28#define DEBUG_TYPE "call-lowering"
32void CallLowering::anchor() {}
39 if (AttrFn(Attribute::SExt))
41 if (AttrFn(Attribute::ZExt))
43 if (AttrFn(Attribute::InReg))
45 if (AttrFn(Attribute::StructRet))
47 if (AttrFn(Attribute::Nest))
49 if (AttrFn(Attribute::ByVal))
51 if (AttrFn(Attribute::ByRef))
53 if (AttrFn(Attribute::Preallocated))
54 Flags.setPreallocated();
55 if (AttrFn(Attribute::InAlloca))
57 if (AttrFn(Attribute::Returned))
59 if (AttrFn(Attribute::SwiftSelf))
61 if (AttrFn(Attribute::SwiftAsync))
62 Flags.setSwiftAsync();
63 if (AttrFn(Attribute::SwiftError))
64 Flags.setSwiftError();
68 unsigned ArgIdx)
const {
71 return Call.paramHasAttr(ArgIdx, Attr);
80 return Call.hasRetAttr(Attr);
86 const AttributeList &Attrs,
87 unsigned OpIdx)
const {
89 return Attrs.hasAttributeAtIndex(
OpIdx, Attr);
97 std::optional<PtrAuthInfo> PAI,
99 std::function<
Register()> GetCalleeReg)
const {
107 .getFnAttribute(
"disable-tail-calls")
108 .getValueAsString() !=
"true");
116 Info.CanLowerReturn =
canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
120 if (!Info.CanLowerReturn) {
126 CanBeTailCalled =
false;
134 for (
const auto &Arg : CB.
args()) {
136 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex,
DL, CB);
137 if (i >= NumFixedArgs)
138 OrigArg.
Flags[0].setVarArg();
143 CanBeTailCalled =
false;
145 Info.OrigArgs.push_back(OrigArg);
161 if (
F->hasFnAttribute(Attribute::NonLazyBind)) {
177 Align ReturnHintAlign;
181 if (!Info.OrigRet.Ty->isVoidTy()) {
182 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex,
DL, CB);
185 if (*Alignment >
Align(1)) {
186 ReturnHintAlignReg =
MRI.cloneVirtualRegister(ResRegs[0]);
187 Info.OrigRet.Regs[0] = ReturnHintAlignReg;
188 ReturnHintAlign = *Alignment;
196 assert(Info.CFIType->getType()->isIntegerTy(32) &&
"Invalid CFI type");
200 Info.KnownCallees = CB.
getMetadata(LLVMContext::MD_callees);
201 Info.CallConv = CallConv;
202 Info.SwiftErrorVReg = SwiftErrorVReg;
204 Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
206 Info.IsTailCall = CanBeTailCalled;
207 Info.IsVarArg = IsVarArg;
211 if (ReturnHintAlignReg && !Info.LoweredTailCall) {
219template <
typename FuncInfoTy>
222 const FuncInfoTy &FuncInfo)
const {
223 auto &Flags = Arg.
Flags[0];
224 const AttributeList &Attrs = FuncInfo.getAttributes();
233 Align MemAlign =
DL.getABITypeAlign(Arg.
Ty);
234 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
237 unsigned ParamIdx =
OpIdx - AttributeList::FirstArgIndex;
239 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
241 ElementTy = FuncInfo.getParamByRefType(ParamIdx);
243 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
245 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
247 assert(ElementTy &&
"Must have byval, inalloca or preallocated type");
249 uint64_t MemSize =
DL.getTypeAllocSize(ElementTy);
251 Flags.setByRefSize(MemSize);
253 Flags.setByValSize(MemSize);
257 if (
auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
258 MemAlign = *ParamAlign;
259 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
260 MemAlign = *ParamAlign;
263 }
else if (
OpIdx >= AttributeList::FirstArgIndex) {
264 if (
auto ParamAlign =
265 FuncInfo.getParamStackAlign(
OpIdx - AttributeList::FirstArgIndex))
266 MemAlign = *ParamAlign;
268 Flags.setMemAlign(MemAlign);
269 Flags.setOrigAlign(
DL.getABITypeAlign(Arg.
Ty));
273 if (Flags.isSwiftSelf())
274 Flags.setReturned(
false);
298 if (SplitVTs.
size() == 0)
301 if (SplitVTs.
size() == 1) {
311 assert(OrigArg.
Regs.size() == SplitVTs.
size() &&
"Regs / types mismatch");
313 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
314 OrigArg.
Ty, CallConv,
false,
DL);
315 for (
unsigned i = 0, e = SplitVTs.
size(); i < e; ++i) {
316 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
320 SplitArgs.
back().Flags[0].setInConsecutiveRegs();
323 SplitArgs.
back().Flags[0].setInConsecutiveRegsLast();
331 LLT LLTy =
MRI.getType(DstRegs[0]);
332 LLT PartLLT =
MRI.getType(SrcRegs[0]);
339 return B.buildConcatVectors(DstRegs[0], SrcRegs);
345 if (LCMTy != PartLLT) {
347 return B.buildDeleteTrailingVectorElements(
348 DstRegs[0],
B.buildMergeLikeInstr(LCMTy, SrcRegs));
353 UnmergeSrcReg = SrcRegs[0];
362 for (
int I = DstRegs.
size();
I != NumDst; ++
I)
363 PadDstRegs[
I] =
MRI.createGenericVirtualRegister(LLTy);
365 if (PadDstRegs.
size() == 1)
366 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
367 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
379 if (PartLLT == LLTy) {
382 assert(OrigRegs[0] == Regs[0]);
388 B.buildBitcast(OrigRegs[0], Regs[0]);
398 OrigRegs.
size() == 1 && Regs.
size() == 1) {
401 LLT LocTy =
MRI.getType(SrcReg);
403 if (Flags.isSExt()) {
406 }
else if (Flags.isZExt()) {
412 LLT OrigTy =
MRI.getType(OrigRegs[0]);
415 B.buildIntToPtr(OrigRegs[0],
B.buildTrunc(IntPtrTy, SrcReg));
419 B.buildTrunc(OrigRegs[0], SrcReg);
425 LLT OrigTy =
MRI.getType(OrigRegs[0]);
429 B.buildMergeValues(OrigRegs[0], Regs);
431 auto Widened =
B.buildMergeLikeInstr(
LLT::scalar(SrcSize), Regs);
432 B.buildTrunc(OrigRegs[0], Widened);
451 CastRegs[0] =
B.buildBitcast(NewTy, Regs[0]).getReg(0);
465 CastRegs[
I++] =
B.buildBitcast(GCDTy, SrcReg).getReg(0);
478 LLT RealDstEltTy =
MRI.getType(OrigRegs[0]).getElementType();
482 if (DstEltTy == PartLLT) {
487 MRI.setType(
Reg, RealDstEltTy);
490 B.buildBuildVector(OrigRegs[0], Regs);
501 B.buildMergeLikeInstr(ExtendedPartTy, Regs.
take_front(PartsPerElt));
505 MRI.setType(
Merge.getReg(0), RealDstEltTy);
510 B.buildBuildVector(OrigRegs[0], EltMerges);
518 if (NumElts == Regs.
size())
519 BuildVec =
B.buildBuildVector(BVType, Regs).getReg(0);
524 LLT SrcEltTy =
MRI.getType(Regs[0]);
526 LLT OriginalEltTy =
MRI.getType(OrigRegs[0]).getElementType();
537 auto Unmerge =
B.buildUnmerge(OriginalEltTy, R);
538 for (
unsigned K = 0; K < EltPerReg; ++K)
539 BVRegs.
push_back(
B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
544 if (BVRegs.
size() > NumElts) {
545 assert((BVRegs.
size() - NumElts) < EltPerReg);
548 BuildVec =
B.buildBuildVector(BVType, BVRegs).getReg(0);
550 B.buildTrunc(OrigRegs[0], BuildVec);
561 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
563 assert(SrcTy != PartTy &&
"identical part types shouldn't reach here");
567 if (PartTy.
isVector() == SrcTy.isVector() &&
570 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
574 if (SrcTy.isVector() && !PartTy.
isVector() &&
577 auto UnmergeToEltTy =
B.buildUnmerge(SrcTy.getElementType(), SrcReg);
578 for (
int i = 0, e = DstRegs.
size(); i != e; ++i)
579 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
583 if (SrcTy.isVector() && PartTy.
isVector() &&
589 B.buildPadVectorWithUndefElements(DstReg, SrcReg);
594 if (GCDTy == PartTy) {
596 B.buildUnmerge(DstRegs, SrcReg);
600 if (SrcTy.isVector() && !PartTy.
isVector() &&
605 SrcTy.getNumElements()));
606 auto Ext =
B.buildAnyExt(ExtTy, SrcReg);
607 B.buildUnmerge(DstRegs, Ext);
612 LLT DstTy =
MRI.getType(DstRegs[0]);
615 if (PartTy.
isVector() && LCMTy == PartTy) {
617 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
622 const unsigned SrcSize = SrcTy.getSizeInBits();
627 if (!LCMTy.
isVector() && CoveringSize != SrcSize) {
629 if (SrcTy.isScalar() && DstTy.
isScalar()) {
630 CoveringSize =
alignTo(SrcSize, DstSize);
632 UnmergeSrc =
B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).
getReg(0);
636 Register Undef =
B.buildUndef(SrcTy).getReg(0);
638 for (
unsigned Size = SrcSize;
Size != CoveringSize;
Size += SrcSize)
640 UnmergeSrc =
B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
644 if (LCMTy.
isVector() && CoveringSize != SrcSize)
645 UnmergeSrc =
B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
647 B.buildUnmerge(DstRegs, UnmergeSrc);
659 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
F.getContext());
669 return TargetOpcode::G_SEXT;
671 return TargetOpcode::G_ZEXT;
672 return TargetOpcode::G_ANYEXT;
681 unsigned NumArgs = Args.size();
682 for (
unsigned i = 0; i != NumArgs; ++i) {
685 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
690 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
695 Args[i].Flags[0], CCInfo))
712 Args[i].Flags.clear();
714 for (
unsigned Part = 0; Part < NumParts; ++Part) {
719 Flags.setOrigAlign(
Align(1));
720 if (Part == NumParts - 1)
724 Args[i].Flags.push_back(Flags);
726 Args[i].Flags[Part], CCInfo)) {
747 const unsigned NumArgs = Args.size();
761 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
763 for (
unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
764 assert(j < ArgLocs.
size() &&
"Skipped too many arg locs");
766 assert(VA.
getValNo() == i &&
"Location doesn't correspond to current arg");
769 std::function<void()> Thunk;
771 Args[i],
ArrayRef(ArgLocs).slice(j), &Thunk);
773 DelayedOutgoingRegAssignments.emplace_back(Thunk);
776 j += (NumArgRegs - 1);
785 const LLT LocTy(LocVT);
786 const LLT ValTy(ValVT);
791 AllocaAddressSpace,
DL.getPointerSizeInBits(AllocaAddressSpace));
796 const unsigned NumParts = Args[i].Flags.size();
799 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
801 if (NumParts != 1 || NewLLT != OrigTy) {
804 Args[i].Regs.resize(NumParts);
810 Args[i].Regs[0] =
MRI.createGenericVirtualRegister(
PointerTy);
815 for (
unsigned Part = 0; Part < NumParts; ++Part)
816 Args[i].Regs[Part] =
MRI.createGenericVirtualRegister(NewLLT);
820 assert((j + (NumParts - 1)) < ArgLocs.
size() &&
821 "Too many regs for number of args");
826 assert(Args[i].OrigRegs.size() == 1);
831 bool IndirectParameterPassingHandled =
false;
832 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT,
DL);
833 for (
unsigned Part = 0; Part < NumParts; ++Part) {
835 "Only the first parameter should be processed when "
836 "handling indirect passing!");
837 Register ArgReg = Args[i].Regs[Part];
839 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
857 Align AlignmentForStored =
DL.getPrefTypeAlign(Args[i].Ty);
862 AlignmentForStored,
false);
868 MIRBuilder.
buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
872 ArgReg = PointerToStackReg;
873 IndirectParameterPassingHandled =
true;
876 if (VA.
isMemLoc() && !Flags.isByVal()) {
900 }
else if (VA.
isMemLoc() && Flags.isByVal()) {
901 assert(Args[i].Regs.size() == 1 &&
"didn't expect split byval pointer");
908 MIRBuilder.
buildCopy(Args[i].Regs[0], StackAddr);
913 uint64_t MemSize = Flags.getByValSize();
921 if (!Args[i].OrigValue) {
924 const LLT PtrTy =
MRI.getType(StackAddr);
928 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
931 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
935 DstMPO, DstAlign, SrcMPO, SrcAlign,
938 }
else if (i == 0 && !ThisReturnRegs.
empty() &&
945 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
955 Align Alignment =
DL.getABITypeAlign(Args[i].Ty);
962 MIRBuilder.
buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
965 IndirectParameterPassingHandled =
true;
968 if (IndirectParameterPassingHandled)
976 !IndirectParameterPassingHandled) {
980 LocTy, Args[i].Flags[0]);
985 for (
auto &Fn : DelayedOutgoingRegAssignments)
1004 unsigned NumValues = SplitVTs.
size();
1005 Align BaseAlign =
DL.getPrefTypeAlign(RetTy);
1012 for (
unsigned I = 0;
I < NumValues; ++
I) {
1017 MRI.getType(VRegs[
I]),
1036 unsigned NumValues = SplitVTs.
size();
1037 Align BaseAlign =
DL.getPrefTypeAlign(RetTy);
1038 unsigned AS =
DL.getAllocaAddrSpace();
1043 for (
unsigned I = 0;
I < NumValues; ++
I) {
1048 MRI.getType(VRegs[
I]),
1057 unsigned AS =
DL.getAllocaAddrSpace();
1058 DemoteReg =
MRI.createGenericVirtualRegister(
1072 DemoteArg.
Flags[0].setSRet();
1081 unsigned AS =
DL.getAllocaAddrSpace();
1085 DL.getTypeAllocSize(RetTy),
DL.getPrefTypeAlign(RetTy),
false);
1091 DemoteArg.
Flags[0].setSRet();
1093 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
1094 Info.DemoteStackIndex = FI;
1095 Info.DemoteRegister = DemoteReg;
1101 for (
unsigned I = 0, E = Outs.
size();
I < E; ++
I) {
1110 AttributeList Attrs,
1120 for (
EVT VT : SplitVTs) {
1122 TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1123 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1126 for (
unsigned I = 0;
I < NumParts; ++
I) {
1134 Type *ReturnType =
F.getReturnType();
1138 getReturnInfo(CallConv, ReturnType,
F.getAttributes(), SplitArgs,
1147 for (
unsigned i = 0; i < OutLocs.
size(); ++i) {
1148 const auto &ArgLoc = OutLocs[i];
1150 if (!ArgLoc.isRegLoc())
1161 <<
"... Call has an argument passed in a callee-saved register.\n");
1164 const ArgInfo &OutInfo = OutArgs[i];
1166 if (OutInfo.
Regs.size() > 1) {
1168 dbgs() <<
"... Cannot handle arguments in multiple registers.\n");
1176 if (!RegDef || RegDef->
getOpcode() != TargetOpcode::COPY) {
1179 <<
"... Parameter was not copied into a VReg, cannot tail call.\n");
1185 if (CopyRHS != PhysReg) {
1186 LLVM_DEBUG(
dbgs() <<
"... Callee-saved register was not copied into "
1187 "VReg, cannot tail call.\n");
1204 if (CallerCC == CalleeCC)
1208 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1,
F.getContext());
1213 CCState CCInfo2(CallerCC,
F.isVarArg(), MF, ArgLocs2,
F.getContext());
1219 if (ArgLocs1.
size() != ArgLocs2.
size())
1223 for (
unsigned i = 0, e = ArgLocs1.
size(); i < e; ++i) {
1252 if (ValVT != MVT::iPTR) {
1257 if (Flags.isPointer()) {
1259 ValTy.getScalarSizeInBits());
1261 return LLT::vector(ValTy.getElementCount(), PtrTy);
1268 unsigned AddrSpace = Flags.getPointerAddrSpace();
1288 const LLT PtrTy =
MRI.getType(DstPtr);
1291 auto SizeConst =
MIRBuilder.buildConstant(SizeTy, MemSize);
1292 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1297 unsigned MaxSizeBits) {
1305 if (MaxSizeBits <= ValTy.getSizeInBits())
1310 const LLT ValRegTy =
MRI.getType(ValReg);
1315 ValReg =
MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1327 auto MIB =
MIRBuilder.buildAnyExt(LocTy, ValReg);
1328 return MIB.getReg(0);
1331 Register NewReg =
MRI.createGenericVirtualRegister(LocTy);
1336 Register NewReg =
MRI.createGenericVirtualRegister(LocTy);
1344void CallLowering::ValueAssigner::anchor() {}
1351 .buildAssertZExt(
MRI.cloneVirtualRegister(SrcReg), SrcReg,
1357 .buildAssertSExt(
MRI.cloneVirtualRegister(SrcReg), SrcReg,
1380 SrcTy = SrcTy.getScalarType();
1383 return (SrcTy.isPointer() && DstTy.
isScalar()) ||
1384 (DstTy.
isPointer() && SrcTy.isScalar());
1390 const LLT LocTy(LocVT);
1391 const LLT RegTy =
MRI.getType(ValVReg);
1398 auto Copy =
MIRBuilder.buildCopy(LocTy, PhysReg);
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static void addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, const std::function< bool(Attribute::AttrKind)> &AttrFn)
Helper function which updates Flags when AttrFn returns true.
static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef< Register > DstRegs, Register SrcReg, LLT SrcTy, LLT PartTy, unsigned ExtendOp=TargetOpcode::G_ANYEXT)
Create a sequence of instructions to expand the value in SrcReg (of type SrcTy) to the types in DstRe...
static MachineInstrBuilder mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef< Register > DstRegs, ArrayRef< Register > SrcRegs)
Pack values SrcRegs to cover the vector type result DstRegs.
static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef< Register > OrigRegs, ArrayRef< Register > Regs, LLT LLTy, LLT PartLLT, const ISD::ArgFlagsTy Flags)
Create a sequence of instructions to combine pieces split into register typed values to the original ...
static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy)
Check if we can use a basic COPY instruction between the two types.
static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags)
This file describes how to lower LLVM calls to machine code calls.
Module.h This file contains the declarations for the Module class.
This file declares the MachineIRBuilder class.
Promote Memory to Register
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
MachineInstr unsigned OpIdx
This file describes how to lower LLVM code to machine code.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
CCState - This class holds information needed while lowering arguments and return values.
CallingConv::ID getCallingConv() const
LLVMContext & getContext() const
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
int64_t getLocMemOffset() const
unsigned getValNo() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
void insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, const CallBase &CB, CallLoweringInfo &Info) const
For the call-base described by CB, insert the hidden sret ArgInfo to the OrigArgs field of Info.
void insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef< Register > VRegs, Register DemoteReg, int FI) const
Load the returned value from the stack into virtual registers in VRegs.
bool checkReturnTypeForCallConv(MachineFunction &MF) const
Toplevel function to check the return type based on the target calling convention.
bool handleAssignments(ValueHandler &Handler, SmallVectorImpl< ArgInfo > &Args, CCState &CCState, SmallVectorImpl< CCValAssign > &ArgLocs, MachineIRBuilder &MIRBuilder, ArrayRef< Register > ThisReturnRegs={}) const
Use Handler to insert code to handle the argument/return values represented by Args.
bool resultsCompatible(CallLoweringInfo &Info, MachineFunction &MF, SmallVectorImpl< ArgInfo > &InArgs, ValueAssigner &CalleeAssigner, ValueAssigner &CallerAssigner) const
void splitToValueTypes(const ArgInfo &OrigArgInfo, SmallVectorImpl< ArgInfo > &SplitArgs, const DataLayout &DL, CallingConv::ID CallConv, SmallVectorImpl< uint64_t > *Offsets=nullptr) const
Break OrigArgInfo into one or more pieces the calling convention can process, returned in SplitArgs.
virtual bool canLowerReturn(MachineFunction &MF, CallingConv::ID CallConv, SmallVectorImpl< BaseArgInfo > &Outs, bool IsVarArg) const
This hook must be implemented to check whether the return values described by Outs can fit into the r...
virtual bool isTypeIsValidForThisReturn(EVT Ty) const
For targets which support the "returned" parameter attribute, returns true if the given type is a val...
void insertSRetIncomingArgument(const Function &F, SmallVectorImpl< ArgInfo > &SplitArgs, Register &DemoteReg, MachineRegisterInfo &MRI, const DataLayout &DL) const
Insert the hidden sret ArgInfo to the beginning of SplitArgs.
ISD::ArgFlagsTy getAttributesForArgIdx(const CallBase &Call, unsigned ArgIdx) const
bool determineAndHandleAssignments(ValueHandler &Handler, ValueAssigner &Assigner, SmallVectorImpl< ArgInfo > &Args, MachineIRBuilder &MIRBuilder, CallingConv::ID CallConv, bool IsVarArg, ArrayRef< Register > ThisReturnRegs={}) const
Invoke ValueAssigner::assignArg on each of the given Args and then use Handler to move them to the as...
void insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef< Register > VRegs, Register DemoteReg) const
Store the return value given by VRegs into stack starting at the offset specified in DemoteReg.
void addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, const AttributeList &Attrs, unsigned OpIdx) const
Adds flags to Flags based off of the attributes in Attrs.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ArgInfo > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
void getReturnInfo(CallingConv::ID CallConv, Type *RetTy, AttributeList Attrs, SmallVectorImpl< BaseArgInfo > &Outs, const DataLayout &DL) const
Get the type and the ArgFlags for the split components of RetTy as returned by ComputeValueVTs.
bool determineAssignments(ValueAssigner &Assigner, SmallVectorImpl< ArgInfo > &Args, CCState &CCInfo) const
Analyze the argument list in Args, using Assigner to populate CCInfo.
bool checkReturn(CCState &CCInfo, SmallVectorImpl< BaseArgInfo > &Outs, CCAssignFn *Fn) const
const TargetLowering * getTLI() const
Getter for generic TargetLowering class.
virtual bool lowerCall(MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info) const
This hook must be implemented to lower the given call instruction, including argument and return valu...
void setArgFlags(ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const FuncInfoTy &FuncInfo) const
ISD::ArgFlagsTy getAttributesForReturn(const CallBase &Call) const
A parsed version of the target data layout string in and methods for querying it.
unsigned getAllocaAddrSpace() const
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isScalar() const
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr bool isPointer() const
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr ElementCount getElementCount() const
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
constexpr LLT getScalarType() const
constexpr TypeSize getSizeInBytes() const
Returns the total size of the type in bytes, i.e.
This is an important class for using LLVM in a threaded context.
Wrapper class representing physical registers. Should be passed by value.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
static LLVM_ABI MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Helper class to build MachineInstr.
MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV)
Build and insert Res = G_GLOBAL_VALUE GV.
std::optional< MachineInstrBuilder > materializeObjectPtrOffset(Register &Res, Register Op0, const LLT ValueTy, uint64_t Value)
Materialize and insert an instruction with appropriate flags for addressing some offset of an object,...
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx)
Build and insert Res = G_FRAME_INDEX Idx.
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildAssertAlign(const DstOp &Res, const SrcOp &Op, Align AlignVal)
Build and insert Res = G_ASSERT_ALIGN Op, AlignVal.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
const DataLayout & getDataLayout() const
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags=0)
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Class to represent pointers.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator insert(iterator I, T &&Elt)
void truncate(size_type N)
Like resize, but requires that N is less than size().
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
This is an optimization pass for GlobalISel generic memory operations.
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
LLVM_ABI MachineInstr * getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, folding away any trivial copies.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
LLVM_ABI LLVM_READNONE LLT getCoverTy(LLT OrigTy, LLT TargetTy)
Return smallest type that covers both OrigTy and TargetTy and is multiple of TargetTy.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI LLVM_READNONE LLT getGCDType(LLT OrigTy, LLT TargetTy)
Return a type where the total size is the greatest common divisor of OrigTy and TargetTy.
LLVM_ABI LLT getLLTForType(Type &Ty, const DataLayout &DL)
Construct a low-level type based on an LLVM type.
LLVM_ABI Align inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
const Value * OrigValue
Optionally track the original IR value for the argument.
SmallVector< Register, 4 > Regs
unsigned OrigArgIndex
Index original Function's argument.
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
SmallVector< ISD::ArgFlagsTy, 4 > Flags
void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA) override
Provides a default implementation for argument handling.
Register buildExtensionHint(const CCValAssign &VA, Register SrcReg, LLT NarrowTy)
Insert G_ASSERT_ZEXT/G_ASSERT_SEXT or other hint instruction based on VA, returning the new register ...
Argument handling is mostly uniform between the four places that make these decisions: function forma...
virtual bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, const ArgInfo &Info, ISD::ArgFlagsTy Flags, CCState &State)
Wrap call to (typically tablegenerated CCAssignFn).
MachineIRBuilder & MIRBuilder
void copyArgumentMemory(const ArgInfo &Arg, Register DstPtr, Register SrcPtr, const MachinePointerInfo &DstPtrInfo, Align DstAlign, const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, CCValAssign &VA) const
Do a memory copy of MemSize bytes from SrcPtr to DstPtr.
MachineRegisterInfo & MRI
virtual Register getStackAddress(uint64_t MemSize, int64_t Offset, MachinePointerInfo &MPO, ISD::ArgFlagsTy Flags)=0
Materialize a VReg containing the address of the specified stack-based object.
virtual LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const
Return the in-memory size to write for the argument at VA.
bool isIncomingArgumentHandler() const
Returns true if the handler is dealing with incoming arguments, i.e.
virtual void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, const MachinePointerInfo &MPO, const CCValAssign &VA)=0
The specified value has been assigned to a stack location.
Register extendRegister(Register ValReg, const CCValAssign &VA, unsigned MaxSizeBits=0)
Extend a register to the location type given in VA, capped at extending to at most MaxSize bits.
virtual unsigned assignCustomValue(ArgInfo &Arg, ArrayRef< CCValAssign > VAs, std::function< void()> *Thunk=nullptr)
Handle custom values, which may be passed into one or more of VAs.
virtual void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA)=0
The specified value has been assigned to a physical register, handle the appropriate COPY (either to ...
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.