass.
961 return new X86ExpandPseudoLegacy();
962}
963
964bool X86ExpandPseudoLegacy::runOnMachineFunction(MachineFunction &MF) {
965 X86ExpandPseudoImpl Impl;
966 return Impl.runOnMachineFunction(MF);
967}
968
969PreservedAnalyses
972 X86ExpandPseudoImpl Impl;
973 bool Changed = Impl.runOnMachineFunction(MF);
974 if (!Changed)
975 return PreservedAnalyses::all();
976
979 return PA;
980}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define DEBUG_TYPE
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define I(x, y, z)
Definition MD5.cpp:57
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
#define P(N)
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition PassSupport.h:56
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:487
static Target * FirstTarget
#define GET_EGPR_IF_ENABLED(OPC)
#define MI_TO_RI(OP)
#define X86_EXPAND_PSEUDO_NAME
Represent the analysis usage information of a pass.
AnalysisUsage & addPreservedID(const void *ID)
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition Pass.cpp:270
LLVM Basic Block Representation.
Definition BasicBlock.h:62
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
A debug info location.
Definition DebugLoc.h:123
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DestReg, Register SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const override
Emit instructions to copy a pair of physical registers.
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
LLVM_ABI instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
Properties which a MachineFunction may have at a given point in time.
void moveAdditionalCallInfo(const MachineInstr *Old, const MachineInstr *New)
Move the call site info from Old to \New call site info.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineBasicBlock & front() const
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
LLVM_ABI void setCFIType(MachineFunction &MF, uint32_t Type)
Set the CFI type for the instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
LLVM_ABI void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
LLVM_ABI void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI)
Copy implicit register operands from specified instruction to this instruction.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
void setIsKill(bool Val=true)
unsigned getTargetFlags() const
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
const char * getSymbolName() const
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
int64_t getOffset() const
Return the offset from the symbol in this operand.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
CodeModel::Model getCodeModel() const
Returns the code model.
Target - Wrapper for Target specific information.
bool isOSWindows() const
Tests whether the OS is Windows.
Definition Triple.h:696
PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
int64_t mergeSPAdd(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, int64_t AddOffset, bool doMergeWithPrevious) const
Equivalent to: mergeSPUpdates(MBB, MBBI, [AddOffset](int64_t Offset) { return AddOffset + Offset; }...
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, const DebugLoc &DL, int64_t NumBytes, bool InEpilogue) const
Emit a series of instructions to increment / decrement the stack pointer by a constant value.
X86MachineFunctionInfo - This class is derived from MachineFunction and contains private X86 target-s...
bool isTargetWin64() const
bool isTarget64BitLP64() const
Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
const Triple & getTargetTriple() const
const X86InstrInfo * getInstrInfo() const override
bool isCallingConvWin64(CallingConv::ID CC) const
bool isTargetUEFI64() const
const X86RegisterInfo * getRegisterInfo() const override
bool hasAVX() const
const X86FrameLowering * getFrameLowering() const override
self_iterator getIterator()
Definition ilist_node.h:123
Changed
Pass manager infrastructure for declaring and invalidating analyses.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Dead
Unused definition.
@ Define
Register definition.
@ X86
Windows x64, Windows Itanium (IA-64)
Definition MCAsmInfo.h:50
bool needSIB(MCRegister BaseReg, MCRegister IndexReg, bool In64BitMode)
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
@ AddrNumOperands
Definition X86BaseInfo.h:36
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
LLVM_ABI void finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
finalizeBundle - Finalize a machine instruction bundle which includes a sequence of instructions star...
FunctionPass * createX86ExpandPseudoLegacyPass()
Returns an instance of the pseudo instruction expansion pass.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:165
static bool isMem(const MachineInstr &MI, unsigned Op)
LLVM_ABI char & MachineDominatorsID
MachineDominators - This pass is a machine dominators analysis pass.
unsigned getDeadRegState(bool B)
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
LLVM_ABI PreservedAnalyses getMachineFunctionPassPreservedAnalyses()
Returns the minimum set of Analyses that all machine function passes must preserve.
LLVM_ABI char & MachineLoopInfoID
MachineLoopInfo - This pass is a loop analysis pass.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:189
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
unsigned getKillRegState(bool B)
DWARFExpression::Operation Op
void addLiveIns(MachineBasicBlock &MBB, const LivePhysRegs &LiveRegs)
Adds registers contained in LiveRegs to the block live-in list of MBB.