LLVM 22.0.0git
InstructionCombining.cpp
Go to the documentation of this file.
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// InstructionCombining - Combine instructions to form fewer, simple
10// instructions. This pass does not modify the CFG. This pass is where
11// algebraic simplification happens.
12//
13// This pass combines things like:
14// %Y = add i32 %X, 1
15// %Z = add i32 %Y, 1
16// into:
17// %Z = add i32 %X, 2
18//
19// This is a simple worklist driven algorithm.
20//
21// This pass guarantees that the following canonicalizations are performed on
22// the program:
23// 1. If a binary operator has a constant operand, it is moved to the RHS
24// 2. Bitwise operators with constant operands are always grouped so that
25// shifts are performed first, then or's, then and's, then xor's.
26// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27// 4. All cmp instructions on boolean values are replaced with logical ops
28// 5. add X, X is represented as (X*2) => (X << 1)
29// 6. Multiplies with a power-of-two constant argument are transformed into
30// shifts.
31// ... etc.
32//
33//===----------------------------------------------------------------------===//
34
35#include "InstCombineInternal.h"
36#include "llvm/ADT/APFloat.h"
37#include "llvm/ADT/APInt.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/Statistic.h"
47#include "llvm/Analysis/CFG.h"
62#include "llvm/IR/BasicBlock.h"
63#include "llvm/IR/CFG.h"
64#include "llvm/IR/Constant.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DIBuilder.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DebugInfo.h"
70#include "llvm/IR/Dominators.h"
72#include "llvm/IR/Function.h"
74#include "llvm/IR/IRBuilder.h"
75#include "llvm/IR/InstrTypes.h"
76#include "llvm/IR/Instruction.h"
79#include "llvm/IR/Intrinsics.h"
80#include "llvm/IR/Metadata.h"
81#include "llvm/IR/Operator.h"
82#include "llvm/IR/PassManager.h"
84#include "llvm/IR/Type.h"
85#include "llvm/IR/Use.h"
86#include "llvm/IR/User.h"
87#include "llvm/IR/Value.h"
88#include "llvm/IR/ValueHandle.h"
93#include "llvm/Support/Debug.h"
102#include <algorithm>
103#include <cassert>
104#include <cstdint>
105#include <memory>
106#include <optional>
107#include <string>
108#include <utility>
109
110#define DEBUG_TYPE "instcombine"
112#include <optional>
113
114using namespace llvm;
115using namespace llvm::PatternMatch;
116
117STATISTIC(NumWorklistIterations,
118 "Number of instruction combining iterations performed");
119STATISTIC(NumOneIteration, "Number of functions with one iteration");
120STATISTIC(NumTwoIterations, "Number of functions with two iterations");
121STATISTIC(NumThreeIterations, "Number of functions with three iterations");
122STATISTIC(NumFourOrMoreIterations,
123 "Number of functions with four or more iterations");
124
125STATISTIC(NumCombined , "Number of insts combined");
126STATISTIC(NumConstProp, "Number of constant folds");
127STATISTIC(NumDeadInst , "Number of dead inst eliminated");
128STATISTIC(NumSunkInst , "Number of instructions sunk");
129STATISTIC(NumExpand, "Number of expansions");
130STATISTIC(NumFactor , "Number of factorizations");
131STATISTIC(NumReassoc , "Number of reassociations");
132DEBUG_COUNTER(VisitCounter, "instcombine-visit",
133 "Controls which instructions are visited");
134
135static cl::opt<bool> EnableCodeSinking("instcombine-code-sinking",
136 cl::desc("Enable code sinking"),
137 cl::init(true));
138
140 "instcombine-max-sink-users", cl::init(32),
141 cl::desc("Maximum number of undroppable users for instruction sinking"));
142
144MaxArraySize("instcombine-maxarray-size", cl::init(1024),
145 cl::desc("Maximum array size considered when doing a combine"));
146
147namespace llvm {
149} // end namespace llvm
150
151// FIXME: Remove this flag when it is no longer necessary to convert
152// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
153// increases variable availability at the cost of accuracy. Variables that
154// cannot be promoted by mem2reg or SROA will be described as living in memory
155// for their entire lifetime. However, passes like DSE and instcombine can
156// delete stores to the alloca, leading to misleading and inaccurate debug
157// information. This flag can be removed when those passes are fixed.
158static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
159 cl::Hidden, cl::init(true));
160
161std::optional<Instruction *>
163 // Handle target specific intrinsics
164 if (II.getCalledFunction()->isTargetIntrinsic()) {
165 return TTIForTargetIntrinsicsOnly.instCombineIntrinsic(*this, II);
166 }
167 return std::nullopt;
168}
169
171 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
172 bool &KnownBitsComputed) {
173 // Handle target specific intrinsics
174 if (II.getCalledFunction()->isTargetIntrinsic()) {
175 return TTIForTargetIntrinsicsOnly.simplifyDemandedUseBitsIntrinsic(
176 *this, II, DemandedMask, Known, KnownBitsComputed);
177 }
178 return std::nullopt;
179}
180
182 IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
183 APInt &PoisonElts2, APInt &PoisonElts3,
184 std::function<void(Instruction *, unsigned, APInt, APInt &)>
185 SimplifyAndSetOp) {
186 // Handle target specific intrinsics
187 if (II.getCalledFunction()->isTargetIntrinsic()) {
188 return TTIForTargetIntrinsicsOnly.simplifyDemandedVectorEltsIntrinsic(
189 *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
190 SimplifyAndSetOp);
191 }
192 return std::nullopt;
193}
194
195bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
196 // Approved exception for TTI use: This queries a legality property of the
197 // target, not an profitability heuristic. Ideally this should be part of
198 // DataLayout instead.
199 return TTIForTargetIntrinsicsOnly.isValidAddrSpaceCast(FromAS, ToAS);
200}
201
202Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) {
203 if (!RewriteGEP)
204 return llvm::emitGEPOffset(&Builder, DL, GEP);
205
206 IRBuilderBase::InsertPointGuard Guard(Builder);
207 auto *Inst = dyn_cast<Instruction>(GEP);
208 if (Inst)
209 Builder.SetInsertPoint(Inst);
210
211 Value *Offset = EmitGEPOffset(GEP);
212 // Rewrite non-trivial GEPs to avoid duplicating the offset arithmetic.
213 if (Inst && !GEP->hasAllConstantIndices() &&
214 !GEP->getSourceElementType()->isIntegerTy(8)) {
216 *Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(),
217 Offset, "", GEP->getNoWrapFlags()));
219 }
220 return Offset;
221}
222
223Value *InstCombinerImpl::EmitGEPOffsets(ArrayRef<GEPOperator *> GEPs,
224 GEPNoWrapFlags NW, Type *IdxTy,
225 bool RewriteGEPs) {
226 auto Add = [&](Value *Sum, Value *Offset) -> Value * {
227 if (Sum)
228 return Builder.CreateAdd(Sum, Offset, "", NW.hasNoUnsignedWrap(),
229 NW.isInBounds());
230 else
231 return Offset;
232 };
233
234 Value *Sum = nullptr;
235 Value *OneUseSum = nullptr;
236 Value *OneUseBase = nullptr;
237 GEPNoWrapFlags OneUseFlags = GEPNoWrapFlags::all();
238 for (GEPOperator *GEP : reverse(GEPs)) {
239 Value *Offset;
240 {
241 // Expand the offset at the point of the previous GEP to enable rewriting.
242 // However, use the original insertion point for calculating Sum.
243 IRBuilderBase::InsertPointGuard Guard(Builder);
244 auto *Inst = dyn_cast<Instruction>(GEP);
245 if (RewriteGEPs && Inst)
246 Builder.SetInsertPoint(Inst);
247
249 if (Offset->getType() != IdxTy)
250 Offset = Builder.CreateVectorSplat(
251 cast<VectorType>(IdxTy)->getElementCount(), Offset);
252 if (GEP->hasOneUse()) {
253 // Offsets of one-use GEPs will be merged into the next multi-use GEP.
254 OneUseSum = Add(OneUseSum, Offset);
255 OneUseFlags = OneUseFlags.intersectForOffsetAdd(GEP->getNoWrapFlags());
256 if (!OneUseBase)
257 OneUseBase = GEP->getPointerOperand();
258 continue;
259 }
260
261 if (OneUseSum)
262 Offset = Add(OneUseSum, Offset);
263
264 // Rewrite the GEP to reuse the computed offset. This also includes
265 // offsets from preceding one-use GEPs.
266 if (RewriteGEPs && Inst &&
267 !(GEP->getSourceElementType()->isIntegerTy(8) &&
268 GEP->getOperand(1) == Offset)) {
270 *Inst,
271 Builder.CreatePtrAdd(
272 OneUseBase ? OneUseBase : GEP->getPointerOperand(), Offset, "",
273 OneUseFlags.intersectForOffsetAdd(GEP->getNoWrapFlags())));
275 }
276 }
277
278 Sum = Add(Sum, Offset);
279 OneUseSum = OneUseBase = nullptr;
280 OneUseFlags = GEPNoWrapFlags::all();
281 }
282 if (OneUseSum)
283 Sum = Add(Sum, OneUseSum);
284 if (!Sum)
285 return Constant::getNullValue(IdxTy);
286 return Sum;
287}
288
289/// Legal integers and common types are considered desirable. This is used to
290/// avoid creating instructions with types that may not be supported well by the
291/// the backend.
292/// NOTE: This treats i8, i16 and i32 specially because they are common
293/// types in frontend languages.
294bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
295 switch (BitWidth) {
296 case 8:
297 case 16:
298 case 32:
299 return true;
300 default:
301 return DL.isLegalInteger(BitWidth);
302 }
303}
304
305/// Return true if it is desirable to convert an integer computation from a
306/// given bit width to a new bit width.
307/// We don't want to convert from a legal or desirable type (like i8) to an
308/// illegal type or from a smaller to a larger illegal type. A width of '1'
309/// is always treated as a desirable type because i1 is a fundamental type in
310/// IR, and there are many specialized optimizations for i1 types.
311/// Common/desirable widths are equally treated as legal to convert to, in
312/// order to open up more combining opportunities.
313bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
314 unsigned ToWidth) const {
315 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
316 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
317
318 // Convert to desirable widths even if they are not legal types.
319 // Only shrink types, to prevent infinite loops.
320 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
321 return true;
322
323 // If this is a legal or desiable integer from type, and the result would be
324 // an illegal type, don't do the transformation.
325 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
326 return false;
327
328 // Otherwise, if both are illegal, do not increase the size of the result. We
329 // do allow things like i160 -> i64, but not i64 -> i160.
330 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
331 return false;
332
333 return true;
334}
335
336/// Return true if it is desirable to convert a computation from 'From' to 'To'.
337/// We don't want to convert from a legal to an illegal type or from a smaller
338/// to a larger illegal type. i1 is always treated as a legal type because it is
339/// a fundamental type in IR, and there are many specialized optimizations for
340/// i1 types.
341bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
342 // TODO: This could be extended to allow vectors. Datalayout changes might be
343 // needed to properly support that.
344 if (!From->isIntegerTy() || !To->isIntegerTy())
345 return false;
346
347 unsigned FromWidth = From->getPrimitiveSizeInBits();
348 unsigned ToWidth = To->getPrimitiveSizeInBits();
349 return shouldChangeType(FromWidth, ToWidth);
350}
351
352// Return true, if No Signed Wrap should be maintained for I.
353// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
354// where both B and C should be ConstantInts, results in a constant that does
355// not overflow. This function only handles the Add/Sub/Mul opcodes. For
356// all other opcodes, the function conservatively returns false.
359 if (!OBO || !OBO->hasNoSignedWrap())
360 return false;
361
362 const APInt *BVal, *CVal;
363 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
364 return false;
365
366 // We reason about Add/Sub/Mul Only.
367 bool Overflow = false;
368 switch (I.getOpcode()) {
369 case Instruction::Add:
370 (void)BVal->sadd_ov(*CVal, Overflow);
371 break;
372 case Instruction::Sub:
373 (void)BVal->ssub_ov(*CVal, Overflow);
374 break;
375 case Instruction::Mul:
376 (void)BVal->smul_ov(*CVal, Overflow);
377 break;
378 default:
379 // Conservatively return false for other opcodes.
380 return false;
381 }
382 return !Overflow;
383}
384
387 return OBO && OBO->hasNoUnsignedWrap();
388}
389
392 return OBO && OBO->hasNoSignedWrap();
393}
394
395/// Conservatively clears subclassOptionalData after a reassociation or
396/// commutation. We preserve fast-math flags when applicable as they can be
397/// preserved.
400 if (!FPMO) {
401 I.clearSubclassOptionalData();
402 return;
403 }
404
405 FastMathFlags FMF = I.getFastMathFlags();
406 I.clearSubclassOptionalData();
407 I.setFastMathFlags(FMF);
408}
409
410/// Combine constant operands of associative operations either before or after a
411/// cast to eliminate one of the associative operations:
412/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
413/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
415 InstCombinerImpl &IC) {
416 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
417 if (!Cast || !Cast->hasOneUse())
418 return false;
419
420 // TODO: Enhance logic for other casts and remove this check.
421 auto CastOpcode = Cast->getOpcode();
422 if (CastOpcode != Instruction::ZExt)
423 return false;
424
425 // TODO: Enhance logic for other BinOps and remove this check.
426 if (!BinOp1->isBitwiseLogicOp())
427 return false;
428
429 auto AssocOpcode = BinOp1->getOpcode();
430 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
431 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
432 return false;
433
434 Constant *C1, *C2;
435 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
436 !match(BinOp2->getOperand(1), m_Constant(C2)))
437 return false;
438
439 // TODO: This assumes a zext cast.
440 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
441 // to the destination type might lose bits.
442
443 // Fold the constants together in the destination type:
444 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
445 const DataLayout &DL = IC.getDataLayout();
446 Type *DestTy = C1->getType();
447 Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
448 if (!CastC2)
449 return false;
450 Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
451 if (!FoldedC)
452 return false;
453
454 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
455 IC.replaceOperand(*BinOp1, 1, FoldedC);
457 Cast->dropPoisonGeneratingFlags();
458 return true;
459}
460
461// Simplifies IntToPtr/PtrToInt RoundTrip Cast.
462// inttoptr ( ptrtoint (x) ) --> x
463Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
464 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
465 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
466 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
467 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
468 Type *CastTy = IntToPtr->getDestTy();
469 if (PtrToInt &&
470 CastTy->getPointerAddressSpace() ==
471 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
472 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
473 DL.getTypeSizeInBits(PtrToInt->getDestTy()))
474 return PtrToInt->getOperand(0);
475 }
476 return nullptr;
477}
478
479/// This performs a few simplifications for operators that are associative or
480/// commutative:
481///
482/// Commutative operators:
483///
484/// 1. Order operands such that they are listed from right (least complex) to
485/// left (most complex). This puts constants before unary operators before
486/// binary operators.
487///
488/// Associative operators:
489///
490/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
491/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
492///
493/// Associative and commutative operators:
494///
495/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
496/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
497/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
498/// if C1 and C2 are constants.
500 Instruction::BinaryOps Opcode = I.getOpcode();
501 bool Changed = false;
502
503 do {
504 // Order operands such that they are listed from right (least complex) to
505 // left (most complex). This puts constants before unary operators before
506 // binary operators.
507 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
508 getComplexity(I.getOperand(1)))
509 Changed = !I.swapOperands();
510
511 if (I.isCommutative()) {
512 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
513 replaceOperand(I, 0, Pair->first);
514 replaceOperand(I, 1, Pair->second);
515 Changed = true;
516 }
517 }
518
519 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
520 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
521
522 if (I.isAssociative()) {
523 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
524 if (Op0 && Op0->getOpcode() == Opcode) {
525 Value *A = Op0->getOperand(0);
526 Value *B = Op0->getOperand(1);
527 Value *C = I.getOperand(1);
528
529 // Does "B op C" simplify?
530 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
531 // It simplifies to V. Form "A op V".
532 replaceOperand(I, 0, A);
533 replaceOperand(I, 1, V);
534 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
535 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
536
537 // Conservatively clear all optional flags since they may not be
538 // preserved by the reassociation. Reset nsw/nuw based on the above
539 // analysis.
541
542 // Note: this is only valid because SimplifyBinOp doesn't look at
543 // the operands to Op0.
544 if (IsNUW)
545 I.setHasNoUnsignedWrap(true);
546
547 if (IsNSW)
548 I.setHasNoSignedWrap(true);
549
550 Changed = true;
551 ++NumReassoc;
552 continue;
553 }
554 }
555
556 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
557 if (Op1 && Op1->getOpcode() == Opcode) {
558 Value *A = I.getOperand(0);
559 Value *B = Op1->getOperand(0);
560 Value *C = Op1->getOperand(1);
561
562 // Does "A op B" simplify?
563 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
564 // It simplifies to V. Form "V op C".
565 replaceOperand(I, 0, V);
566 replaceOperand(I, 1, C);
567 // Conservatively clear the optional flags, since they may not be
568 // preserved by the reassociation.
570 Changed = true;
571 ++NumReassoc;
572 continue;
573 }
574 }
575 }
576
577 if (I.isAssociative() && I.isCommutative()) {
578 if (simplifyAssocCastAssoc(&I, *this)) {
579 Changed = true;
580 ++NumReassoc;
581 continue;
582 }
583
584 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
585 if (Op0 && Op0->getOpcode() == Opcode) {
586 Value *A = Op0->getOperand(0);
587 Value *B = Op0->getOperand(1);
588 Value *C = I.getOperand(1);
589
590 // Does "C op A" simplify?
591 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
592 // It simplifies to V. Form "V op B".
593 replaceOperand(I, 0, V);
594 replaceOperand(I, 1, B);
595 // Conservatively clear the optional flags, since they may not be
596 // preserved by the reassociation.
598 Changed = true;
599 ++NumReassoc;
600 continue;
601 }
602 }
603
604 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
605 if (Op1 && Op1->getOpcode() == Opcode) {
606 Value *A = I.getOperand(0);
607 Value *B = Op1->getOperand(0);
608 Value *C = Op1->getOperand(1);
609
610 // Does "C op A" simplify?
611 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
612 // It simplifies to V. Form "B op V".
613 replaceOperand(I, 0, B);
614 replaceOperand(I, 1, V);
615 // Conservatively clear the optional flags, since they may not be
616 // preserved by the reassociation.
618 Changed = true;
619 ++NumReassoc;
620 continue;
621 }
622 }
623
624 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
625 // if C1 and C2 are constants.
626 Value *A, *B;
627 Constant *C1, *C2, *CRes;
628 if (Op0 && Op1 &&
629 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
630 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
631 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
632 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
633 bool IsNUW = hasNoUnsignedWrap(I) &&
634 hasNoUnsignedWrap(*Op0) &&
635 hasNoUnsignedWrap(*Op1);
636 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
637 BinaryOperator::CreateNUW(Opcode, A, B) :
638 BinaryOperator::Create(Opcode, A, B);
639
640 if (isa<FPMathOperator>(NewBO)) {
641 FastMathFlags Flags = I.getFastMathFlags() &
642 Op0->getFastMathFlags() &
643 Op1->getFastMathFlags();
644 NewBO->setFastMathFlags(Flags);
645 }
646 InsertNewInstWith(NewBO, I.getIterator());
647 NewBO->takeName(Op1);
648 replaceOperand(I, 0, NewBO);
649 replaceOperand(I, 1, CRes);
650 // Conservatively clear the optional flags, since they may not be
651 // preserved by the reassociation.
653 if (IsNUW)
654 I.setHasNoUnsignedWrap(true);
655
656 Changed = true;
657 continue;
658 }
659 }
660
661 // No further simplifications.
662 return Changed;
663 } while (true);
664}
665
666/// Return whether "X LOp (Y ROp Z)" is always equal to
667/// "(X LOp Y) ROp (X LOp Z)".
670 // X & (Y | Z) <--> (X & Y) | (X & Z)
671 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
672 if (LOp == Instruction::And)
673 return ROp == Instruction::Or || ROp == Instruction::Xor;
674
675 // X | (Y & Z) <--> (X | Y) & (X | Z)
676 if (LOp == Instruction::Or)
677 return ROp == Instruction::And;
678
679 // X * (Y + Z) <--> (X * Y) + (X * Z)
680 // X * (Y - Z) <--> (X * Y) - (X * Z)
681 if (LOp == Instruction::Mul)
682 return ROp == Instruction::Add || ROp == Instruction::Sub;
683
684 return false;
685}
686
687/// Return whether "(X LOp Y) ROp Z" is always equal to
688/// "(X ROp Z) LOp (Y ROp Z)".
692 return leftDistributesOverRight(ROp, LOp);
693
694 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
696
697 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
698 // but this requires knowing that the addition does not overflow and other
699 // such subtleties.
700}
701
702/// This function returns identity value for given opcode, which can be used to
703/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
705 if (isa<Constant>(V))
706 return nullptr;
707
708 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
709}
710
711/// This function predicates factorization using distributive laws. By default,
712/// it just returns the 'Op' inputs. But for special-cases like
713/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
714/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
715/// allow more factorization opportunities.
718 Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
719 assert(Op && "Expected a binary operator");
720 LHS = Op->getOperand(0);
721 RHS = Op->getOperand(1);
722 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
723 Constant *C;
724 if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) {
725 // X << C --> X * (1 << C)
727 Instruction::Shl, ConstantInt::get(Op->getType(), 1), C);
728 assert(RHS && "Constant folding of immediate constants failed");
729 return Instruction::Mul;
730 }
731 // TODO: We can add other conversions e.g. shr => div etc.
732 }
733 if (Instruction::isBitwiseLogicOp(TopOpcode)) {
734 if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
736 // lshr nneg C, X --> ashr nneg C, X
737 return Instruction::AShr;
738 }
739 }
740 return Op->getOpcode();
741}
742
743/// This tries to simplify binary operations by factorizing out common terms
744/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
747 Instruction::BinaryOps InnerOpcode, Value *A,
748 Value *B, Value *C, Value *D) {
749 assert(A && B && C && D && "All values must be provided");
750
751 Value *V = nullptr;
752 Value *RetVal = nullptr;
753 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
754 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
755
756 // Does "X op' Y" always equal "Y op' X"?
757 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
758
759 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
760 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
761 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
762 // commutative case, "(A op' B) op (C op' A)"?
763 if (A == C || (InnerCommutative && A == D)) {
764 if (A != C)
765 std::swap(C, D);
766 // Consider forming "A op' (B op D)".
767 // If "B op D" simplifies then it can be formed with no cost.
768 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
769
770 // If "B op D" doesn't simplify then only go on if one of the existing
771 // operations "A op' B" and "C op' D" will be zapped as no longer used.
772 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
773 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
774 if (V)
775 RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
776 }
777 }
778
779 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
780 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
781 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
782 // commutative case, "(A op' B) op (B op' D)"?
783 if (B == D || (InnerCommutative && B == C)) {
784 if (B != D)
785 std::swap(C, D);
786 // Consider forming "(A op C) op' B".
787 // If "A op C" simplifies then it can be formed with no cost.
788 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
789
790 // If "A op C" doesn't simplify then only go on if one of the existing
791 // operations "A op' B" and "C op' D" will be zapped as no longer used.
792 if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
793 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
794 if (V)
795 RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
796 }
797 }
798
799 if (!RetVal)
800 return nullptr;
801
802 ++NumFactor;
803 RetVal->takeName(&I);
804
805 // Try to add no-overflow flags to the final value.
806 if (isa<BinaryOperator>(RetVal)) {
807 bool HasNSW = false;
808 bool HasNUW = false;
810 HasNSW = I.hasNoSignedWrap();
811 HasNUW = I.hasNoUnsignedWrap();
812 }
813 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
814 HasNSW &= LOBO->hasNoSignedWrap();
815 HasNUW &= LOBO->hasNoUnsignedWrap();
816 }
817
818 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
819 HasNSW &= ROBO->hasNoSignedWrap();
820 HasNUW &= ROBO->hasNoUnsignedWrap();
821 }
822
823 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
824 // We can propagate 'nsw' if we know that
825 // %Y = mul nsw i16 %X, C
826 // %Z = add nsw i16 %Y, %X
827 // =>
828 // %Z = mul nsw i16 %X, C+1
829 //
830 // iff C+1 isn't INT_MIN
831 const APInt *CInt;
832 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
833 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
834
835 // nuw can be propagated with any constant or nuw value.
836 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
837 }
838 }
839 return RetVal;
840}
841
842// If `I` has one Const operand and the other matches `(ctpop (not x))`,
843// replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
844// This is only useful is the new subtract can fold so we only handle the
845// following cases:
846// 1) (add/sub/disjoint_or C, (ctpop (not x))
847// -> (add/sub/disjoint_or C', (ctpop x))
848// 1) (cmp pred C, (ctpop (not x))
849// -> (cmp pred C', (ctpop x))
851 unsigned Opc = I->getOpcode();
852 unsigned ConstIdx = 1;
853 switch (Opc) {
854 default:
855 return nullptr;
856 // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
857 // We can fold the BitWidth(x) with add/sub/icmp as long the other operand
858 // is constant.
859 case Instruction::Sub:
860 ConstIdx = 0;
861 break;
862 case Instruction::ICmp:
863 // Signed predicates aren't correct in some edge cases like for i2 types, as
864 // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
865 // comparisons against it are simplfied to unsigned.
866 if (cast<ICmpInst>(I)->isSigned())
867 return nullptr;
868 break;
869 case Instruction::Or:
870 if (!match(I, m_DisjointOr(m_Value(), m_Value())))
871 return nullptr;
872 [[fallthrough]];
873 case Instruction::Add:
874 break;
875 }
876
877 Value *Op;
878 // Find ctpop.
879 if (!match(I->getOperand(1 - ConstIdx),
881 return nullptr;
882
883 Constant *C;
884 // Check other operand is ImmConstant.
885 if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
886 return nullptr;
887
888 Type *Ty = Op->getType();
889 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
890 // Need extra check for icmp. Note if this check is true, it generally means
891 // the icmp will simplify to true/false.
892 if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) {
893 Constant *Cmp =
895 if (!Cmp || !Cmp->isZeroValue())
896 return nullptr;
897 }
898
899 // Check we can invert `(not x)` for free.
900 bool Consumes = false;
901 if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
902 return nullptr;
903 Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
904 assert(NotOp != nullptr &&
905 "Desync between isFreeToInvert and getFreelyInverted");
906
907 Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
908
909 Value *R = nullptr;
910
911 // Do the transformation here to avoid potentially introducing an infinite
912 // loop.
913 switch (Opc) {
914 case Instruction::Sub:
915 R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
916 break;
917 case Instruction::Or:
918 case Instruction::Add:
919 R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
920 break;
921 case Instruction::ICmp:
922 R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
923 CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
924 break;
925 default:
926 llvm_unreachable("Unhandled Opcode");
927 }
928 assert(R != nullptr);
929 return replaceInstUsesWith(*I, R);
930}
931
932// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
933// IFF
934// 1) the logic_shifts match
935// 2) either both binops are binops and one is `and` or
936// BinOp1 is `and`
937// (logic_shift (inv_logic_shift C1, C), C) == C1 or
938//
939// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
940//
941// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
942// IFF
943// 1) the logic_shifts match
944// 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`).
945//
946// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
947//
948// (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
949// IFF
950// 1) Binop1 is bitwise logical operator `and`, `or` or `xor`
951// 2) Binop2 is `not`
952//
953// -> (arithmetic_shift Binop1((not X), Y), Amt)
954
956 const DataLayout &DL = I.getDataLayout();
957 auto IsValidBinOpc = [](unsigned Opc) {
958 switch (Opc) {
959 default:
960 return false;
961 case Instruction::And:
962 case Instruction::Or:
963 case Instruction::Xor:
964 case Instruction::Add:
965 // Skip Sub as we only match constant masks which will canonicalize to use
966 // add.
967 return true;
968 }
969 };
970
971 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
972 // constraints.
973 auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
974 unsigned ShOpc) {
975 assert(ShOpc != Instruction::AShr);
976 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
977 ShOpc == Instruction::Shl;
978 };
979
980 auto GetInvShift = [](unsigned ShOpc) {
981 assert(ShOpc != Instruction::AShr);
982 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
983 };
984
985 auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
986 unsigned ShOpc, Constant *CMask,
987 Constant *CShift) {
988 // If the BinOp1 is `and` we don't need to check the mask.
989 if (BinOpc1 == Instruction::And)
990 return true;
991
992 // For all other possible transfers we need complete distributable
993 // binop/shift (anything but `add` + `lshr`).
994 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
995 return false;
996
997 // If BinOp2 is `and`, any mask works (this only really helps for non-splat
998 // vecs, otherwise the mask will be simplified and the following check will
999 // handle it).
1000 if (BinOpc2 == Instruction::And)
1001 return true;
1002
1003 // Otherwise, need mask that meets the below requirement.
1004 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
1005 Constant *MaskInvShift =
1006 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1007 return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
1008 CMask;
1009 };
1010
1011 auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
1012 Constant *CMask, *CShift;
1013 Value *X, *Y, *ShiftedX, *Mask, *Shift;
1014 if (!match(I.getOperand(ShOpnum),
1015 m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
1016 return nullptr;
1017 if (!match(I.getOperand(1 - ShOpnum),
1019 m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))),
1020 m_Value(ShiftedX)),
1021 m_Value(Mask))))
1022 return nullptr;
1023 // Make sure we are matching instruction shifts and not ConstantExpr
1024 auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
1025 auto *IX = dyn_cast<Instruction>(ShiftedX);
1026 if (!IY || !IX)
1027 return nullptr;
1028
1029 // LHS and RHS need same shift opcode
1030 unsigned ShOpc = IY->getOpcode();
1031 if (ShOpc != IX->getOpcode())
1032 return nullptr;
1033
1034 // Make sure binop is real instruction and not ConstantExpr
1035 auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
1036 if (!BO2)
1037 return nullptr;
1038
1039 unsigned BinOpc = BO2->getOpcode();
1040 // Make sure we have valid binops.
1041 if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
1042 return nullptr;
1043
1044 if (ShOpc == Instruction::AShr) {
1045 if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
1046 BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
1047 Value *NotX = Builder.CreateNot(X);
1048 Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
1050 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
1051 }
1052
1053 return nullptr;
1054 }
1055
1056 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
1057 // distribute to drop the shift irrelevant of constants.
1058 if (BinOpc == I.getOpcode() &&
1059 IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
1060 Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
1061 Value *NewBinOp1 = Builder.CreateBinOp(
1062 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
1063 return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
1064 }
1065
1066 // Otherwise we can only distribute by constant shifting the mask, so
1067 // ensure we have constants.
1068 if (!match(Shift, m_ImmConstant(CShift)))
1069 return nullptr;
1070 if (!match(Mask, m_ImmConstant(CMask)))
1071 return nullptr;
1072
1073 // Check if we can distribute the binops.
1074 if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
1075 return nullptr;
1076
1077 Constant *NewCMask =
1078 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1079 Value *NewBinOp2 = Builder.CreateBinOp(
1080 static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
1081 Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
1082 return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
1083 NewBinOp1, CShift);
1084 };
1085
1086 if (Instruction *R = MatchBinOp(0))
1087 return R;
1088 return MatchBinOp(1);
1089}
1090
1091// (Binop (zext C), (select C, T, F))
1092// -> (select C, (binop 1, T), (binop 0, F))
1093//
1094// (Binop (sext C), (select C, T, F))
1095// -> (select C, (binop -1, T), (binop 0, F))
1096//
1097// Attempt to simplify binary operations into a select with folded args, when
1098// one operand of the binop is a select instruction and the other operand is a
1099// zext/sext extension, whose value is the select condition.
1102 // TODO: this simplification may be extended to any speculatable instruction,
1103 // not just binops, and would possibly be handled better in FoldOpIntoSelect.
1104 Instruction::BinaryOps Opc = I.getOpcode();
1105 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1106 Value *A, *CondVal, *TrueVal, *FalseVal;
1107 Value *CastOp;
1108
1109 auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
1110 return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
1111 A->getType()->getScalarSizeInBits() == 1 &&
1112 match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
1113 m_Value(FalseVal)));
1114 };
1115
1116 // Make sure one side of the binop is a select instruction, and the other is a
1117 // zero/sign extension operating on a i1.
1118 if (MatchSelectAndCast(LHS, RHS))
1119 CastOp = LHS;
1120 else if (MatchSelectAndCast(RHS, LHS))
1121 CastOp = RHS;
1122 else
1123 return nullptr;
1124
1125 auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
1126 bool IsCastOpRHS = (CastOp == RHS);
1127 bool IsZExt = isa<ZExtInst>(CastOp);
1128 Constant *C;
1129
1130 if (IsTrueArm) {
1131 C = Constant::getNullValue(V->getType());
1132 } else if (IsZExt) {
1133 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1134 C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
1135 } else {
1136 C = Constant::getAllOnesValue(V->getType());
1137 }
1138
1139 return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
1140 : Builder.CreateBinOp(Opc, C, V);
1141 };
1142
1143 // If the value used in the zext/sext is the select condition, or the negated
1144 // of the select condition, the binop can be simplified.
1145 if (CondVal == A) {
1146 Value *NewTrueVal = NewFoldedConst(false, TrueVal);
1147 return SelectInst::Create(CondVal, NewTrueVal,
1148 NewFoldedConst(true, FalseVal));
1149 }
1150
1151 if (match(A, m_Not(m_Specific(CondVal)))) {
1152 Value *NewTrueVal = NewFoldedConst(true, TrueVal);
1153 return SelectInst::Create(CondVal, NewTrueVal,
1154 NewFoldedConst(false, FalseVal));
1155 }
1156
1157 return nullptr;
1158}
1159
1161 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1164 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1165 Value *A, *B, *C, *D;
1166 Instruction::BinaryOps LHSOpcode, RHSOpcode;
1167
1168 if (Op0)
1169 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
1170 if (Op1)
1171 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
1172
1173 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
1174 // a common term.
1175 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1176 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
1177 return V;
1178
1179 // The instruction has the form "(A op' B) op (C)". Try to factorize common
1180 // term.
1181 if (Op0)
1182 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
1183 if (Value *V =
1184 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
1185 return V;
1186
1187 // The instruction has the form "(B) op (C op' D)". Try to factorize common
1188 // term.
1189 if (Op1)
1190 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1191 if (Value *V =
1192 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1193 return V;
1194
1195 return nullptr;
1196}
1197
1198/// This tries to simplify binary operations which some other binary operation
1199/// distributes over either by factorizing out common terms
1200/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1201/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1202/// Returns the simplified value, or null if it didn't simplify.
1204 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1207 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1208
1209 // Factorization.
1210 if (Value *R = tryFactorizationFolds(I))
1211 return R;
1212
1213 // Expansion.
1214 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1215 // The instruction has the form "(A op' B) op C". See if expanding it out
1216 // to "(A op C) op' (B op C)" results in simplifications.
1217 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1218 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1219
1220 // Disable the use of undef because it's not safe to distribute undef.
1221 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1222 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1223 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1224
1225 // Do "A op C" and "B op C" both simplify?
1226 if (L && R) {
1227 // They do! Return "L op' R".
1228 ++NumExpand;
1229 C = Builder.CreateBinOp(InnerOpcode, L, R);
1230 C->takeName(&I);
1231 return C;
1232 }
1233
1234 // Does "A op C" simplify to the identity value for the inner opcode?
1235 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1236 // They do! Return "B op C".
1237 ++NumExpand;
1238 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1239 C->takeName(&I);
1240 return C;
1241 }
1242
1243 // Does "B op C" simplify to the identity value for the inner opcode?
1244 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1245 // They do! Return "A op C".
1246 ++NumExpand;
1247 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1248 C->takeName(&I);
1249 return C;
1250 }
1251 }
1252
1253 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1254 // The instruction has the form "A op (B op' C)". See if expanding it out
1255 // to "(A op B) op' (A op C)" results in simplifications.
1256 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1257 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1258
1259 // Disable the use of undef because it's not safe to distribute undef.
1260 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1261 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1262 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1263
1264 // Do "A op B" and "A op C" both simplify?
1265 if (L && R) {
1266 // They do! Return "L op' R".
1267 ++NumExpand;
1268 A = Builder.CreateBinOp(InnerOpcode, L, R);
1269 A->takeName(&I);
1270 return A;
1271 }
1272
1273 // Does "A op B" simplify to the identity value for the inner opcode?
1274 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1275 // They do! Return "A op C".
1276 ++NumExpand;
1277 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1278 A->takeName(&I);
1279 return A;
1280 }
1281
1282 // Does "A op C" simplify to the identity value for the inner opcode?
1283 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1284 // They do! Return "A op B".
1285 ++NumExpand;
1286 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1287 A->takeName(&I);
1288 return A;
1289 }
1290 }
1291
1292 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
1293}
1294
1295static std::optional<std::pair<Value *, Value *>>
1297 if (LHS->getParent() != RHS->getParent())
1298 return std::nullopt;
1299
1300 if (LHS->getNumIncomingValues() < 2)
1301 return std::nullopt;
1302
1303 if (!equal(LHS->blocks(), RHS->blocks()))
1304 return std::nullopt;
1305
1306 Value *L0 = LHS->getIncomingValue(0);
1307 Value *R0 = RHS->getIncomingValue(0);
1308
1309 for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1310 Value *L1 = LHS->getIncomingValue(I);
1311 Value *R1 = RHS->getIncomingValue(I);
1312
1313 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1314 continue;
1315
1316 return std::nullopt;
1317 }
1318
1319 return std::optional(std::pair(L0, R0));
1320}
1321
1322std::optional<std::pair<Value *, Value *>>
1323InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1326 if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1327 return std::nullopt;
1328 switch (LHSInst->getOpcode()) {
1329 case Instruction::PHI:
1331 case Instruction::Select: {
1332 Value *Cond = LHSInst->getOperand(0);
1333 Value *TrueVal = LHSInst->getOperand(1);
1334 Value *FalseVal = LHSInst->getOperand(2);
1335 if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1336 FalseVal == RHSInst->getOperand(1))
1337 return std::pair(TrueVal, FalseVal);
1338 return std::nullopt;
1339 }
1340 case Instruction::Call: {
1341 // Match min(a, b) and max(a, b)
1342 MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1343 MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1344 if (LHSMinMax && RHSMinMax &&
1345 LHSMinMax->getPredicate() ==
1347 ((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1348 LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1349 (LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1350 LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1351 return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1352 return std::nullopt;
1353 }
1354 default:
1355 return std::nullopt;
1356 }
1357}
1358
1360 Value *LHS,
1361 Value *RHS) {
1362 Value *A, *B, *C, *D, *E, *F;
1363 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1364 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1365 if (!LHSIsSelect && !RHSIsSelect)
1366 return nullptr;
1367
1369 ? nullptr
1370 : cast<SelectInst>(LHSIsSelect ? LHS : RHS);
1371
1372 FastMathFlags FMF;
1374 if (isa<FPMathOperator>(&I)) {
1375 FMF = I.getFastMathFlags();
1376 Builder.setFastMathFlags(FMF);
1377 }
1378
1379 Instruction::BinaryOps Opcode = I.getOpcode();
1380 SimplifyQuery Q = SQ.getWithInstruction(&I);
1381
1382 Value *Cond, *True = nullptr, *False = nullptr;
1383
1384 // Special-case for add/negate combination. Replace the zero in the negation
1385 // with the trailing add operand:
1386 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1387 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1388 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1389 // We need an 'add' and exactly 1 arm of the select to have been simplified.
1390 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1391 return nullptr;
1392 Value *N;
1393 if (True && match(FVal, m_Neg(m_Value(N)))) {
1394 Value *Sub = Builder.CreateSub(Z, N);
1395 return Builder.CreateSelect(Cond, True, Sub, I.getName(), SI);
1396 }
1397 if (False && match(TVal, m_Neg(m_Value(N)))) {
1398 Value *Sub = Builder.CreateSub(Z, N);
1399 return Builder.CreateSelect(Cond, Sub, False, I.getName(), SI);
1400 }
1401 return nullptr;
1402 };
1403
1404 if (LHSIsSelect && RHSIsSelect && A == D) {
1405 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1406 Cond = A;
1407 True = simplifyBinOp(Opcode, B, E, FMF, Q);
1408 False = simplifyBinOp(Opcode, C, F, FMF, Q);
1409
1410 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1411 if (False && !True)
1412 True = Builder.CreateBinOp(Opcode, B, E);
1413 else if (True && !False)
1414 False = Builder.CreateBinOp(Opcode, C, F);
1415 }
1416 } else if (LHSIsSelect && LHS->hasOneUse()) {
1417 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1418 Cond = A;
1419 True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1420 False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1421 if (Value *NewSel = foldAddNegate(B, C, RHS))
1422 return NewSel;
1423 } else if (RHSIsSelect && RHS->hasOneUse()) {
1424 // X op (D ? E : F) -> D ? (X op E) : (X op F)
1425 Cond = D;
1426 True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1427 False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1428 if (Value *NewSel = foldAddNegate(E, F, LHS))
1429 return NewSel;
1430 }
1431
1432 if (!True || !False)
1433 return nullptr;
1434
1435 Value *NewSI = Builder.CreateSelect(Cond, True, False, I.getName(), SI);
1436 NewSI->takeName(&I);
1437 return NewSI;
1438}
1439
1440/// Freely adapt every user of V as-if V was changed to !V.
1441/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1443 assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1444 for (User *U : make_early_inc_range(I->users())) {
1445 if (U == IgnoredUser)
1446 continue; // Don't consider this user.
1447 switch (cast<Instruction>(U)->getOpcode()) {
1448 case Instruction::Select: {
1449 auto *SI = cast<SelectInst>(U);
1450 SI->swapValues();
1451 SI->swapProfMetadata();
1452 break;
1453 }
1454 case Instruction::Br: {
1456 BI->swapSuccessors(); // swaps prof metadata too
1457 if (BPI)
1458 BPI->swapSuccEdgesProbabilities(BI->getParent());
1459 break;
1460 }
1461 case Instruction::Xor:
1463 // Add to worklist for DCE.
1465 break;
1466 default:
1467 llvm_unreachable("Got unexpected user - out of sync with "
1468 "canFreelyInvertAllUsersOf() ?");
1469 }
1470 }
1471
1472 // Update pre-existing debug value uses.
1473 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1474 llvm::findDbgValues(I, DbgVariableRecords);
1475
1476 for (DbgVariableRecord *DbgVal : DbgVariableRecords) {
1477 SmallVector<uint64_t, 1> Ops = {dwarf::DW_OP_not};
1478 for (unsigned Idx = 0, End = DbgVal->getNumVariableLocationOps();
1479 Idx != End; ++Idx)
1480 if (DbgVal->getVariableLocationOp(Idx) == I)
1481 DbgVal->setExpression(
1482 DIExpression::appendOpsToArg(DbgVal->getExpression(), Ops, Idx));
1483 }
1484}
1485
1486/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1487/// constant zero (which is the 'negate' form).
1488Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1489 Value *NegV;
1490 if (match(V, m_Neg(m_Value(NegV))))
1491 return NegV;
1492
1493 // Constants can be considered to be negated values if they can be folded.
1495 return ConstantExpr::getNeg(C);
1496
1498 if (C->getType()->getElementType()->isIntegerTy())
1499 return ConstantExpr::getNeg(C);
1500
1502 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1503 Constant *Elt = CV->getAggregateElement(i);
1504 if (!Elt)
1505 return nullptr;
1506
1507 if (isa<UndefValue>(Elt))
1508 continue;
1509
1510 if (!isa<ConstantInt>(Elt))
1511 return nullptr;
1512 }
1513 return ConstantExpr::getNeg(CV);
1514 }
1515
1516 // Negate integer vector splats.
1517 if (auto *CV = dyn_cast<Constant>(V))
1518 if (CV->getType()->isVectorTy() &&
1519 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1520 return ConstantExpr::getNeg(CV);
1521
1522 return nullptr;
1523}
1524
1525// Try to fold:
1526// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1527// -> ({s|u}itofp (int_binop x, y))
1528// 2) (fp_binop ({s|u}itofp x), FpC)
1529// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1530//
1531// Assuming the sign of the cast for x/y is `OpsFromSigned`.
1532Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1533 BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
1535
1536 Type *FPTy = BO.getType();
1537 Type *IntTy = IntOps[0]->getType();
1538
1539 unsigned IntSz = IntTy->getScalarSizeInBits();
1540 // This is the maximum number of inuse bits by the integer where the int -> fp
1541 // casts are exact.
1542 unsigned MaxRepresentableBits =
1544
1545 // Preserve known number of leading bits. This can allow us to trivial nsw/nuw
1546 // checks later on.
1547 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1548
1549 // NB: This only comes up if OpsFromSigned is true, so there is no need to
1550 // cache if between calls to `foldFBinOpOfIntCastsFromSign`.
1551 auto IsNonZero = [&](unsigned OpNo) -> bool {
1552 if (OpsKnown[OpNo].hasKnownBits() &&
1553 OpsKnown[OpNo].getKnownBits(SQ).isNonZero())
1554 return true;
1555 return isKnownNonZero(IntOps[OpNo], SQ);
1556 };
1557
1558 auto IsNonNeg = [&](unsigned OpNo) -> bool {
1559 // NB: This matches the impl in ValueTracking, we just try to use cached
1560 // knownbits here. If we ever start supporting WithCache for
1561 // `isKnownNonNegative`, change this to an explicit call.
1562 return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative();
1563 };
1564
1565 // Check if we know for certain that ({s|u}itofp op) is exact.
1566 auto IsValidPromotion = [&](unsigned OpNo) -> bool {
1567 // Can we treat this operand as the desired sign?
1568 if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) &&
1569 !IsNonNeg(OpNo))
1570 return false;
1571
1572 // If fp precision >= bitwidth(op) then its exact.
1573 // NB: This is slightly conservative for `sitofp`. For signed conversion, we
1574 // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be
1575 // handled specially. We can't, however, increase the bound arbitrarily for
1576 // `sitofp` as for larger sizes, it won't sign extend.
1577 if (MaxRepresentableBits < IntSz) {
1578 // Otherwise if its signed cast check that fp precisions >= bitwidth(op) -
1579 // numSignBits(op).
1580 // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change
1581 // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`.
1582 if (OpsFromSigned)
1583 NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]);
1584 // Finally for unsigned check that fp precision >= bitwidth(op) -
1585 // numLeadingZeros(op).
1586 else {
1587 NumUsedLeadingBits[OpNo] =
1588 IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros();
1589 }
1590 }
1591 // NB: We could also check if op is known to be a power of 2 or zero (which
1592 // will always be representable). Its unlikely, however, that is we are
1593 // unable to bound op in any way we will be able to pass the overflow checks
1594 // later on.
1595
1596 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1597 return false;
1598 // Signed + Mul also requires that op is non-zero to avoid -0 cases.
1599 return !OpsFromSigned || BO.getOpcode() != Instruction::FMul ||
1600 IsNonZero(OpNo);
1601 };
1602
1603 // If we have a constant rhs, see if we can losslessly convert it to an int.
1604 if (Op1FpC != nullptr) {
1605 // Signed + Mul req non-zero
1606 if (OpsFromSigned && BO.getOpcode() == Instruction::FMul &&
1607 !match(Op1FpC, m_NonZeroFP()))
1608 return nullptr;
1609
1611 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1612 IntTy, DL);
1613 if (Op1IntC == nullptr)
1614 return nullptr;
1615 if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP
1616 : Instruction::UIToFP,
1617 Op1IntC, FPTy, DL) != Op1FpC)
1618 return nullptr;
1619
1620 // First try to keep sign of cast the same.
1621 IntOps[1] = Op1IntC;
1622 }
1623
1624 // Ensure lhs/rhs integer types match.
1625 if (IntTy != IntOps[1]->getType())
1626 return nullptr;
1627
1628 if (Op1FpC == nullptr) {
1629 if (!IsValidPromotion(1))
1630 return nullptr;
1631 }
1632 if (!IsValidPromotion(0))
1633 return nullptr;
1634
1635 // Final we check if the integer version of the binop will not overflow.
1637 // Because of the precision check, we can often rule out overflows.
1638 bool NeedsOverflowCheck = true;
1639 // Try to conservatively rule out overflow based on the already done precision
1640 // checks.
1641 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1642 unsigned OverflowMaxCurBits =
1643 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1644 bool OutputSigned = OpsFromSigned;
1645 switch (BO.getOpcode()) {
1646 case Instruction::FAdd:
1647 IntOpc = Instruction::Add;
1648 OverflowMaxOutputBits += OverflowMaxCurBits;
1649 break;
1650 case Instruction::FSub:
1651 IntOpc = Instruction::Sub;
1652 OverflowMaxOutputBits += OverflowMaxCurBits;
1653 break;
1654 case Instruction::FMul:
1655 IntOpc = Instruction::Mul;
1656 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1657 break;
1658 default:
1659 llvm_unreachable("Unsupported binop");
1660 }
1661 // The precision check may have already ruled out overflow.
1662 if (OverflowMaxOutputBits < IntSz) {
1663 NeedsOverflowCheck = false;
1664 // We can bound unsigned overflow from sub to in range signed value (this is
1665 // what allows us to avoid the overflow check for sub).
1666 if (IntOpc == Instruction::Sub)
1667 OutputSigned = true;
1668 }
1669
1670 // Precision check did not rule out overflow, so need to check.
1671 // TODO: If we add support for `WithCache` in `willNotOverflow`, change
1672 // `IntOps[...]` arguments to `KnownOps[...]`.
1673 if (NeedsOverflowCheck &&
1674 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1675 return nullptr;
1676
1677 Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1678 if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
1679 IntBO->setHasNoSignedWrap(OutputSigned);
1680 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1681 }
1682 if (OutputSigned)
1683 return new SIToFPInst(IntBinOp, FPTy);
1684 return new UIToFPInst(IntBinOp, FPTy);
1685}
1686
1687// Try to fold:
1688// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1689// -> ({s|u}itofp (int_binop x, y))
1690// 2) (fp_binop ({s|u}itofp x), FpC)
1691// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1692Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) {
1693 // Don't perform the fold on vectors, as the integer operation may be much
1694 // more expensive than the float operation in that case.
1695 if (BO.getType()->isVectorTy())
1696 return nullptr;
1697
1698 std::array<Value *, 2> IntOps = {nullptr, nullptr};
1699 Constant *Op1FpC = nullptr;
1700 // Check for:
1701 // 1) (binop ({s|u}itofp x), ({s|u}itofp y))
1702 // 2) (binop ({s|u}itofp x), FpC)
1703 if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) &&
1704 !match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0]))))
1705 return nullptr;
1706
1707 if (!match(BO.getOperand(1), m_Constant(Op1FpC)) &&
1708 !match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) &&
1709 !match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1]))))
1710 return nullptr;
1711
1712 // Cache KnownBits a bit to potentially save some analysis.
1713 SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]};
1714
1715 // Try treating x/y as coming from both `uitofp` and `sitofp`. There are
1716 // different constraints depending on the sign of the cast.
1717 // NB: `(uitofp nneg X)` == `(sitofp nneg X)`.
1718 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false,
1719 IntOps, Op1FpC, OpsKnown))
1720 return R;
1721 return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps,
1722 Op1FpC, OpsKnown);
1723}
1724
1725/// A binop with a constant operand and a sign-extended boolean operand may be
1726/// converted into a select of constants by applying the binary operation to
1727/// the constant with the two possible values of the extended boolean (0 or -1).
1728Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1729 // TODO: Handle non-commutative binop (constant is operand 0).
1730 // TODO: Handle zext.
1731 // TODO: Peek through 'not' of cast.
1732 Value *BO0 = BO.getOperand(0);
1733 Value *BO1 = BO.getOperand(1);
1734 Value *X;
1735 Constant *C;
1736 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1737 !X->getType()->isIntOrIntVectorTy(1))
1738 return nullptr;
1739
1740 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1743 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1744 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1745 return createSelectInstWithUnknownProfile(X, TVal, FVal);
1746}
1747
1749 bool IsTrueArm) {
1751 for (Value *Op : I.operands()) {
1752 Value *V = nullptr;
1753 if (Op == SI) {
1754 V = IsTrueArm ? SI->getTrueValue() : SI->getFalseValue();
1755 } else if (match(SI->getCondition(),
1758 m_Specific(Op), m_Value(V))) &&
1760 // Pass
1761 } else if (match(Op, m_ZExt(m_Specific(SI->getCondition())))) {
1762 V = IsTrueArm ? ConstantInt::get(Op->getType(), 1)
1763 : ConstantInt::getNullValue(Op->getType());
1764 } else {
1765 V = Op;
1766 }
1767 Ops.push_back(V);
1768 }
1769
1770 return simplifyInstructionWithOperands(&I, Ops, I.getDataLayout());
1771}
1772
1774 Value *NewOp, InstCombiner &IC) {
1775 Instruction *Clone = I.clone();
1776 Clone->replaceUsesOfWith(SI, NewOp);
1778 IC.InsertNewInstBefore(Clone, I.getIterator());
1779 return Clone;
1780}
1781
1783 bool FoldWithMultiUse,
1784 bool SimplifyBothArms) {
1785 // Don't modify shared select instructions unless set FoldWithMultiUse
1786 if (!SI->hasOneUse() && !FoldWithMultiUse)
1787 return nullptr;
1788
1789 Value *TV = SI->getTrueValue();
1790 Value *FV = SI->getFalseValue();
1791
1792 // Bool selects with constant operands can be folded to logical ops.
1793 if (SI->getType()->isIntOrIntVectorTy(1))
1794 return nullptr;
1795
1796 // Avoid breaking min/max reduction pattern,
1797 // which is necessary for vectorization later.
1799 for (Value *IntrinOp : Op.operands())
1800 if (auto *PN = dyn_cast<PHINode>(IntrinOp))
1801 for (Value *PhiOp : PN->operands())
1802 if (PhiOp == &Op)
1803 return nullptr;
1804
1805 // Test if a FCmpInst instruction is used exclusively by a select as
1806 // part of a minimum or maximum operation. If so, refrain from doing
1807 // any other folding. This helps out other analyses which understand
1808 // non-obfuscated minimum and maximum idioms. And in this case, at
1809 // least one of the comparison operands has at least one user besides
1810 // the compare (the select), which would often largely negate the
1811 // benefit of folding anyway.
1812 if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1813 if (CI->hasOneUse()) {
1814 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1815 if (((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) &&
1816 !CI->isCommutative())
1817 return nullptr;
1818 }
1819 }
1820
1821 // Make sure that one of the select arms folds successfully.
1822 Value *NewTV = simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/true);
1823 Value *NewFV =
1824 simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/false);
1825 if (!NewTV && !NewFV)
1826 return nullptr;
1827
1828 if (SimplifyBothArms && !(NewTV && NewFV))
1829 return nullptr;
1830
1831 // Create an instruction for the arm that did not fold.
1832 if (!NewTV)
1833 NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1834 if (!NewFV)
1835 NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1836 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1837}
1838
1840 Value *InValue, BasicBlock *InBB,
1841 const DataLayout &DL,
1842 const SimplifyQuery SQ) {
1843 // NB: It is a precondition of this transform that the operands be
1844 // phi translatable!
1846 for (Value *Op : I.operands()) {
1847 if (Op == PN)
1848 Ops.push_back(InValue);
1849 else
1850 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1851 }
1852
1853 // Don't consider the simplification successful if we get back a constant
1854 // expression. That's just an instruction in hiding.
1855 // Also reject the case where we simplify back to the phi node. We wouldn't
1856 // be able to remove it in that case.
1858 &I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1859 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1860 return NewVal;
1861
1862 // Check if incoming PHI value can be replaced with constant
1863 // based on implied condition.
1864 BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1865 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1866 if (TerminatorBI && TerminatorBI->isConditional() &&
1867 TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1868 bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1869 std::optional<bool> ImpliedCond = isImpliedCondition(
1870 TerminatorBI->getCondition(), ICmp->getCmpPredicate(), Ops[0], Ops[1],
1871 DL, LHSIsTrue);
1872 if (ImpliedCond)
1873 return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1874 }
1875
1876 return nullptr;
1877}
1878
1880 bool AllowMultipleUses) {
1881 unsigned NumPHIValues = PN->getNumIncomingValues();
1882 if (NumPHIValues == 0)
1883 return nullptr;
1884
1885 // We normally only transform phis with a single use. However, if a PHI has
1886 // multiple uses and they are all the same operation, we can fold *all* of the
1887 // uses into the PHI.
1888 bool OneUse = PN->hasOneUse();
1889 bool IdenticalUsers = false;
1890 if (!AllowMultipleUses && !OneUse) {
1891 // Walk the use list for the instruction, comparing them to I.
1892 for (User *U : PN->users()) {
1894 if (UI != &I && !I.isIdenticalTo(UI))
1895 return nullptr;
1896 }
1897 // Otherwise, we can replace *all* users with the new PHI we form.
1898 IdenticalUsers = true;
1899 }
1900
1901 // Check that all operands are phi-translatable.
1902 for (Value *Op : I.operands()) {
1903 if (Op == PN)
1904 continue;
1905
1906 // Non-instructions never require phi-translation.
1907 auto *I = dyn_cast<Instruction>(Op);
1908 if (!I)
1909 continue;
1910
1911 // Phi-translate can handle phi nodes in the same block.
1912 if (isa<PHINode>(I))
1913 if (I->getParent() == PN->getParent())
1914 continue;
1915
1916 // Operand dominates the block, no phi-translation necessary.
1917 if (DT.dominates(I, PN->getParent()))
1918 continue;
1919
1920 // Not phi-translatable, bail out.
1921 return nullptr;
1922 }
1923
1924 // Check to see whether the instruction can be folded into each phi operand.
1925 // If there is one operand that does not fold, remember the BB it is in.
1926 SmallVector<Value *> NewPhiValues;
1927 SmallVector<unsigned int> OpsToMoveUseToIncomingBB;
1928 bool SeenNonSimplifiedInVal = false;
1929 for (unsigned i = 0; i != NumPHIValues; ++i) {
1930 Value *InVal = PN->getIncomingValue(i);
1931 BasicBlock *InBB = PN->getIncomingBlock(i);
1932
1933 if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1934 NewPhiValues.push_back(NewVal);
1935 continue;
1936 }
1937
1938 // Handle some cases that can't be fully simplified, but where we know that
1939 // the two instructions will fold into one.
1940 auto WillFold = [&]() {
1941 if (!InVal->hasUseList() || !InVal->hasOneUser())
1942 return false;
1943
1944 // icmp of ucmp/scmp with constant will fold to icmp.
1945 const APInt *Ignored;
1946 if (isa<CmpIntrinsic>(InVal) &&
1947 match(&I, m_ICmp(m_Specific(PN), m_APInt(Ignored))))
1948 return true;
1949
1950 // icmp eq zext(bool), 0 will fold to !bool.
1951 if (isa<ZExtInst>(InVal) &&
1952 cast<ZExtInst>(InVal)->getSrcTy()->isIntOrIntVectorTy(1) &&
1953 match(&I,
1955 return true;
1956
1957 return false;
1958 };
1959
1960 if (WillFold()) {
1961 OpsToMoveUseToIncomingBB.push_back(i);
1962 NewPhiValues.push_back(nullptr);
1963 continue;
1964 }
1965
1966 if (!OneUse && !IdenticalUsers)
1967 return nullptr;
1968
1969 if (SeenNonSimplifiedInVal)
1970 return nullptr; // More than one non-simplified value.
1971 SeenNonSimplifiedInVal = true;
1972
1973 // If there is exactly one non-simplified value, we can insert a copy of the
1974 // operation in that block. However, if this is a critical edge, we would
1975 // be inserting the computation on some other paths (e.g. inside a loop).
1976 // Only do this if the pred block is unconditionally branching into the phi
1977 // block. Also, make sure that the pred block is not dead code.
1979 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(InBB))
1980 return nullptr;
1981
1982 NewPhiValues.push_back(nullptr);
1983 OpsToMoveUseToIncomingBB.push_back(i);
1984
1985 // Do not push the operation across a loop backedge. This could result in
1986 // an infinite combine loop, and is generally non-profitable (especially
1987 // if the operation was originally outside the loop).
1988 if (isBackEdge(InBB, PN->getParent()))
1989 return nullptr;
1990 }
1991
1992 // Clone the instruction that uses the phi node and move it into the incoming
1993 // BB because we know that the next iteration of InstCombine will simplify it.
1995 for (auto OpIndex : OpsToMoveUseToIncomingBB) {
1997 BasicBlock *OpBB = PN->getIncomingBlock(OpIndex);
1998
1999 Instruction *Clone = Clones.lookup(OpBB);
2000 if (!Clone) {
2001 Clone = I.clone();
2002 for (Use &U : Clone->operands()) {
2003 if (U == PN)
2004 U = Op;
2005 else
2006 U = U->DoPHITranslation(PN->getParent(), OpBB);
2007 }
2008 Clone = InsertNewInstBefore(Clone, OpBB->getTerminator()->getIterator());
2009 Clones.insert({OpBB, Clone});
2010 // We may have speculated the instruction.
2012 }
2013
2014 NewPhiValues[OpIndex] = Clone;
2015 }
2016
2017 // Okay, we can do the transformation: create the new PHI node.
2018 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
2019 InsertNewInstBefore(NewPN, PN->getIterator());
2020 NewPN->takeName(PN);
2021 NewPN->setDebugLoc(PN->getDebugLoc());
2022
2023 for (unsigned i = 0; i != NumPHIValues; ++i)
2024 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
2025
2026 if (IdenticalUsers) {
2027 // Collect and deduplicate users up-front to avoid iterator invalidation.
2029 for (User *U : PN->users()) {
2031 if (User == &I)
2032 continue;
2033 ToReplace.insert(User);
2034 }
2035 for (Instruction *I : ToReplace) {
2036 replaceInstUsesWith(*I, NewPN);
2038 }
2039 OneUse = true;
2040 }
2041
2042 if (OneUse) {
2043 replaceAllDbgUsesWith(*PN, *NewPN, *PN, DT);
2044 }
2045 return replaceInstUsesWith(I, NewPN);
2046}
2047
2049 if (!BO.isAssociative())
2050 return nullptr;
2051
2052 // Find the interleaved binary ops.
2053 auto Opc = BO.getOpcode();
2054 auto *BO0 = dyn_cast<BinaryOperator>(BO.getOperand(0));
2055 auto *BO1 = dyn_cast<BinaryOperator>(BO.getOperand(1));
2056 if (!BO0 || !BO1 || !BO0->hasNUses(2) || !BO1->hasNUses(2) ||
2057 BO0->getOpcode() != Opc || BO1->getOpcode() != Opc ||
2058 !BO0->isAssociative() || !BO1->isAssociative() ||
2059 BO0->getParent() != BO1->getParent())
2060 return nullptr;
2061
2062 assert(BO.isCommutative() && BO0->isCommutative() && BO1->isCommutative() &&
2063 "Expected commutative instructions!");
2064
2065 // Find the matching phis, forming the recurrences.
2066 PHINode *PN0, *PN1;
2067 Value *Start0, *Step0, *Start1, *Step1;
2068 if (!matchSimpleRecurrence(BO0, PN0, Start0, Step0) || !PN0->hasOneUse() ||
2069 !matchSimpleRecurrence(BO1, PN1, Start1, Step1) || !PN1->hasOneUse() ||
2070 PN0->getParent() != PN1->getParent())
2071 return nullptr;
2072
2073 assert(PN0->getNumIncomingValues() == 2 && PN1->getNumIncomingValues() == 2 &&
2074 "Expected PHIs with two incoming values!");
2075
2076 // Convert the start and step values to constants.
2077 auto *Init0 = dyn_cast<Constant>(Start0);
2078 auto *Init1 = dyn_cast<Constant>(Start1);
2079 auto *C0 = dyn_cast<Constant>(Step0);
2080 auto *C1 = dyn_cast<Constant>(Step1);
2081 if (!Init0 || !Init1 || !C0 || !C1)
2082 return nullptr;
2083
2084 // Fold the recurrence constants.
2085 auto *Init = ConstantFoldBinaryInstruction(Opc, Init0, Init1);
2086 auto *C = ConstantFoldBinaryInstruction(Opc, C0, C1);
2087 if (!Init || !C)
2088 return nullptr;
2089
2090 // Create the reduced PHI.
2091 auto *NewPN = PHINode::Create(PN0->getType(), PN0->getNumIncomingValues(),
2092 "reduced.phi");
2093
2094 // Create the new binary op.
2095 auto *NewBO = BinaryOperator::Create(Opc, NewPN, C);
2096 if (Opc == Instruction::FAdd || Opc == Instruction::FMul) {
2097 // Intersect FMF flags for FADD and FMUL.
2098 FastMathFlags Intersect = BO0->getFastMathFlags() &
2099 BO1->getFastMathFlags() & BO.getFastMathFlags();
2100 NewBO->setFastMathFlags(Intersect);
2101 } else {
2102 OverflowTracking Flags;
2103 Flags.AllKnownNonNegative = false;
2104 Flags.AllKnownNonZero = false;
2105 Flags.mergeFlags(*BO0);
2106 Flags.mergeFlags(*BO1);
2107 Flags.mergeFlags(BO);
2108 Flags.applyFlags(*NewBO);
2109 }
2110 NewBO->takeName(&BO);
2111
2112 for (unsigned I = 0, E = PN0->getNumIncomingValues(); I != E; ++I) {
2113 auto *V = PN0->getIncomingValue(I);
2114 auto *BB = PN0->getIncomingBlock(I);
2115 if (V == Init0) {
2116 assert(((PN1->getIncomingValue(0) == Init1 &&
2117 PN1->getIncomingBlock(0) == BB) ||
2118 (PN1->getIncomingValue(1) == Init1 &&
2119 PN1->getIncomingBlock(1) == BB)) &&
2120 "Invalid incoming block!");
2121 NewPN->addIncoming(Init, BB);
2122 } else if (V == BO0) {
2123 assert(((PN1->getIncomingValue(0) == BO1 &&
2124 PN1->getIncomingBlock(0) == BB) ||
2125 (PN1->getIncomingValue(1) == BO1 &&
2126 PN1->getIncomingBlock(1) == BB)) &&
2127 "Invalid incoming block!");
2128 NewPN->addIncoming(NewBO, BB);
2129 } else
2130 llvm_unreachable("Unexpected incoming value!");
2131 }
2132
2133 LLVM_DEBUG(dbgs() << " Combined " << *PN0 << "\n " << *BO0
2134 << "\n with " << *PN1 << "\n " << *BO1
2135 << '\n');
2136
2137 // Insert the new recurrence and remove the old (dead) ones.
2138 InsertNewInstWith(NewPN, PN0->getIterator());
2139 InsertNewInstWith(NewBO, BO0->getIterator());
2140
2147
2148 return replaceInstUsesWith(BO, NewBO);
2149}
2150
2152 // Attempt to fold binary operators whose operands are simple recurrences.
2153 if (auto *NewBO = foldBinopWithRecurrence(BO))
2154 return NewBO;
2155
2156 // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
2157 // we are guarding against replicating the binop in >1 predecessor.
2158 // This could miss matching a phi with 2 constant incoming values.
2159 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
2160 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
2161 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
2162 Phi0->getNumOperands() != Phi1->getNumOperands())
2163 return nullptr;
2164
2165 // TODO: Remove the restriction for binop being in the same block as the phis.
2166 if (BO.getParent() != Phi0->getParent() ||
2167 BO.getParent() != Phi1->getParent())
2168 return nullptr;
2169
2170 // Fold if there is at least one specific constant value in phi0 or phi1's
2171 // incoming values that comes from the same block and this specific constant
2172 // value can be used to do optimization for specific binary operator.
2173 // For example:
2174 // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
2175 // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
2176 // %add = add i32 %phi0, %phi1
2177 // ==>
2178 // %add = phi i32 [%j, %bb0], [%i, %bb1]
2180 /*AllowRHSConstant*/ false);
2181 if (C) {
2182 SmallVector<Value *, 4> NewIncomingValues;
2183 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
2184 auto &Phi0Use = std::get<0>(T);
2185 auto &Phi1Use = std::get<1>(T);
2186 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
2187 return false;
2188 Value *Phi0UseV = Phi0Use.get();
2189 Value *Phi1UseV = Phi1Use.get();
2190 if (Phi0UseV == C)
2191 NewIncomingValues.push_back(Phi1UseV);
2192 else if (Phi1UseV == C)
2193 NewIncomingValues.push_back(Phi0UseV);
2194 else
2195 return false;
2196 return true;
2197 };
2198
2199 if (all_of(zip(Phi0->operands(), Phi1->operands()),
2200 CanFoldIncomingValuePair)) {
2201 PHINode *NewPhi =
2202 PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
2203 assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
2204 "The number of collected incoming values should equal the number "
2205 "of the original PHINode operands!");
2206 for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
2207 NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
2208 return NewPhi;
2209 }
2210 }
2211
2212 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
2213 return nullptr;
2214
2215 // Match a pair of incoming constants for one of the predecessor blocks.
2216 BasicBlock *ConstBB, *OtherBB;
2217 Constant *C0, *C1;
2218 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
2219 ConstBB = Phi0->getIncomingBlock(0);
2220 OtherBB = Phi0->getIncomingBlock(1);
2221 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
2222 ConstBB = Phi0->getIncomingBlock(1);
2223 OtherBB = Phi0->getIncomingBlock(0);
2224 } else {
2225 return nullptr;
2226 }
2227 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
2228 return nullptr;
2229
2230 // The block that we are hoisting to must reach here unconditionally.
2231 // Otherwise, we could be speculatively executing an expensive or
2232 // non-speculative op.
2233 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
2234 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
2235 !DT.isReachableFromEntry(OtherBB))
2236 return nullptr;
2237
2238 // TODO: This check could be tightened to only apply to binops (div/rem) that
2239 // are not safe to speculatively execute. But that could allow hoisting
2240 // potentially expensive instructions (fdiv for example).
2241 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
2243 return nullptr;
2244
2245 // Fold constants for the predecessor block with constant incoming values.
2246 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
2247 if (!NewC)
2248 return nullptr;
2249
2250 // Make a new binop in the predecessor block with the non-constant incoming
2251 // values.
2252 Builder.SetInsertPoint(PredBlockBranch);
2253 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
2254 Phi0->getIncomingValueForBlock(OtherBB),
2255 Phi1->getIncomingValueForBlock(OtherBB));
2256 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
2257 NotFoldedNewBO->copyIRFlags(&BO);
2258
2259 // Replace the binop with a phi of the new values. The old phis are dead.
2260 PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
2261 NewPhi->addIncoming(NewBO, OtherBB);
2262 NewPhi->addIncoming(NewC, ConstBB);
2263 return NewPhi;
2264}
2265
2267 bool IsOtherParamConst = isa<Constant>(I.getOperand(1));
2268
2269 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
2270 if (Instruction *NewSel =
2271 FoldOpIntoSelect(I, Sel, false, !IsOtherParamConst))
2272 return NewSel;
2273 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
2274 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
2275 return NewPhi;
2276 }
2277 return nullptr;
2278}
2279
2281 // If this GEP has only 0 indices, it is the same pointer as
2282 // Src. If Src is not a trivial GEP too, don't combine
2283 // the indices.
2284 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2285 !Src.hasOneUse())
2286 return false;
2287 return true;
2288}
2289
2290/// Find a constant NewC that has property:
2291/// shuffle(NewC, ShMask) = C
2292/// Returns nullptr if such a constant does not exist e.g. ShMask=<0,0> C=<1,2>
2293///
2294/// A 1-to-1 mapping is not required. Example:
2295/// ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <poison,5,6,poison>
2297 VectorType *NewCTy) {
2298 if (isa<ScalableVectorType>(NewCTy)) {
2299 Constant *Splat = C->getSplatValue();
2300 if (!Splat)
2301 return nullptr;
2303 }
2304
2305 if (cast<FixedVectorType>(NewCTy)->getNumElements() >
2306 cast<FixedVectorType>(C->getType())->getNumElements())
2307 return nullptr;
2308
2309 unsigned NewCNumElts = cast<FixedVectorType>(NewCTy)->getNumElements();
2310 PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
2311 SmallVector<Constant *, 16> NewVecC(NewCNumElts, PoisonScalar);
2312 unsigned NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
2313 for (unsigned I = 0; I < NumElts; ++I) {
2314 Constant *CElt = C->getAggregateElement(I);
2315 if (ShMask[I] >= 0) {
2316 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
2317 Constant *NewCElt = NewVecC[ShMask[I]];
2318 // Bail out if:
2319 // 1. The constant vector contains a constant expression.
2320 // 2. The shuffle needs an element of the constant vector that can't
2321 // be mapped to a new constant vector.
2322 // 3. This is a widening shuffle that copies elements of V1 into the
2323 // extended elements (extending with poison is allowed).
2324 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
2325 I >= NewCNumElts)
2326 return nullptr;
2327 NewVecC[ShMask[I]] = CElt;
2328 }
2329 }
2330 return ConstantVector::get(NewVecC);
2331}
2332
2333// Get the result of `Vector Op Splat` (or Splat Op Vector if \p SplatLHS).
2335 Constant *Splat, bool SplatLHS,
2336 const DataLayout &DL) {
2337 ElementCount EC = cast<VectorType>(Vector->getType())->getElementCount();
2339 Constant *RHS = Vector;
2340 if (!SplatLHS)
2341 std::swap(LHS, RHS);
2342 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
2343}
2344
2346 if (!isa<VectorType>(Inst.getType()))
2347 return nullptr;
2348
2349 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
2350 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
2351 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
2352 cast<VectorType>(Inst.getType())->getElementCount());
2353 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
2354 cast<VectorType>(Inst.getType())->getElementCount());
2355
2356 auto foldConstantsThroughSubVectorInsertSplat =
2357 [&](Value *MaybeSubVector, Value *MaybeSplat,
2358 bool SplatLHS) -> Instruction * {
2359 Value *Idx;
2360 Constant *Splat, *SubVector, *Dest;
2361 if (!match(MaybeSplat, m_ConstantSplat(m_Constant(Splat))) ||
2362 !match(MaybeSubVector,
2363 m_VectorInsert(m_Constant(Dest), m_Constant(SubVector),
2364 m_Value(Idx))))
2365 return nullptr;
2366 SubVector =
2367 constantFoldBinOpWithSplat(Opcode, SubVector, Splat, SplatLHS, DL);
2368 Dest = constantFoldBinOpWithSplat(Opcode, Dest, Splat, SplatLHS, DL);
2369 if (!SubVector || !Dest)
2370 return nullptr;
2371 auto *InsertVector =
2372 Builder.CreateInsertVector(Dest->getType(), Dest, SubVector, Idx);
2373 return replaceInstUsesWith(Inst, InsertVector);
2374 };
2375
2376 // If one operand is a constant splat and the other operand is a
2377 // `vector.insert` where both the destination and subvector are constant,
2378 // apply the operation to both the destination and subvector, returning a new
2379 // constant `vector.insert`. This helps constant folding for scalable vectors.
2380 if (Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2381 /*MaybeSubVector=*/LHS, /*MaybeSplat=*/RHS, /*SplatLHS=*/false))
2382 return Folded;
2383 if (Instruction *Folded = foldConstantsThroughSubVectorInsertSplat(
2384 /*MaybeSubVector=*/RHS, /*MaybeSplat=*/LHS, /*SplatLHS=*/true))
2385 return Folded;
2386
2387 // If both operands of the binop are vector concatenations, then perform the
2388 // narrow binop on each pair of the source operands followed by concatenation
2389 // of the results.
2390 Value *L0, *L1, *R0, *R1;
2391 ArrayRef<int> Mask;
2392 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
2393 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
2394 LHS->hasOneUse() && RHS->hasOneUse() &&
2395 cast<ShuffleVectorInst>(LHS)->isConcat() &&
2396 cast<ShuffleVectorInst>(RHS)->isConcat()) {
2397 // This transform does not have the speculative execution constraint as
2398 // below because the shuffle is a concatenation. The new binops are
2399 // operating on exactly the same elements as the existing binop.
2400 // TODO: We could ease the mask requirement to allow different undef lanes,
2401 // but that requires an analysis of the binop-with-undef output value.
2402 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
2403 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
2404 BO->copyIRFlags(&Inst);
2405 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
2406 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
2407 BO->copyIRFlags(&Inst);
2408 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
2409 }
2410
2411 auto createBinOpReverse = [&](Value *X, Value *Y) {
2412 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2413 if (auto *BO = dyn_cast<BinaryOperator>(V))
2414 BO->copyIRFlags(&Inst);
2415 Module *M = Inst.getModule();
2417 M, Intrinsic::vector_reverse, V->getType());
2418 return CallInst::Create(F, V);
2419 };
2420
2421 // NOTE: Reverse shuffles don't require the speculative execution protection
2422 // below because they don't affect which lanes take part in the computation.
2423
2424 Value *V1, *V2;
2425 if (match(LHS, m_VecReverse(m_Value(V1)))) {
2426 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2427 if (match(RHS, m_VecReverse(m_Value(V2))) &&
2428 (LHS->hasOneUse() || RHS->hasOneUse() ||
2429 (LHS == RHS && LHS->hasNUses(2))))
2430 return createBinOpReverse(V1, V2);
2431
2432 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2433 if (LHS->hasOneUse() && isSplatValue(RHS))
2434 return createBinOpReverse(V1, RHS);
2435 }
2436 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2437 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
2438 return createBinOpReverse(LHS, V2);
2439
2440 auto createBinOpVPReverse = [&](Value *X, Value *Y, Value *EVL) {
2441 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2442 if (auto *BO = dyn_cast<BinaryOperator>(V))
2443 BO->copyIRFlags(&Inst);
2444
2445 ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
2446 Value *AllTrueMask = Builder.CreateVectorSplat(EC, Builder.getTrue());
2447 Module *M = Inst.getModule();
2449 M, Intrinsic::experimental_vp_reverse, V->getType());
2450 return CallInst::Create(F, {V, AllTrueMask, EVL});
2451 };
2452
2453 Value *EVL;
2455 m_Value(V1), m_AllOnes(), m_Value(EVL)))) {
2456 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2458 m_Value(V2), m_AllOnes(), m_Specific(EVL))) &&
2459 (LHS->hasOneUse() || RHS->hasOneUse() ||
2460 (LHS == RHS && LHS->hasNUses(2))))
2461 return createBinOpVPReverse(V1, V2, EVL);
2462
2463 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2464 if (LHS->hasOneUse() && isSplatValue(RHS))
2465 return createBinOpVPReverse(V1, RHS, EVL);
2466 }
2467 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2468 else if (isSplatValue(LHS) &&
2470 m_Value(V2), m_AllOnes(), m_Value(EVL))))
2471 return createBinOpVPReverse(LHS, V2, EVL);
2472
2473 // It may not be safe to reorder shuffles and things like div, urem, etc.
2474 // because we may trap when executing those ops on unknown vector elements.
2475 // See PR20059.
2477 return nullptr;
2478
2479 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
2480 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
2481 if (auto *BO = dyn_cast<BinaryOperator>(XY))
2482 BO->copyIRFlags(&Inst);
2483 return new ShuffleVectorInst(XY, M);
2484 };
2485
2486 // If both arguments of the binary operation are shuffles that use the same
2487 // mask and shuffle within a single vector, move the shuffle after the binop.
2488 if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
2489 match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
2490 V1->getType() == V2->getType() &&
2491 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2492 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
2493 return createBinOpShuffle(V1, V2, Mask);
2494 }
2495
2496 // If both arguments of a commutative binop are select-shuffles that use the
2497 // same mask with commuted operands, the shuffles are unnecessary.
2498 if (Inst.isCommutative() &&
2499 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
2500 match(RHS,
2501 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
2502 auto *LShuf = cast<ShuffleVectorInst>(LHS);
2503 auto *RShuf = cast<ShuffleVectorInst>(RHS);
2504 // TODO: Allow shuffles that contain undefs in the mask?
2505 // That is legal, but it reduces undef knowledge.
2506 // TODO: Allow arbitrary shuffles by shuffling after binop?
2507 // That might be legal, but we have to deal with poison.
2508 if (LShuf->isSelect() &&
2509 !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
2510 RShuf->isSelect() &&
2511 !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
2512 // Example:
2513 // LHS = shuffle V1, V2, <0, 5, 6, 3>
2514 // RHS = shuffle V2, V1, <0, 5, 6, 3>
2515 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
2516 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
2517 NewBO->copyIRFlags(&Inst);
2518 return NewBO;
2519 }
2520 }
2521
2522 // If one argument is a shuffle within one vector and the other is a constant,
2523 // try moving the shuffle after the binary operation. This canonicalization
2524 // intends to move shuffles closer to other shuffles and binops closer to
2525 // other binops, so they can be folded. It may also enable demanded elements
2526 // transforms.
2527 Constant *C;
2529 m_Mask(Mask))),
2530 m_ImmConstant(C)))) {
2531 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
2532 "Shuffle should not change scalar type");
2533
2534 bool ConstOp1 = isa<Constant>(RHS);
2535 if (Constant *NewC =
2537 // For fixed vectors, lanes of NewC not used by the shuffle will be poison
2538 // which will cause UB for div/rem. Mask them with a safe constant.
2539 if (isa<FixedVectorType>(V1->getType()) && Inst.isIntDivRem())
2540 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
2541
2542 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
2543 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
2544 Value *NewLHS = ConstOp1 ? V1 : NewC;
2545 Value *NewRHS = ConstOp1 ? NewC : V1;
2546 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2547 }
2548 }
2549
2550 // Try to reassociate to sink a splat shuffle after a binary operation.
2551 if (Inst.isAssociative() && Inst.isCommutative()) {
2552 // Canonicalize shuffle operand as LHS.
2553 if (isa<ShuffleVectorInst>(RHS))
2554 std::swap(LHS, RHS);
2555
2556 Value *X;
2557 ArrayRef<int> MaskC;
2558 int SplatIndex;
2559 Value *Y, *OtherOp;
2560 if (!match(LHS,
2561 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
2562 !match(MaskC, m_SplatOrPoisonMask(SplatIndex)) ||
2563 X->getType() != Inst.getType() ||
2564 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
2565 return nullptr;
2566
2567 // FIXME: This may not be safe if the analysis allows undef elements. By
2568 // moving 'Y' before the splat shuffle, we are implicitly assuming
2569 // that it is not undef/poison at the splat index.
2570 if (isSplatValue(OtherOp, SplatIndex)) {
2571 std::swap(Y, OtherOp);
2572 } else if (!isSplatValue(Y, SplatIndex)) {
2573 return nullptr;
2574 }
2575
2576 // X and Y are splatted values, so perform the binary operation on those
2577 // values followed by a splat followed by the 2nd binary operation:
2578 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2579 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
2580 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
2581 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
2582 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
2583
2584 // Intersect FMF on both new binops. Other (poison-generating) flags are
2585 // dropped to be safe.
2586 if (isa<FPMathOperator>(R)) {
2587 R->copyFastMathFlags(&Inst);
2588 R->andIRFlags(RHS);
2589 }
2590 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2591 NewInstBO->copyIRFlags(R);
2592 return R;
2593 }
2594
2595 return nullptr;
2596}
2597
2598/// Try to narrow the width of a binop if at least 1 operand is an extend of
2599/// of a value. This requires a potentially expensive known bits check to make
2600/// sure the narrow op does not overflow.
2601Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
2602 // We need at least one extended operand.
2603 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
2604
2605 // If this is a sub, we swap the operands since we always want an extension
2606 // on the RHS. The LHS can be an extension or a constant.
2607 if (BO.getOpcode() == Instruction::Sub)
2608 std::swap(Op0, Op1);
2609
2610 Value *X;
2611 bool IsSext = match(Op0, m_SExt(m_Value(X)));
2612 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
2613 return nullptr;
2614
2615 // If both operands are the same extension from the same source type and we
2616 // can eliminate at least one (hasOneUse), this might work.
2617 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
2618 Value *Y;
2619 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
2620 cast<Operator>(Op1)->getOpcode() == CastOpc &&
2621 (Op0->hasOneUse() || Op1->hasOneUse()))) {
2622 // If that did not match, see if we have a suitable constant operand.
2623 // Truncating and extending must produce the same constant.
2624 Constant *WideC;
2625 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
2626 return nullptr;
2627 Constant *NarrowC = getLosslessInvCast(WideC, X->getType(), CastOpc, DL);
2628 if (!NarrowC)
2629 return nullptr;
2630 Y = NarrowC;
2631 }
2632
2633 // Swap back now that we found our operands.
2634 if (BO.getOpcode() == Instruction::Sub)
2635 std::swap(X, Y);
2636
2637 // Both operands have narrow versions. Last step: the math must not overflow
2638 // in the narrow width.
2639 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2640 return nullptr;
2641
2642 // bo (ext X), (ext Y) --> ext (bo X, Y)
2643 // bo (ext X), C --> ext (bo X, C')
2644 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2645 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2646 if (IsSext)
2647 NewBinOp->setHasNoSignedWrap();
2648 else
2649 NewBinOp->setHasNoUnsignedWrap();
2650 }
2651 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2652}
2653
2654/// Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y))
2655/// transform.
2660
2661/// Thread a GEP operation with constant indices through the constant true/false
2662/// arms of a select.
2664 InstCombiner::BuilderTy &Builder) {
2665 if (!GEP.hasAllConstantIndices())
2666 return nullptr;
2667
2668 Instruction *Sel;
2669 Value *Cond;
2670 Constant *TrueC, *FalseC;
2671 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2672 !match(Sel,
2673 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2674 return nullptr;
2675
2676 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2677 // Propagate 'inbounds' and metadata from existing instructions.
2678 // Note: using IRBuilder to create the constants for efficiency.
2679 SmallVector<Value *, 4> IndexC(GEP.indices());
2680 GEPNoWrapFlags NW = GEP.getNoWrapFlags();
2681 Type *Ty = GEP.getSourceElementType();
2682 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW);
2683 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW);
2684 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2685}
2686
2687// Canonicalization:
2688// gep T, (gep i8, base, C1), (Index + C2) into
2689// gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index
2691 GEPOperator *Src,
2692 InstCombinerImpl &IC) {
2693 if (GEP.getNumIndices() != 1)
2694 return nullptr;
2695 auto &DL = IC.getDataLayout();
2696 Value *Base;
2697 const APInt *C1;
2698 if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1))))
2699 return nullptr;
2700 Value *VarIndex;
2701 const APInt *C2;
2702 Type *PtrTy = Src->getType()->getScalarType();
2703 unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy);
2704 if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2))))
2705 return nullptr;
2706 if (C1->getBitWidth() != IndexSizeInBits ||
2707 C2->getBitWidth() != IndexSizeInBits)
2708 return nullptr;
2709 Type *BaseType = GEP.getSourceElementType();
2711 return nullptr;
2712 APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType));
2713 APInt NewOffset = TypeSize * *C2 + *C1;
2714 if (NewOffset.isZero() ||
2715 (Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) {
2717 if (GEP.hasNoUnsignedWrap() &&
2718 cast<GEPOperator>(Src)->hasNoUnsignedWrap() &&
2719 match(GEP.getOperand(1), m_NUWAddLike(m_Value(), m_Value()))) {
2721 if (GEP.isInBounds() && cast<GEPOperator>(Src)->isInBounds())
2722 Flags |= GEPNoWrapFlags::inBounds();
2723 }
2724
2725 Value *GEPConst =
2726 IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset), "", Flags);
2727 return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex, Flags);
2728 }
2729
2730 return nullptr;
2731}
2732
2733/// Combine constant offsets separated by variable offsets.
2734/// ptradd (ptradd (ptradd p, C1), x), C2 -> ptradd (ptradd p, x), C1+C2
2736 InstCombinerImpl &IC) {
2737 if (!GEP.hasAllConstantIndices())
2738 return nullptr;
2739
2742 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
2743 while (true) {
2744 if (!InnerGEP)
2745 return nullptr;
2746
2747 NW = NW.intersectForReassociate(InnerGEP->getNoWrapFlags());
2748 if (InnerGEP->hasAllConstantIndices())
2749 break;
2750
2751 if (!InnerGEP->hasOneUse())
2752 return nullptr;
2753
2754 Skipped.push_back(InnerGEP);
2755 InnerGEP = dyn_cast<GetElementPtrInst>(InnerGEP->getPointerOperand());
2756 }
2757
2758 // The two constant offset GEPs are directly adjacent: Let normal offset
2759 // merging handle it.
2760 if (Skipped.empty())
2761 return nullptr;
2762
2763 // FIXME: This one-use check is not strictly necessary. Consider relaxing it
2764 // if profitable.
2765 if (!InnerGEP->hasOneUse())
2766 return nullptr;
2767
2768 // Don't bother with vector splats.
2769 Type *Ty = GEP.getType();
2770 if (InnerGEP->getType() != Ty)
2771 return nullptr;
2772
2773 const DataLayout &DL = IC.getDataLayout();
2774 APInt Offset(DL.getIndexTypeSizeInBits(Ty), 0);
2775 if (!GEP.accumulateConstantOffset(DL, Offset) ||
2776 !InnerGEP->accumulateConstantOffset(DL, Offset))
2777 return nullptr;
2778
2779 IC.replaceOperand(*Skipped.back(), 0, InnerGEP->getPointerOperand());
2780 for (GetElementPtrInst *SkippedGEP : Skipped)
2781 SkippedGEP->setNoWrapFlags(NW);
2782
2783 return IC.replaceInstUsesWith(
2784 GEP,
2785 IC.Builder.CreatePtrAdd(Skipped.front(), IC.Builder.getInt(Offset), "",
2786 NW.intersectForOffsetAdd(GEP.getNoWrapFlags())));
2787}
2788
2790 GEPOperator *Src) {
2791 // Combine Indices - If the source pointer to this getelementptr instruction
2792 // is a getelementptr instruction with matching element type, combine the
2793 // indices of the two getelementptr instructions into a single instruction.
2794 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2795 return nullptr;
2796
2797 if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this))
2798 return I;
2799
2800 if (auto *I = combineConstantOffsets(GEP, *this))
2801 return I;
2802
2803 if (Src->getResultElementType() != GEP.getSourceElementType())
2804 return nullptr;
2805
2806 // Find out whether the last index in the source GEP is a sequential idx.
2807 bool EndsWithSequential = false;
2808 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2809 I != E; ++I)
2810 EndsWithSequential = I.isSequential();
2811 if (!EndsWithSequential)
2812 return nullptr;
2813
2814 // Replace: gep (gep %P, long B), long A, ...
2815 // With: T = long A+B; gep %P, T, ...
2816 Value *SO1 = Src->getOperand(Src->getNumOperands() - 1);
2817 Value *GO1 = GEP.getOperand(1);
2818
2819 // If they aren't the same type, then the input hasn't been processed
2820 // by the loop above yet (which canonicalizes sequential index types to
2821 // intptr_t). Just avoid transforming this until the input has been
2822 // normalized.
2823 if (SO1->getType() != GO1->getType())
2824 return nullptr;
2825
2826 Value *Sum =
2827 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2828 // Only do the combine when we are sure the cost after the
2829 // merge is never more than that before the merge.
2830 if (Sum == nullptr)
2831 return nullptr;
2832
2834 Indices.append(Src->op_begin() + 1, Src->op_end() - 1);
2835 Indices.push_back(Sum);
2836 Indices.append(GEP.op_begin() + 2, GEP.op_end());
2837
2838 // Don't create GEPs with more than one non-zero index.
2839 unsigned NumNonZeroIndices = count_if(Indices, [](Value *Idx) {
2840 auto *C = dyn_cast<Constant>(Idx);
2841 return !C || !C->isNullValue();
2842 });
2843 if (NumNonZeroIndices > 1)
2844 return nullptr;
2845
2846 return replaceInstUsesWith(
2847 GEP, Builder.CreateGEP(
2848 Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2850}
2851
2854 bool &DoesConsume, unsigned Depth) {
2855 static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2856 // ~(~(X)) -> X.
2857 Value *A, *B;
2858 if (match(V, m_Not(m_Value(A)))) {
2859 DoesConsume = true;
2860 return A;
2861 }
2862
2863 Constant *C;
2864 // Constants can be considered to be not'ed values.
2865 if (match(V, m_ImmConstant(C)))
2866 return ConstantExpr::getNot(C);
2867
2869 return nullptr;
2870
2871 // The rest of the cases require that we invert all uses so don't bother
2872 // doing the analysis if we know we can't use the result.
2873 if (!WillInvertAllUses)
2874 return nullptr;
2875
2876 // Compares can be inverted if all of their uses are being modified to use
2877 // the ~V.
2878 if (auto *I = dyn_cast<CmpInst>(V)) {
2879 if (Builder != nullptr)
2880 return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2881 I->getOperand(1));
2882 return NonNull;
2883 }
2884
2885 // If `V` is of the form `A + B` then `-1 - V` can be folded into
2886 // `(-1 - B) - A` if we are willing to invert all of the uses.
2887 if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2888 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2889 DoesConsume, Depth))
2890 return Builder ? Builder->CreateSub(BV, A) : NonNull;
2891 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2892 DoesConsume, Depth))
2893 return Builder ? Builder->CreateSub(AV, B) : NonNull;
2894 return nullptr;
2895 }
2896
2897 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2898 // into `A ^ B` if we are willing to invert all of the uses.
2899 if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2900 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2901 DoesConsume, Depth))
2902 return Builder ? Builder->CreateXor(A, BV) : NonNull;
2903 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2904 DoesConsume, Depth))
2905 return Builder ? Builder->CreateXor(AV, B) : NonNull;
2906 return nullptr;
2907 }
2908
2909 // If `V` is of the form `B - A` then `-1 - V` can be folded into
2910 // `A + (-1 - B)` if we are willing to invert all of the uses.
2911 if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2912 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2913 DoesConsume, Depth))
2914 return Builder ? Builder->CreateAdd(AV, B) : NonNull;
2915 return nullptr;
2916 }
2917
2918 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2919 // into `A s>> B` if we are willing to invert all of the uses.
2920 if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
2921 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2922 DoesConsume, Depth))
2923 return Builder ? Builder->CreateAShr(AV, B) : NonNull;
2924 return nullptr;
2925 }
2926
2927 Value *Cond;
2928 // LogicOps are special in that we canonicalize them at the cost of an
2929 // instruction.
2930 bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
2932 // Selects/min/max with invertible operands are freely invertible
2933 if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
2934 bool LocalDoesConsume = DoesConsume;
2935 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
2936 LocalDoesConsume, Depth))
2937 return nullptr;
2938 if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2939 LocalDoesConsume, Depth)) {
2940 DoesConsume = LocalDoesConsume;
2941 if (Builder != nullptr) {
2942 Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2943 DoesConsume, Depth);
2944 assert(NotB != nullptr &&
2945 "Unable to build inverted value for known freely invertable op");
2946 if (auto *II = dyn_cast<IntrinsicInst>(V))
2947 return Builder->CreateBinaryIntrinsic(
2948 getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
2949 return Builder->CreateSelect(Cond, NotA, NotB);
2950 }
2951 return NonNull;
2952 }
2953 }
2954
2955 if (PHINode *PN = dyn_cast<PHINode>(V)) {
2956 bool LocalDoesConsume = DoesConsume;
2958 for (Use &U : PN->operands()) {
2959 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
2960 Value *NewIncomingVal = getFreelyInvertedImpl(
2961 U.get(), /*WillInvertAllUses=*/false,
2962 /*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1);
2963 if (NewIncomingVal == nullptr)
2964 return nullptr;
2965 // Make sure that we can safely erase the original PHI node.
2966 if (NewIncomingVal == V)
2967 return nullptr;
2968 if (Builder != nullptr)
2969 IncomingValues.emplace_back(NewIncomingVal, IncomingBlock);
2970 }
2971
2972 DoesConsume = LocalDoesConsume;
2973 if (Builder != nullptr) {
2975 Builder->SetInsertPoint(PN);
2976 PHINode *NewPN =
2977 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
2978 for (auto [Val, Pred] : IncomingValues)
2979 NewPN->addIncoming(Val, Pred);
2980 return NewPN;
2981 }
2982 return NonNull;
2983 }
2984
2985 if (match(V, m_SExtLike(m_Value(A)))) {
2986 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2987 DoesConsume, Depth))
2988 return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull;
2989 return nullptr;
2990 }
2991
2992 if (match(V, m_Trunc(m_Value(A)))) {
2993 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2994 DoesConsume, Depth))
2995 return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull;
2996 return nullptr;
2997 }
2998
2999 // De Morgan's Laws:
3000 // (~(A | B)) -> (~A & ~B)
3001 // (~(A & B)) -> (~A | ~B)
3002 auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode,
3003 bool IsLogical, Value *A,
3004 Value *B) -> Value * {
3005 bool LocalDoesConsume = DoesConsume;
3006 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr,
3007 LocalDoesConsume, Depth))
3008 return nullptr;
3009 if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
3010 LocalDoesConsume, Depth)) {
3011 auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
3012 LocalDoesConsume, Depth);
3013 DoesConsume = LocalDoesConsume;
3014 if (IsLogical)
3015 return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
3016 return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
3017 }
3018
3019 return nullptr;
3020 };
3021
3022 if (match(V, m_Or(m_Value(A), m_Value(B))))
3023 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A,
3024 B);
3025
3026 if (match(V, m_And(m_Value(A), m_Value(B))))
3027 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A,
3028 B);
3029
3030 if (match(V, m_LogicalOr(m_Value(A), m_Value(B))))
3031 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A,
3032 B);
3033
3034 if (match(V, m_LogicalAnd(m_Value(A), m_Value(B))))
3035 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A,
3036 B);
3037
3038 return nullptr;
3039}
3040
3041/// Return true if we should canonicalize the gep to an i8 ptradd.
3043 Value *PtrOp = GEP.getOperand(0);
3044 Type *GEPEltType = GEP.getSourceElementType();
3045 if (GEPEltType->isIntegerTy(8))
3046 return false;
3047
3048 // Canonicalize scalable GEPs to an explicit offset using the llvm.vscale
3049 // intrinsic. This has better support in BasicAA.
3050 if (GEPEltType->isScalableTy())
3051 return true;
3052
3053 // gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two multiplies
3054 // together.
3055 if (GEP.getNumIndices() == 1 &&
3056 match(GEP.getOperand(1),
3058 m_Shl(m_Value(), m_ConstantInt())))))
3059 return true;
3060
3061 // gep (gep %p, C1), %x, C2 is expanded so the two constants can
3062 // possibly be merged together.
3063 auto PtrOpGep = dyn_cast<GEPOperator>(PtrOp);
3064 return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
3065 any_of(GEP.indices(), [](Value *V) {
3066 const APInt *C;
3067 return match(V, m_APInt(C)) && !C->isZero();
3068 });
3069}
3070
3072 IRBuilderBase &Builder) {
3073 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
3074 if (!Op1)
3075 return nullptr;
3076
3077 // Don't fold a GEP into itself through a PHI node. This can only happen
3078 // through the back-edge of a loop. Folding a GEP into itself means that
3079 // the value of the previous iteration needs to be stored in the meantime,
3080 // thus requiring an additional register variable to be live, but not
3081 // actually achieving anything (the GEP still needs to be executed once per
3082 // loop iteration).
3083 if (Op1 == &GEP)
3084 return nullptr;
3085 GEPNoWrapFlags NW = Op1->getNoWrapFlags();
3086
3087 int DI = -1;
3088
3089 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
3090 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
3091 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
3092 Op1->getSourceElementType() != Op2->getSourceElementType())
3093 return nullptr;
3094
3095 // As for Op1 above, don't try to fold a GEP into itself.
3096 if (Op2 == &GEP)
3097 return nullptr;
3098
3099 // Keep track of the type as we walk the GEP.
3100 Type *CurTy = nullptr;
3101
3102 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
3103 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
3104 return nullptr;
3105
3106 if (Op1->getOperand(J) != Op2->getOperand(J)) {
3107 if (DI == -1) {
3108 // We have not seen any differences yet in the GEPs feeding the
3109 // PHI yet, so we record this one if it is allowed to be a
3110 // variable.
3111
3112 // The first two arguments can vary for any GEP, the rest have to be
3113 // static for struct slots
3114 if (J > 1) {
3115 assert(CurTy && "No current type?");
3116 if (CurTy->isStructTy())
3117 return nullptr;
3118 }
3119
3120 DI = J;
3121 } else {
3122 // The GEP is different by more than one input. While this could be
3123 // extended to support GEPs that vary by more than one variable it
3124 // doesn't make sense since it greatly increases the complexity and
3125 // would result in an R+R+R addressing mode which no backend
3126 // directly supports and would need to be broken into several
3127 // simpler instructions anyway.
3128 return nullptr;
3129 }
3130 }
3131
3132 // Sink down a layer of the type for the next iteration.
3133 if (J > 0) {
3134 if (J == 1) {
3135 CurTy = Op1->getSourceElementType();
3136 } else {
3137 CurTy =
3138 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
3139 }
3140 }
3141 }
3142
3143 NW &= Op2->getNoWrapFlags();
3144 }
3145
3146 // If not all GEPs are identical we'll have to create a new PHI node.
3147 // Check that the old PHI node has only one use so that it will get
3148 // removed.
3149 if (DI != -1 && !PN->hasOneUse())
3150 return nullptr;
3151
3152 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
3153 NewGEP->setNoWrapFlags(NW);
3154
3155 if (DI == -1) {
3156 // All the GEPs feeding the PHI are identical. Clone one down into our
3157 // BB so that it can be merged with the current GEP.
3158 } else {
3159 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
3160 // into the current block so it can be merged, and create a new PHI to
3161 // set that index.
3162 PHINode *NewPN;
3163 {
3164 IRBuilderBase::InsertPointGuard Guard(Builder);
3165 Builder.SetInsertPoint(PN);
3166 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
3167 PN->getNumOperands());
3168 }
3169
3170 for (auto &I : PN->operands())
3171 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
3172 PN->getIncomingBlock(I));
3173
3174 NewGEP->setOperand(DI, NewPN);
3175 }
3176
3177 NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
3178 return NewGEP;
3179}
3180
3182 Value *PtrOp = GEP.getOperand(0);
3183 SmallVector<Value *, 8> Indices(GEP.indices());
3184 Type *GEPType = GEP.getType();
3185 Type *GEPEltType = GEP.getSourceElementType();
3186 if (Value *V =
3187 simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(),
3188 SQ.getWithInstruction(&GEP)))
3189 return replaceInstUsesWith(GEP, V);
3190
3191 // For vector geps, use the generic demanded vector support.
3192 // Skip if GEP return type is scalable. The number of elements is unknown at
3193 // compile-time.
3194 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
3195 auto VWidth = GEPFVTy->getNumElements();
3196 APInt PoisonElts(VWidth, 0);
3197 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
3198 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
3199 PoisonElts)) {
3200 if (V != &GEP)
3201 return replaceInstUsesWith(GEP, V);
3202 return &GEP;
3203 }
3204 }
3205
3206 // Eliminate unneeded casts for indices, and replace indices which displace
3207 // by multiples of a zero size type with zero.
3208 bool MadeChange = false;
3209
3210 // Index width may not be the same width as pointer width.
3211 // Data layout chooses the right type based on supported integer types.
3212 Type *NewScalarIndexTy =
3213 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
3214
3216 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
3217 ++I, ++GTI) {
3218 // Skip indices into struct types.
3219 if (GTI.isStruct())
3220 continue;
3221
3222 Type *IndexTy = (*I)->getType();
3223 Type *NewIndexType =
3224 IndexTy->isVectorTy()
3225 ? VectorType::get(NewScalarIndexTy,
3226 cast<VectorType>(IndexTy)->getElementCount())
3227 : NewScalarIndexTy;
3228
3229 // If the element type has zero size then any index over it is equivalent
3230 // to an index of zero, so replace it with zero if it is not zero already.
3231 Type *EltTy = GTI.getIndexedType();
3232 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
3233 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
3234 *I = Constant::getNullValue(NewIndexType);
3235 MadeChange = true;
3236 }
3237
3238 if (IndexTy != NewIndexType) {
3239 // If we are using a wider index than needed for this platform, shrink
3240 // it to what we need. If narrower, sign-extend it to what we need.
3241 // This explicit cast can make subsequent optimizations more obvious.
3242 if (IndexTy->getScalarSizeInBits() <
3243 NewIndexType->getScalarSizeInBits()) {
3244 if (GEP.hasNoUnsignedWrap() && GEP.hasNoUnsignedSignedWrap())
3245 *I = Builder.CreateZExt(*I, NewIndexType, "", /*IsNonNeg=*/true);
3246 else
3247 *I = Builder.CreateSExt(*I, NewIndexType);
3248 } else {
3249 *I = Builder.CreateTrunc(*I, NewIndexType, "", GEP.hasNoUnsignedWrap(),
3250 GEP.hasNoUnsignedSignedWrap());
3251 }
3252 MadeChange = true;
3253 }
3254 }
3255 if (MadeChange)
3256 return &GEP;
3257
3258 // Canonicalize constant GEPs to i8 type.
3259 if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) {
3260 APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0);
3261 if (GEP.accumulateConstantOffset(DL, Offset))
3262 return replaceInstUsesWith(
3263 GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "",
3264 GEP.getNoWrapFlags()));
3265 }
3266
3268 Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP));
3269 Value *NewGEP =
3270 Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags());
3271 return replaceInstUsesWith(GEP, NewGEP);
3272 }
3273
3274 // Strip trailing zero indices.
3275 auto *LastIdx = dyn_cast<Constant>(Indices.back());
3276 if (LastIdx && LastIdx->isNullValue() && !LastIdx->getType()->isVectorTy()) {
3277 return replaceInstUsesWith(
3278 GEP, Builder.CreateGEP(GEP.getSourceElementType(), PtrOp,
3279 drop_end(Indices), "", GEP.getNoWrapFlags()));
3280 }
3281
3282 // Strip leading zero indices.
3283 auto *FirstIdx = dyn_cast<Constant>(Indices.front());
3284 if (FirstIdx && FirstIdx->isNullValue() &&
3285 !FirstIdx->getType()->isVectorTy()) {
3287 ++GTI;
3288 if (!GTI.isStruct())
3289 return replaceInstUsesWith(GEP, Builder.CreateGEP(GTI.getIndexedType(),
3290 GEP.getPointerOperand(),
3291 drop_begin(Indices), "",
3292 GEP.getNoWrapFlags()));
3293 }
3294
3295 // Scalarize vector operands; prefer splat-of-gep.as canonical form.
3296 // Note that this looses information about undef lanes; we run it after
3297 // demanded bits to partially mitigate that loss.
3298 if (GEPType->isVectorTy() && llvm::any_of(GEP.operands(), [](Value *Op) {
3299 return Op->getType()->isVectorTy() && getSplatValue(Op);
3300 })) {
3301 SmallVector<Value *> NewOps;
3302 for (auto &Op : GEP.operands()) {
3303 if (Op->getType()->isVectorTy())
3304 if (Value *Scalar = getSplatValue(Op)) {
3305 NewOps.push_back(Scalar);
3306 continue;
3307 }
3308 NewOps.push_back(Op);
3309 }
3310
3311 Value *Res = Builder.CreateGEP(GEP.getSourceElementType(), NewOps[0],
3312 ArrayRef(NewOps).drop_front(), GEP.getName(),
3313 GEP.getNoWrapFlags());
3314 if (!Res->getType()->isVectorTy()) {
3315 ElementCount EC = cast<VectorType>(GEPType)->getElementCount();
3316 Res = Builder.CreateVectorSplat(EC, Res);
3317 }
3318 return replaceInstUsesWith(GEP, Res);
3319 }
3320
3321 bool SeenNonZeroIndex = false;
3322 for (auto [IdxNum, Idx] : enumerate(Indices)) {
3323 auto *C = dyn_cast<Constant>(Idx);
3324 if (C && C->isNullValue())
3325 continue;
3326
3327 if (!SeenNonZeroIndex) {
3328 SeenNonZeroIndex = true;
3329 continue;
3330 }
3331
3332 // GEP has multiple non-zero indices: Split it.
3333 ArrayRef<Value *> FrontIndices = ArrayRef(Indices).take_front(IdxNum);
3334 Value *FrontGEP =
3335 Builder.CreateGEP(GEPEltType, PtrOp, FrontIndices,
3336 GEP.getName() + ".split", GEP.getNoWrapFlags());
3337
3338 SmallVector<Value *> BackIndices;
3339 BackIndices.push_back(Constant::getNullValue(NewScalarIndexTy));
3340 append_range(BackIndices, drop_begin(Indices, IdxNum));
3342 GetElementPtrInst::getIndexedType(GEPEltType, FrontIndices), FrontGEP,
3343 BackIndices, GEP.getNoWrapFlags());
3344 }
3345
3346 // Check to see if the inputs to the PHI node are getelementptr instructions.
3347 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
3348 if (Value *NewPtrOp = foldGEPOfPhi(GEP, PN, Builder))
3349 return replaceOperand(GEP, 0, NewPtrOp);
3350 }
3351
3352 if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
3353 if (Instruction *I = visitGEPOfGEP(GEP, Src))
3354 return I;
3355
3356 if (GEP.getNumIndices() == 1) {
3357 unsigned AS = GEP.getPointerAddressSpace();
3358 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
3359 DL.getIndexSizeInBits(AS)) {
3360 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
3361
3362 if (TyAllocSize == 1) {
3363 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
3364 // but only if the result pointer is only used as if it were an integer.
3365 // (The case where the underlying object is the same is handled by
3366 // InstSimplify.)
3367 Value *X = GEP.getPointerOperand();
3368 Value *Y;
3369 if (match(GEP.getOperand(1), m_Sub(m_PtrToIntOrAddr(m_Value(Y)),
3371 GEPType == Y->getType()) {
3372 bool HasNonAddressBits =
3373 DL.getAddressSizeInBits(AS) != DL.getPointerSizeInBits(AS);
3374 bool Changed = false;
3375 GEP.replaceUsesWithIf(Y, [&](Use &U) {
3376 bool ShouldReplace = isa<PtrToAddrInst>(U.getUser()) ||
3377 (!HasNonAddressBits &&
3378 isa<ICmpInst, PtrToIntInst>(U.getUser()));
3379 Changed |= ShouldReplace;
3380 return ShouldReplace;
3381 });
3382 return Changed ? &GEP : nullptr;
3383 }
3384 } else if (auto *ExactIns =
3385 dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) {
3386 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
3387 Value *V;
3388 if (ExactIns->isExact()) {
3389 if ((has_single_bit(TyAllocSize) &&
3390 match(GEP.getOperand(1),
3391 m_Shr(m_Value(V),
3392 m_SpecificInt(countr_zero(TyAllocSize))))) ||
3393 match(GEP.getOperand(1),
3394 m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) {
3395 return GetElementPtrInst::Create(Builder.getInt8Ty(),
3396 GEP.getPointerOperand(), V,
3397 GEP.getNoWrapFlags());
3398 }
3399 }
3400 if (ExactIns->isExact() && ExactIns->hasOneUse()) {
3401 // Try to canonicalize non-i8 element type to i8 if the index is an
3402 // exact instruction. If the index is an exact instruction (div/shr)
3403 // with a constant RHS, we can fold the non-i8 element scale into the
3404 // div/shr (similiar to the mul case, just inverted).
3405 const APInt *C;
3406 std::optional<APInt> NewC;
3407 if (has_single_bit(TyAllocSize) &&
3408 match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) &&
3409 C->uge(countr_zero(TyAllocSize)))
3410 NewC = *C - countr_zero(TyAllocSize);
3411 else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) {
3412 APInt Quot;
3413 uint64_t Rem;
3414 APInt::udivrem(*C, TyAllocSize, Quot, Rem);
3415 if (Rem == 0)
3416 NewC = Quot;
3417 } else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) {
3418 APInt Quot;
3419 int64_t Rem;
3420 APInt::sdivrem(*C, TyAllocSize, Quot, Rem);
3421 // For sdiv we need to make sure we arent creating INT_MIN / -1.
3422 if (!Quot.isAllOnes() && Rem == 0)
3423 NewC = Quot;
3424 }
3425
3426 if (NewC.has_value()) {
3427 Value *NewOp = Builder.CreateBinOp(
3428 static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V,
3429 ConstantInt::get(V->getType(), *NewC));
3430 cast<BinaryOperator>(NewOp)->setIsExact();
3431 return GetElementPtrInst::Create(Builder.getInt8Ty(),
3432 GEP.getPointerOperand(), NewOp,
3433 GEP.getNoWrapFlags());
3434 }
3435 }
3436 }
3437 }
3438 }
3439 // We do not handle pointer-vector geps here.
3440 if (GEPType->isVectorTy())
3441 return nullptr;
3442
3443 if (!GEP.isInBounds()) {
3444 unsigned IdxWidth =
3445 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
3446 APInt BasePtrOffset(IdxWidth, 0);
3447 Value *UnderlyingPtrOp =
3448 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, BasePtrOffset);
3449 bool CanBeNull, CanBeFreed;
3450 uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
3451 DL, CanBeNull, CanBeFreed);
3452 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3453 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
3454 BasePtrOffset.isNonNegative()) {
3455 APInt AllocSize(IdxWidth, DerefBytes);
3456 if (BasePtrOffset.ule(AllocSize)) {
3458 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
3459 }
3460 }
3461 }
3462 }
3463
3464 // nusw + nneg -> nuw
3465 if (GEP.hasNoUnsignedSignedWrap() && !GEP.hasNoUnsignedWrap() &&
3466 all_of(GEP.indices(), [&](Value *Idx) {
3467 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
3468 })) {
3469 GEP.setNoWrapFlags(GEP.getNoWrapFlags() | GEPNoWrapFlags::noUnsignedWrap());
3470 return &GEP;
3471 }
3472
3473 // These rewrites are trying to preserve inbounds/nuw attributes. So we want
3474 // to do this after having tried to derive "nuw" above.
3475 if (GEP.getNumIndices() == 1) {
3476 // Given (gep p, x+y) we want to determine the common nowrap flags for both
3477 // geps if transforming into (gep (gep p, x), y).
3478 auto GetPreservedNoWrapFlags = [&](bool AddIsNUW) {
3479 // We can preserve both "inbounds nuw", "nusw nuw" and "nuw" if we know
3480 // that x + y does not have unsigned wrap.
3481 if (GEP.hasNoUnsignedWrap() && AddIsNUW)
3482 return GEP.getNoWrapFlags();
3483 return GEPNoWrapFlags::none();
3484 };
3485
3486 // Try to replace ADD + GEP with GEP + GEP.
3487 Value *Idx1, *Idx2;
3488 if (match(GEP.getOperand(1),
3489 m_OneUse(m_AddLike(m_Value(Idx1), m_Value(Idx2))))) {
3490 // %idx = add i64 %idx1, %idx2
3491 // %gep = getelementptr i32, ptr %ptr, i64 %idx
3492 // as:
3493 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1
3494 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2
3495 bool NUW = match(GEP.getOperand(1), m_NUWAddLike(m_Value(), m_Value()));
3496 GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
3497 auto *NewPtr =
3498 Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(),
3499 Idx1, "", NWFlags);
3500 return replaceInstUsesWith(GEP,
3501 Builder.CreateGEP(GEP.getSourceElementType(),
3502 NewPtr, Idx2, "", NWFlags));
3503 }
3504 ConstantInt *C;
3505 if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAddLike(
3506 m_Value(Idx1), m_ConstantInt(C))))))) {
3507 // %add = add nsw i32 %idx1, idx2
3508 // %sidx = sext i32 %add to i64
3509 // %gep = getelementptr i32, ptr %ptr, i64 %sidx
3510 // as:
3511 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
3512 // %newgep = getelementptr i32, ptr %newptr, i32 idx2
3513 bool NUW = match(GEP.getOperand(1),
3515 GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
3516 auto *NewPtr = Builder.CreateGEP(
3517 GEP.getSourceElementType(), GEP.getPointerOperand(),
3518 Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "", NWFlags);
3519 return replaceInstUsesWith(
3520 GEP,
3521 Builder.CreateGEP(GEP.getSourceElementType(), NewPtr,
3522 Builder.CreateSExt(C, GEP.getOperand(1)->getType()),
3523 "", NWFlags));
3524 }
3525 }
3526
3528 return R;
3529
3530 return nullptr;
3531}
3532
3534 Instruction *AI) {
3536 return true;
3537 if (auto *LI = dyn_cast<LoadInst>(V))
3538 return isa<GlobalVariable>(LI->getPointerOperand());
3539 // Two distinct allocations will never be equal.
3540 return isAllocLikeFn(V, &TLI) && V != AI;
3541}
3542
3543/// Given a call CB which uses an address UsedV, return true if we can prove the
3544/// call's only possible effect is storing to V.
3545static bool isRemovableWrite(CallBase &CB, Value *UsedV,
3546 const TargetLibraryInfo &TLI) {
3547 if (!CB.use_empty())
3548 // TODO: add recursion if returned attribute is present
3549 return false;
3550
3551 if (CB.isTerminator())
3552 // TODO: remove implementation restriction
3553 return false;
3554
3555 if (!CB.willReturn() || !CB.doesNotThrow())
3556 return false;
3557
3558 // If the only possible side effect of the call is writing to the alloca,
3559 // and the result isn't used, we can safely remove any reads implied by the
3560 // call including those which might read the alloca itself.
3561 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
3562 return Dest && Dest->Ptr == UsedV;
3563}
3564
3565static std::optional<ModRefInfo>
3567 const TargetLibraryInfo &TLI, bool KnowInit) {
3569 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
3570 Worklist.push_back(AI);
3572
3573 do {
3574 Instruction *PI = Worklist.pop_back_val();
3575 for (User *U : PI->users()) {
3577 switch (I->getOpcode()) {
3578 default:
3579 // Give up the moment we see something we can't handle.
3580 return std::nullopt;
3581
3582 case Instruction::AddrSpaceCast:
3583 case Instruction::BitCast:
3584 case Instruction::GetElementPtr:
3585 Users.emplace_back(I);
3586 Worklist.push_back(I);
3587 continue;
3588
3589 case Instruction::ICmp: {
3590 ICmpInst *ICI = cast<ICmpInst>(I);
3591 // We can fold eq/ne comparisons with null to false/true, respectively.
3592 // We also fold comparisons in some conditions provided the alloc has
3593 // not escaped (see isNeverEqualToUnescapedAlloc).
3594 if (!ICI->isEquality())
3595 return std::nullopt;
3596 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
3597 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
3598 return std::nullopt;
3599
3600 // Do not fold compares to aligned_alloc calls, as they may have to
3601 // return null in case the required alignment cannot be satisfied,
3602 // unless we can prove that both alignment and size are valid.
3603 auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
3604 // Check if alignment and size of a call to aligned_alloc is valid,
3605 // that is alignment is a power-of-2 and the size is a multiple of the
3606 // alignment.
3607 const APInt *Alignment;
3608 const APInt *Size;
3609 return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
3610 match(CB->getArgOperand(1), m_APInt(Size)) &&
3611 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
3612 };
3613 auto *CB = dyn_cast<CallBase>(AI);
3614 LibFunc TheLibFunc;
3615 if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3616 TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3617 !AlignmentAndSizeKnownValid(CB))
3618 return std::nullopt;
3619 Users.emplace_back(I);
3620 continue;
3621 }
3622
3623 case Instruction::Call:
3624 // Ignore no-op and store intrinsics.
3626 switch (II->getIntrinsicID()) {
3627 default:
3628 return std::nullopt;
3629
3630 case Intrinsic::memmove:
3631 case Intrinsic::memcpy:
3632 case Intrinsic::memset: {
3634 if (MI->isVolatile())
3635 return std::nullopt;
3636 // Note: this could also be ModRef, but we can still interpret that
3637 // as just Mod in that case.
3638 ModRefInfo NewAccess =
3639 MI->getRawDest() == PI ? ModRefInfo::Mod : ModRefInfo::Ref;
3640 if ((Access & ~NewAccess) != ModRefInfo::NoModRef)
3641 return std::nullopt;
3642 Access |= NewAccess;
3643 [[fallthrough]];
3644 }
3645 case Intrinsic::assume:
3646 case Intrinsic::invariant_start:
3647 case Intrinsic::invariant_end:
3648 case Intrinsic::lifetime_start:
3649 case Intrinsic::lifetime_end:
3650 case Intrinsic::objectsize:
3651 Users.emplace_back(I);
3652 continue;
3653 case Intrinsic::launder_invariant_group:
3654 case Intrinsic::strip_invariant_group:
3655 Users.emplace_back(I);
3656 Worklist.push_back(I);
3657 continue;
3658 }
3659 }
3660
3661 if (Family && getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
3662 getAllocationFamily(I, &TLI) == Family) {
3663 Users.emplace_back(I);
3664 continue;
3665 }
3666
3667 if (Family && getReallocatedOperand(cast<CallBase>(I)) == PI &&
3668 getAllocationFamily(I, &TLI) == Family) {
3669 Users.emplace_back(I);
3670 Worklist.push_back(I);
3671 continue;
3672 }
3673
3674 if (!isRefSet(Access) &&
3675 isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
3677 Users.emplace_back(I);
3678 continue;
3679 }
3680
3681 return std::nullopt;
3682
3683 case Instruction::Store: {
3685 if (SI->isVolatile() || SI->getPointerOperand() != PI)
3686 return std::nullopt;
3687 if (isRefSet(Access))
3688 return std::nullopt;
3690 Users.emplace_back(I);
3691 continue;
3692 }
3693
3694 case Instruction::Load: {
3695 LoadInst *LI = cast<LoadInst>(I);
3696 if (LI->isVolatile() || LI->getPointerOperand() != PI)
3697 return std::nullopt;
3698 if (isModSet(Access))
3699 return std::nullopt;
3701 Users.emplace_back(I);
3702 continue;
3703 }
3704 }
3705 llvm_unreachable("missing a return?");
3706 }
3707 } while (!Worklist.empty());
3708
3710 return Access;
3711}
3712
3715
3716 // If we have a malloc call which is only used in any amount of comparisons to
3717 // null and free calls, delete the calls and replace the comparisons with true
3718 // or false as appropriate.
3719
3720 // This is based on the principle that we can substitute our own allocation
3721 // function (which will never return null) rather than knowledge of the
3722 // specific function being called. In some sense this can change the permitted
3723 // outputs of a program (when we convert a malloc to an alloca, the fact that
3724 // the allocation is now on the stack is potentially visible, for example),
3725 // but we believe in a permissible manner.
3727
3728 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
3729 // before each store.
3731 std::unique_ptr<DIBuilder> DIB;
3732 if (isa<AllocaInst>(MI)) {
3733 findDbgUsers(&MI, DVRs);
3734 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
3735 }
3736
3737 // Determine what getInitialValueOfAllocation would return without actually
3738 // allocating the result.
3739 bool KnowInitUndef = false;
3740 bool KnowInitZero = false;
3741 Constant *Init =
3743 if (Init) {
3744 if (isa<UndefValue>(Init))
3745 KnowInitUndef = true;
3746 else if (Init->isNullValue())
3747 KnowInitZero = true;
3748 }
3749 // The various sanitizers don't actually return undef memory, but rather
3750 // memory initialized with special forms of runtime poison
3751 auto &F = *MI.getFunction();
3752 if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
3753 F.hasFnAttribute(Attribute::SanitizeAddress))
3754 KnowInitUndef = false;
3755
3756 auto Removable =
3757 isAllocSiteRemovable(&MI, Users, TLI, KnowInitZero | KnowInitUndef);
3758 if (Removable) {
3759 for (WeakTrackingVH &User : Users) {
3760 // Lowering all @llvm.objectsize and MTI calls first because they may use
3761 // a bitcast/GEP of the alloca we are removing.
3762 if (!User)
3763 continue;
3764
3766
3768 if (II->getIntrinsicID() == Intrinsic::objectsize) {
3769 SmallVector<Instruction *> InsertedInstructions;
3770 Value *Result = lowerObjectSizeCall(
3771 II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
3772 for (Instruction *Inserted : InsertedInstructions)
3773 Worklist.add(Inserted);
3774 replaceInstUsesWith(*I, Result);
3776 User = nullptr; // Skip examining in the next loop.
3777 continue;
3778 }
3779 if (auto *MTI = dyn_cast<MemTransferInst>(I)) {
3780 if (KnowInitZero && isRefSet(*Removable)) {
3782 Builder.SetInsertPoint(MTI);
3783 auto *M = Builder.CreateMemSet(
3784 MTI->getRawDest(),
3785 ConstantInt::get(Type::getInt8Ty(MI.getContext()), 0),
3786 MTI->getLength(), MTI->getDestAlign());
3787 M->copyMetadata(*MTI);
3788 }
3789 }
3790 }
3791 }
3792 for (WeakTrackingVH &User : Users) {
3793 if (!User)
3794 continue;
3795
3797
3798 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
3800 ConstantInt::get(Type::getInt1Ty(C->getContext()),
3801 C->isFalseWhenEqual()));
3802 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3803 for (auto *DVR : DVRs)
3804 if (DVR->isAddressOfVariable())
3806 } else {
3807 // Casts, GEP, or anything else: we're about to delete this instruction,
3808 // so it can not have any valid uses.
3809 Constant *Replace;
3810 if (isa<LoadInst>(I)) {
3811 assert(KnowInitZero || KnowInitUndef);
3812 Replace = KnowInitUndef ? UndefValue::get(I->getType())
3813 : Constant::getNullValue(I->getType());
3814 } else
3815 Replace = PoisonValue::get(I->getType());
3816 replaceInstUsesWith(*I, Replace);
3817 }
3819 }
3820
3822 // Replace invoke with a NOP intrinsic to maintain the original CFG
3823 Module *M = II->getModule();
3824 Function *F = Intrinsic::getOrInsertDeclaration(M, Intrinsic::donothing);
3825 auto *NewII = InvokeInst::Create(
3826 F, II->getNormalDest(), II->getUnwindDest(), {}, "", II->getParent());
3827 NewII->setDebugLoc(II->getDebugLoc());
3828 }
3829
3830 // Remove debug intrinsics which describe the value contained within the
3831 // alloca. In addition to removing dbg.{declare,addr} which simply point to
3832 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
3833 //
3834 // ```
3835 // define void @foo(i32 %0) {
3836 // %a = alloca i32 ; Deleted.
3837 // store i32 %0, i32* %a
3838 // dbg.value(i32 %0, "arg0") ; Not deleted.
3839 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
3840 // call void @trivially_inlinable_no_op(i32* %a)
3841 // ret void
3842 // }
3843 // ```
3844 //
3845 // This may not be required if we stop describing the contents of allocas
3846 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
3847 // the LowerDbgDeclare utility.
3848 //
3849 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
3850 // "arg0" dbg.value may be stale after the call. However, failing to remove
3851 // the DW_OP_deref dbg.value causes large gaps in location coverage.
3852 //
3853 // FIXME: the Assignment Tracking project has now likely made this
3854 // redundant (and it's sometimes harmful).
3855 for (auto *DVR : DVRs)
3856 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3857 DVR->eraseFromParent();
3858
3859 return eraseInstFromFunction(MI);
3860 }
3861 return nullptr;
3862}
3863
3864/// Move the call to free before a NULL test.
3865///
3866/// Check if this free is accessed after its argument has been test
3867/// against NULL (property 0).
3868/// If yes, it is legal to move this call in its predecessor block.
3869///
3870/// The move is performed only if the block containing the call to free
3871/// will be removed, i.e.:
3872/// 1. it has only one predecessor P, and P has two successors
3873/// 2. it contains the call, noops, and an unconditional branch
3874/// 3. its successor is the same as its predecessor's successor
3875///
3876/// The profitability is out-of concern here and this function should
3877/// be called only if the caller knows this transformation would be
3878/// profitable (e.g., for code size).
3880 const DataLayout &DL) {
3881 Value *Op = FI.getArgOperand(0);
3882 BasicBlock *FreeInstrBB = FI.getParent();
3883 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
3884
3885 // Validate part of constraint #1: Only one predecessor
3886 // FIXME: We can extend the number of predecessor, but in that case, we
3887 // would duplicate the call to free in each predecessor and it may
3888 // not be profitable even for code size.
3889 if (!PredBB)
3890 return nullptr;
3891
3892 // Validate constraint #2: Does this block contains only the call to
3893 // free, noops, and an unconditional branch?
3894 BasicBlock *SuccBB;
3895 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
3896 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
3897 return nullptr;
3898
3899 // If there are only 2 instructions in the block, at this point,
3900 // this is the call to free and unconditional.
3901 // If there are more than 2 instructions, check that they are noops
3902 // i.e., they won't hurt the performance of the generated code.
3903 if (FreeInstrBB->size() != 2) {
3904 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
3905 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3906 continue;
3907 auto *Cast = dyn_cast<CastInst>(&Inst);
3908 if (!Cast || !Cast->isNoopCast(DL))
3909 return nullptr;
3910 }
3911 }
3912 // Validate the rest of constraint #1 by matching on the pred branch.
3913 Instruction *TI = PredBB->getTerminator();
3914 BasicBlock *TrueBB, *FalseBB;
3915 CmpPredicate Pred;
3916 if (!match(TI, m_Br(m_ICmp(Pred,
3918 m_Specific(Op->stripPointerCasts())),
3919 m_Zero()),
3920 TrueBB, FalseBB)))
3921 return nullptr;
3922 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
3923 return nullptr;
3924
3925 // Validate constraint #3: Ensure the null case just falls through.
3926 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3927 return nullptr;
3928 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3929 "Broken CFG: missing edge from predecessor to successor");
3930
3931 // At this point, we know that everything in FreeInstrBB can be moved
3932 // before TI.
3933 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3934 if (&Instr == FreeInstrBBTerminator)
3935 break;
3936 Instr.moveBeforePreserving(TI->getIterator());
3937 }
3938 assert(FreeInstrBB->size() == 1 &&
3939 "Only the branch instruction should remain");
3940
3941 // Now that we've moved the call to free before the NULL check, we have to
3942 // remove any attributes on its parameter that imply it's non-null, because
3943 // those attributes might have only been valid because of the NULL check, and
3944 // we can get miscompiles if we keep them. This is conservative if non-null is
3945 // also implied by something other than the NULL check, but it's guaranteed to
3946 // be correct, and the conservativeness won't matter in practice, since the
3947 // attributes are irrelevant for the call to free itself and the pointer
3948 // shouldn't be used after the call.
3949 AttributeList Attrs = FI.getAttributes();
3950 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3951 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3952 if (Dereferenceable.isValid()) {
3953 uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3954 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3955 Attribute::Dereferenceable);
3956 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
3957 }
3958 FI.setAttributes(Attrs);
3959
3960 return &FI;
3961}
3962
3964 // free undef -> unreachable.
3965 if (isa<UndefValue>(Op)) {
3966 // Leave a marker since we can't modify the CFG here.
3968 return eraseInstFromFunction(FI);
3969 }
3970
3971 // If we have 'free null' delete the instruction. This can happen in stl code
3972 // when lots of inlining happens.
3974 return eraseInstFromFunction(FI);
3975
3976 // If we had free(realloc(...)) with no intervening uses, then eliminate the
3977 // realloc() entirely.
3979 if (CI && CI->hasOneUse())
3980 if (Value *ReallocatedOp = getReallocatedOperand(CI))
3981 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
3982
3983 // If we optimize for code size, try to move the call to free before the null
3984 // test so that simplify cfg can remove the empty block and dead code
3985 // elimination the branch. I.e., helps to turn something like:
3986 // if (foo) free(foo);
3987 // into
3988 // free(foo);
3989 //
3990 // Note that we can only do this for 'free' and not for any flavor of
3991 // 'operator delete'; there is no 'operator delete' symbol for which we are
3992 // permitted to invent a call, even if we're passing in a null pointer.
3993 if (MinimizeSize) {
3994 LibFunc Func;
3995 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3997 return I;
3998 }
3999
4000 return nullptr;
4001}
4002
4004 Value *RetVal = RI.getReturnValue();
4005 if (!RetVal)
4006 return nullptr;
4007
4008 Function *F = RI.getFunction();
4009 Type *RetTy = RetVal->getType();
4010 if (RetTy->isPointerTy()) {
4011 bool HasDereferenceable =
4012 F->getAttributes().getRetDereferenceableBytes() > 0;
4013 if (F->hasRetAttribute(Attribute::NonNull) ||
4014 (HasDereferenceable &&
4016 if (Value *V = simplifyNonNullOperand(RetVal, HasDereferenceable))
4017 return replaceOperand(RI, 0, V);
4018 }
4019 }
4020
4021 if (!AttributeFuncs::isNoFPClassCompatibleType(RetTy))
4022 return nullptr;
4023
4024 FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass();
4025 if (ReturnClass == fcNone)
4026 return nullptr;
4027
4028 KnownFPClass KnownClass;
4029 Value *Simplified =
4030 SimplifyDemandedUseFPClass(RetVal, ~ReturnClass, KnownClass, &RI);
4031 if (!Simplified)
4032 return nullptr;
4033
4034 return ReturnInst::Create(RI.getContext(), Simplified);
4035}
4036
4037// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
4039 // Try to remove the previous instruction if it must lead to unreachable.
4040 // This includes instructions like stores and "llvm.assume" that may not get
4041 // removed by simple dead code elimination.
4042 bool Changed = false;
4043 while (Instruction *Prev = I.getPrevNode()) {
4044 // While we theoretically can erase EH, that would result in a block that
4045 // used to start with an EH no longer starting with EH, which is invalid.
4046 // To make it valid, we'd need to fixup predecessors to no longer refer to
4047 // this block, but that changes CFG, which is not allowed in InstCombine.
4048 if (Prev->isEHPad())
4049 break; // Can not drop any more instructions. We're done here.
4050
4052 break; // Can not drop any more instructions. We're done here.
4053 // Otherwise, this instruction can be freely erased,
4054 // even if it is not side-effect free.
4055
4056 // A value may still have uses before we process it here (for example, in
4057 // another unreachable block), so convert those to poison.
4058 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
4059 eraseInstFromFunction(*Prev);
4060 Changed = true;
4061 }
4062 return Changed;
4063}
4064
4069
4071 assert(BI.isUnconditional() && "Only for unconditional branches.");
4072
4073 // If this store is the second-to-last instruction in the basic block
4074 // (excluding debug info) and if the block ends with
4075 // an unconditional branch, try to move the store to the successor block.
4076
4077 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
4078 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
4079 do {
4080 if (BBI != FirstInstr)
4081 --BBI;
4082 } while (BBI != FirstInstr && BBI->isDebugOrPseudoInst());
4083
4084 return dyn_cast<StoreInst>(BBI);
4085 };
4086
4087 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
4089 return &BI;
4090
4091 return nullptr;
4092}
4093
4096 if (!DeadEdges.insert({From, To}).second)
4097 return;
4098
4099 // Replace phi node operands in successor with poison.
4100 for (PHINode &PN : To->phis())
4101 for (Use &U : PN.incoming_values())
4102 if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
4103 replaceUse(U, PoisonValue::get(PN.getType()));
4104 addToWorklist(&PN);
4105 MadeIRChange = true;
4106 }
4107
4108 Worklist.push_back(To);
4109}
4110
4111// Under the assumption that I is unreachable, remove it and following
4112// instructions. Changes are reported directly to MadeIRChange.
4115 BasicBlock *BB = I->getParent();
4116 for (Instruction &Inst : make_early_inc_range(
4117 make_range(std::next(BB->getTerminator()->getReverseIterator()),
4118 std::next(I->getReverseIterator())))) {
4119 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
4120 replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
4121 MadeIRChange = true;
4122 }
4123 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
4124 continue;
4125 // RemoveDIs: erase debug-info on this instruction manually.
4126 Inst.dropDbgRecords();
4128 MadeIRChange = true;
4129 }
4130
4133 MadeIRChange = true;
4134 for (Value *V : Changed)
4136 }
4137
4138 // Handle potentially dead successors.
4139 for (BasicBlock *Succ : successors(BB))
4140 addDeadEdge(BB, Succ, Worklist);
4141}
4142
4145 while (!Worklist.empty()) {
4146 BasicBlock *BB = Worklist.pop_back_val();
4147 if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
4148 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
4149 }))
4150 continue;
4151
4153 }
4154}
4155
4157 BasicBlock *LiveSucc) {
4159 for (BasicBlock *Succ : successors(BB)) {
4160 // The live successor isn't dead.
4161 if (Succ == LiveSucc)
4162 continue;
4163
4164 addDeadEdge(BB, Succ, Worklist);
4165 }
4166
4168}
4169
4171 if (BI.isUnconditional())
4173
4174 // Change br (not X), label True, label False to: br X, label False, True
4175 Value *Cond = BI.getCondition();
4176 Value *X;
4177 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
4178 // Swap Destinations and condition...
4179 BI.swapSuccessors();
4180 if (BPI)
4181 BPI->swapSuccEdgesProbabilities(BI.getParent());
4182 return replaceOperand(BI, 0, X);
4183 }
4184
4185 // Canonicalize logical-and-with-invert as logical-or-with-invert.
4186 // This is done by inverting the condition and swapping successors:
4187 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
4188 Value *Y;
4189 if (isa<SelectInst>(Cond) &&
4190 match(Cond,
4192 Value *NotX = Builder.CreateNot(X, "not." + X->getName());
4193 Value *Or = Builder.CreateLogicalOr(NotX, Y);
4194 BI.swapSuccessors();
4195 if (BPI)
4196 BPI->swapSuccEdgesProbabilities(BI.getParent());
4197 return replaceOperand(BI, 0, Or);
4198 }
4199
4200 // If the condition is irrelevant, remove the use so that other
4201 // transforms on the condition become more effective.
4202 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
4203 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
4204
4205 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
4206 CmpPredicate Pred;
4207 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
4208 !isCanonicalPredicate(Pred)) {
4209 // Swap destinations and condition.
4210 auto *Cmp = cast<CmpInst>(Cond);
4211 Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
4212 BI.swapSuccessors();
4213 if (BPI)
4214 BPI->swapSuccEdgesProbabilities(BI.getParent());
4215 Worklist.push(Cmp);
4216 return &BI;
4217 }
4218
4219 if (isa<UndefValue>(Cond)) {
4220 handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
4221 return nullptr;
4222 }
4223 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
4225 BI.getSuccessor(!CI->getZExtValue()));
4226 return nullptr;
4227 }
4228
4229 // Replace all dominated uses of the condition with true/false
4230 // Ignore constant expressions to avoid iterating over uses on other
4231 // functions.
4232 if (!isa<Constant>(Cond) && BI.getSuccessor(0) != BI.getSuccessor(1)) {
4233 for (auto &U : make_early_inc_range(Cond->uses())) {
4234 BasicBlockEdge Edge0(BI.getParent(), BI.getSuccessor(0));
4235 if (DT.dominates(Edge0, U)) {
4236 replaceUse(U, ConstantInt::getTrue(Cond->getType()));
4237 addToWorklist(cast<Instruction>(U.getUser()));
4238 continue;
4239 }
4240 BasicBlockEdge Edge1(BI.getParent(), BI.getSuccessor(1));
4241 if (DT.dominates(Edge1, U)) {
4242 replaceUse(U, ConstantInt::getFalse(Cond->getType()));
4243 addToWorklist(cast<Instruction>(U.getUser()));
4244 }
4245 }
4246 }
4247
4248 DC.registerBranch(&BI);
4249 return nullptr;
4250}
4251
4252// Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if
4253// we can prove that both (switch C) and (switch X) go to the default when cond
4254// is false/true.
4257 bool IsTrueArm) {
4258 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
4259 auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx));
4260 if (!C)
4261 return nullptr;
4262
4263 BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor();
4264 if (CstBB != SI.getDefaultDest())
4265 return nullptr;
4266 Value *X = Select->getOperand(3 - CstOpIdx);
4267 CmpPredicate Pred;
4268 const APInt *RHSC;
4269 if (!match(Select->getCondition(),
4270 m_ICmp(Pred, m_Specific(X), m_APInt(RHSC))))
4271 return nullptr;
4272 if (IsTrueArm)
4273 Pred = ICmpInst::getInversePredicate(Pred);
4274
4275 // See whether we can replace the select with X
4277 for (auto Case : SI.cases())
4278 if (!CR.contains(Case.getCaseValue()->getValue()))
4279 return nullptr;
4280
4281 return X;
4282}
4283
4285 Value *Cond = SI.getCondition();
4286 Value *Op0;
4287 ConstantInt *AddRHS;
4288 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
4289 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
4290 for (auto Case : SI.cases()) {
4291 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
4292 assert(isa<ConstantInt>(NewCase) &&
4293 "Result of expression should be constant");
4294 Case.setValue(cast<ConstantInt>(NewCase));
4295 }
4296 return replaceOperand(SI, 0, Op0);
4297 }
4298
4299 ConstantInt *SubLHS;
4300 if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
4301 // Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
4302 for (auto Case : SI.cases()) {
4303 Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
4304 assert(isa<ConstantInt>(NewCase) &&
4305 "Result of expression should be constant");
4306 Case.setValue(cast<ConstantInt>(NewCase));
4307 }
4308 return replaceOperand(SI, 0, Op0);
4309 }
4310
4311 uint64_t ShiftAmt;
4312 if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
4313 ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
4314 all_of(SI.cases(), [&](const auto &Case) {
4315 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
4316 })) {
4317 // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
4319 if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
4320 Shl->hasOneUse()) {
4321 Value *NewCond = Op0;
4322 if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
4323 // If the shift may wrap, we need to mask off the shifted bits.
4324 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4325 NewCond = Builder.CreateAnd(
4326 Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
4327 }
4328 for (auto Case : SI.cases()) {
4329 const APInt &CaseVal = Case.getCaseValue()->getValue();
4330 APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
4331 : CaseVal.lshr(ShiftAmt);
4332 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
4333 }
4334 return replaceOperand(SI, 0, NewCond);
4335 }
4336 }
4337
4338 // Fold switch(zext/sext(X)) into switch(X) if possible.
4339 if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
4340 bool IsZExt = isa<ZExtInst>(Cond);
4341 Type *SrcTy = Op0->getType();
4342 unsigned NewWidth = SrcTy->getScalarSizeInBits();
4343
4344 if (all_of(SI.cases(), [&](const auto &Case) {
4345 const APInt &CaseVal = Case.getCaseValue()->getValue();
4346 return IsZExt ? CaseVal.isIntN(NewWidth)
4347 : CaseVal.isSignedIntN(NewWidth);
4348 })) {
4349 for (auto &Case : SI.cases()) {
4350 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
4351 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
4352 }
4353 return replaceOperand(SI, 0, Op0);
4354 }
4355 }
4356
4357 // Fold switch(select cond, X, Y) into switch(X/Y) if possible
4358 if (auto *Select = dyn_cast<SelectInst>(Cond)) {
4359 if (Value *V =
4360 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true))
4361 return replaceOperand(SI, 0, V);
4362 if (Value *V =
4363 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false))
4364 return replaceOperand(SI, 0, V);
4365 }
4366
4367 KnownBits Known = computeKnownBits(Cond, &SI);
4368 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
4369 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
4370
4371 // Compute the number of leading bits we can ignore.
4372 // TODO: A better way to determine this would use ComputeNumSignBits().
4373 for (const auto &C : SI.cases()) {
4374 LeadingKnownZeros =
4375 std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
4376 LeadingKnownOnes =
4377 std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
4378 }
4379
4380 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
4381
4382 // Shrink the condition operand if the new type is smaller than the old type.
4383 // But do not shrink to a non-standard type, because backend can't generate
4384 // good code for that yet.
4385 // TODO: We can make it aggressive again after fixing PR39569.
4386 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
4387 shouldChangeType(Known.getBitWidth(), NewWidth)) {
4388 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
4389 Builder.SetInsertPoint(&SI);
4390 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
4391
4392 for (auto Case : SI.cases()) {
4393 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
4394 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
4395 }
4396 return replaceOperand(SI, 0, NewCond);
4397 }
4398
4399 if (isa<UndefValue>(Cond)) {
4400 handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
4401 return nullptr;
4402 }
4403 if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
4405 SI.findCaseValue(CI)->getCaseSuccessor());
4406 return nullptr;
4407 }
4408
4409 return nullptr;
4410}
4411
4413InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
4415 if (!WO)
4416 return nullptr;
4417
4418 Intrinsic::ID OvID = WO->getIntrinsicID();
4419 const APInt *C = nullptr;
4420 if (match(WO->getRHS(), m_APIntAllowPoison(C))) {
4421 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
4422 OvID == Intrinsic::umul_with_overflow)) {
4423 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
4424 if (C->isAllOnes())
4425 return BinaryOperator::CreateNeg(WO->getLHS());
4426 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
4427 if (C->isPowerOf2()) {
4428 return BinaryOperator::CreateShl(
4429 WO->getLHS(),
4430 ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
4431 }
4432 }
4433 }
4434
4435 // We're extracting from an overflow intrinsic. See if we're the only user.
4436 // That allows us to simplify multiple result intrinsics to simpler things
4437 // that just get one value.
4438 if (!WO->hasOneUse())
4439 return nullptr;
4440
4441 // Check if we're grabbing only the result of a 'with overflow' intrinsic
4442 // and replace it with a traditional binary instruction.
4443 if (*EV.idx_begin() == 0) {
4444 Instruction::BinaryOps BinOp = WO->getBinaryOp();
4445 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
4446 // Replace the old instruction's uses with poison.
4447 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
4449 return BinaryOperator::Create(BinOp, LHS, RHS);
4450 }
4451
4452 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
4453
4454 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
4455 if (OvID == Intrinsic::usub_with_overflow)
4456 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
4457
4458 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
4459 // +1 is not possible because we assume signed values.
4460 if (OvID == Intrinsic::smul_with_overflow &&
4461 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
4462 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
4463
4464 // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1
4465 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
4466 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
4467 // Only handle even bitwidths for performance reasons.
4468 if (BitWidth % 2 == 0)
4469 return new ICmpInst(
4470 ICmpInst::ICMP_UGT, WO->getLHS(),
4471 ConstantInt::get(WO->getLHS()->getType(),
4473 }
4474
4475 // If only the overflow result is used, and the right hand side is a
4476 // constant (or constant splat), we can remove the intrinsic by directly
4477 // checking for overflow.
4478 if (C) {
4479 // Compute the no-wrap range for LHS given RHS=C, then construct an
4480 // equivalent icmp, potentially using an offset.
4481 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
4482 WO->getBinaryOp(), *C, WO->getNoWrapKind());
4483
4484 CmpInst::Predicate Pred;
4485 APInt NewRHSC, Offset;
4486 NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
4487 auto *OpTy = WO->getRHS()->getType();
4488 auto *NewLHS = WO->getLHS();
4489 if (Offset != 0)
4490 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
4491 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
4492 ConstantInt::get(OpTy, NewRHSC));
4493 }
4494
4495 return nullptr;
4496}
4497
4500 InstCombiner::BuilderTy &Builder) {
4501 // Helper to fold frexp of select to select of frexp.
4502
4503 if (!SelectInst->hasOneUse() || !FrexpCall->hasOneUse())
4504 return nullptr;
4506 Value *TrueVal = SelectInst->getTrueValue();
4507 Value *FalseVal = SelectInst->getFalseValue();
4508
4509 const APFloat *ConstVal = nullptr;
4510 Value *VarOp = nullptr;
4511 bool ConstIsTrue = false;
4512
4513 if (match(TrueVal, m_APFloat(ConstVal))) {
4514 VarOp = FalseVal;
4515 ConstIsTrue = true;
4516 } else if (match(FalseVal, m_APFloat(ConstVal))) {
4517 VarOp = TrueVal;
4518 ConstIsTrue = false;
4519 } else {
4520 return nullptr;
4521 }
4522
4523 Builder.SetInsertPoint(&EV);
4524
4525 CallInst *NewFrexp =
4526 Builder.CreateCall(FrexpCall->getCalledFunction(), {VarOp}, "frexp");
4527 NewFrexp->copyIRFlags(FrexpCall);
4528
4529 Value *NewEV = Builder.CreateExtractValue(NewFrexp, 0, "mantissa");
4530
4531 int Exp;
4532 APFloat Mantissa = frexp(*ConstVal, Exp, APFloat::rmNearestTiesToEven);
4533
4534 Constant *ConstantMantissa = ConstantFP::get(TrueVal->getType(), Mantissa);
4535
4536 Value *NewSel = Builder.CreateSelectFMF(
4537 Cond, ConstIsTrue ? ConstantMantissa : NewEV,
4538 ConstIsTrue ? NewEV : ConstantMantissa, SelectInst, "select.frexp");
4539 return NewSel;
4540}
4542 Value *Agg = EV.getAggregateOperand();
4543
4544 if (!EV.hasIndices())
4545 return replaceInstUsesWith(EV, Agg);
4546
4547 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
4548 SQ.getWithInstruction(&EV)))
4549 return replaceInstUsesWith(EV, V);
4550
4551 Value *Cond, *TrueVal, *FalseVal;
4553 m_Value(Cond), m_Value(TrueVal), m_Value(FalseVal)))))) {
4554 auto *SelInst =
4555 cast<SelectInst>(cast<IntrinsicInst>(Agg)->getArgOperand(0));
4556 if (Value *Result =
4557 foldFrexpOfSelect(EV, cast<IntrinsicInst>(Agg), SelInst, Builder))
4558 return replaceInstUsesWith(EV, Result);
4559 }
4561 // We're extracting from an insertvalue instruction, compare the indices
4562 const unsigned *exti, *exte, *insi, *inse;
4563 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
4564 exte = EV.idx_end(), inse = IV->idx_end();
4565 exti != exte && insi != inse;
4566 ++exti, ++insi) {
4567 if (*insi != *exti)
4568 // The insert and extract both reference distinctly different elements.
4569 // This means the extract is not influenced by the insert, and we can
4570 // replace the aggregate operand of the extract with the aggregate
4571 // operand of the insert. i.e., replace
4572 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4573 // %E = extractvalue { i32, { i32 } } %I, 0
4574 // with
4575 // %E = extractvalue { i32, { i32 } } %A, 0
4576 return ExtractValueInst::Create(IV->getAggregateOperand(),
4577 EV.getIndices());
4578 }
4579 if (exti == exte && insi == inse)
4580 // Both iterators are at the end: Index lists are identical. Replace
4581 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4582 // %C = extractvalue { i32, { i32 } } %B, 1, 0
4583 // with "i32 42"
4584 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
4585 if (exti == exte) {
4586 // The extract list is a prefix of the insert list. i.e. replace
4587 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4588 // %E = extractvalue { i32, { i32 } } %I, 1
4589 // with
4590 // %X = extractvalue { i32, { i32 } } %A, 1
4591 // %E = insertvalue { i32 } %X, i32 42, 0
4592 // by switching the order of the insert and extract (though the
4593 // insertvalue should be left in, since it may have other uses).
4594 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
4595 EV.getIndices());
4596 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
4597 ArrayRef(insi, inse));
4598 }
4599 if (insi == inse)
4600 // The insert list is a prefix of the extract list
4601 // We can simply remove the common indices from the extract and make it
4602 // operate on the inserted value instead of the insertvalue result.
4603 // i.e., replace
4604 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4605 // %E = extractvalue { i32, { i32 } } %I, 1, 0
4606 // with
4607 // %E extractvalue { i32 } { i32 42 }, 0
4608 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
4609 ArrayRef(exti, exte));
4610 }
4611
4612 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4613 return R;
4614
4615 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
4616 // Bail out if the aggregate contains scalable vector type
4617 if (auto *STy = dyn_cast<StructType>(Agg->getType());
4618 STy && STy->isScalableTy())
4619 return nullptr;
4620
4621 // If the (non-volatile) load only has one use, we can rewrite this to a
4622 // load from a GEP. This reduces the size of the load. If a load is used
4623 // only by extractvalue instructions then this either must have been
4624 // optimized before, or it is a struct with padding, in which case we
4625 // don't want to do the transformation as it loses padding knowledge.
4626 if (L->isSimple() && L->hasOneUse()) {
4627 // extractvalue has integer indices, getelementptr has Value*s. Convert.
4628 SmallVector<Value*, 4> Indices;
4629 // Prefix an i32 0 since we need the first element.
4630 Indices.push_back(Builder.getInt32(0));
4631 for (unsigned Idx : EV.indices())
4632 Indices.push_back(Builder.getInt32(Idx));
4633
4634 // We need to insert these at the location of the old load, not at that of
4635 // the extractvalue.
4636 Builder.SetInsertPoint(L);
4637 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
4638 L->getPointerOperand(), Indices);
4639 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
4640 // Whatever aliasing information we had for the orignal load must also
4641 // hold for the smaller load, so propagate the annotations.
4642 NL->setAAMetadata(L->getAAMetadata());
4643 // Returning the load directly will cause the main loop to insert it in
4644 // the wrong spot, so use replaceInstUsesWith().
4645 return replaceInstUsesWith(EV, NL);
4646 }
4647 }
4648
4649 if (auto *PN = dyn_cast<PHINode>(Agg))
4650 if (Instruction *Res = foldOpIntoPhi(EV, PN))
4651 return Res;
4652
4653 // Canonicalize extract (select Cond, TV, FV)
4654 // -> select cond, (extract TV), (extract FV)
4655 if (auto *SI = dyn_cast<SelectInst>(Agg))
4656 if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true))
4657 return R;
4658
4659 // We could simplify extracts from other values. Note that nested extracts may
4660 // already be simplified implicitly by the above: extract (extract (insert) )
4661 // will be translated into extract ( insert ( extract ) ) first and then just
4662 // the value inserted, if appropriate. Similarly for extracts from single-use
4663 // loads: extract (extract (load)) will be translated to extract (load (gep))
4664 // and if again single-use then via load (gep (gep)) to load (gep).
4665 // However, double extracts from e.g. function arguments or return values
4666 // aren't handled yet.
4667 return nullptr;
4668}
4669
4670/// Return 'true' if the given typeinfo will match anything.
4671static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
4672 switch (Personality) {
4676 // The GCC C EH and Rust personality only exists to support cleanups, so
4677 // it's not clear what the semantics of catch clauses are.
4678 return false;
4680 return false;
4682 // While __gnat_all_others_value will match any Ada exception, it doesn't
4683 // match foreign exceptions (or didn't, before gcc-4.7).
4684 return false;
4695 return TypeInfo->isNullValue();
4696 }
4697 llvm_unreachable("invalid enum");
4698}
4699
4700static bool shorter_filter(const Value *LHS, const Value *RHS) {
4701 return
4702 cast<ArrayType>(LHS->getType())->getNumElements()
4703 <
4704 cast<ArrayType>(RHS->getType())->getNumElements();
4705}
4706
4708 // The logic here should be correct for any real-world personality function.
4709 // However if that turns out not to be true, the offending logic can always
4710 // be conditioned on the personality function, like the catch-all logic is.
4711 EHPersonality Personality =
4712 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
4713
4714 // Simplify the list of clauses, eg by removing repeated catch clauses
4715 // (these are often created by inlining).
4716 bool MakeNewInstruction = false; // If true, recreate using the following:
4717 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
4718 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
4719
4720 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
4721 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
4722 bool isLastClause = i + 1 == e;
4723 if (LI.isCatch(i)) {
4724 // A catch clause.
4725 Constant *CatchClause = LI.getClause(i);
4726 Constant *TypeInfo = CatchClause->stripPointerCasts();
4727
4728 // If we already saw this clause, there is no point in having a second
4729 // copy of it.
4730 if (AlreadyCaught.insert(TypeInfo).second) {
4731 // This catch clause was not already seen.
4732 NewClauses.push_back(CatchClause);
4733 } else {
4734 // Repeated catch clause - drop the redundant copy.
4735 MakeNewInstruction = true;
4736 }
4737
4738 // If this is a catch-all then there is no point in keeping any following
4739 // clauses or marking the landingpad as having a cleanup.
4740 if (isCatchAll(Personality, TypeInfo)) {
4741 if (!isLastClause)
4742 MakeNewInstruction = true;
4743 CleanupFlag = false;
4744 break;
4745 }
4746 } else {
4747 // A filter clause. If any of the filter elements were already caught
4748 // then they can be dropped from the filter. It is tempting to try to
4749 // exploit the filter further by saying that any typeinfo that does not
4750 // occur in the filter can't be caught later (and thus can be dropped).
4751 // However this would be wrong, since typeinfos can match without being
4752 // equal (for example if one represents a C++ class, and the other some
4753 // class derived from it).
4754 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
4755 Constant *FilterClause = LI.getClause(i);
4756 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
4757 unsigned NumTypeInfos = FilterType->getNumElements();
4758
4759 // An empty filter catches everything, so there is no point in keeping any
4760 // following clauses or marking the landingpad as having a cleanup. By
4761 // dealing with this case here the following code is made a bit simpler.
4762 if (!NumTypeInfos) {
4763 NewClauses.push_back(FilterClause);
4764 if (!isLastClause)
4765 MakeNewInstruction = true;
4766 CleanupFlag = false;
4767 break;
4768 }
4769
4770 bool MakeNewFilter = false; // If true, make a new filter.
4771 SmallVector<Constant *, 16> NewFilterElts; // New elements.
4772 if (isa<ConstantAggregateZero>(FilterClause)) {
4773 // Not an empty filter - it contains at least one null typeinfo.
4774 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
4775 Constant *TypeInfo =
4777 // If this typeinfo is a catch-all then the filter can never match.
4778 if (isCatchAll(Personality, TypeInfo)) {
4779 // Throw the filter away.
4780 MakeNewInstruction = true;
4781 continue;
4782 }
4783
4784 // There is no point in having multiple copies of this typeinfo, so
4785 // discard all but the first copy if there is more than one.
4786 NewFilterElts.push_back(TypeInfo);
4787 if (NumTypeInfos > 1)
4788 MakeNewFilter = true;
4789 } else {
4790 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
4791 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
4792 NewFilterElts.reserve(NumTypeInfos);
4793
4794 // Remove any filter elements that were already caught or that already
4795 // occurred in the filter. While there, see if any of the elements are
4796 // catch-alls. If so, the filter can be discarded.
4797 bool SawCatchAll = false;
4798 for (unsigned j = 0; j != NumTypeInfos; ++j) {
4799 Constant *Elt = Filter->getOperand(j);
4800 Constant *TypeInfo = Elt->stripPointerCasts();
4801 if (isCatchAll(Personality, TypeInfo)) {
4802 // This element is a catch-all. Bail out, noting this fact.
4803 SawCatchAll = true;
4804 break;
4805 }
4806
4807 // Even if we've seen a type in a catch clause, we don't want to
4808 // remove it from the filter. An unexpected type handler may be
4809 // set up for a call site which throws an exception of the same
4810 // type caught. In order for the exception thrown by the unexpected
4811 // handler to propagate correctly, the filter must be correctly
4812 // described for the call site.
4813 //
4814 // Example:
4815 //
4816 // void unexpected() { throw 1;}
4817 // void foo() throw (int) {
4818 // std::set_unexpected(unexpected);
4819 // try {
4820 // throw 2.0;
4821 // } catch (int i) {}
4822 // }
4823
4824 // There is no point in having multiple copies of the same typeinfo in
4825 // a filter, so only add it if we didn't already.
4826 if (SeenInFilter.insert(TypeInfo).second)
4827 NewFilterElts.push_back(cast<Constant>(Elt));
4828 }
4829 // A filter containing a catch-all cannot match anything by definition.
4830 if (SawCatchAll) {
4831 // Throw the filter away.
4832 MakeNewInstruction = true;
4833 continue;
4834 }
4835
4836 // If we dropped something from the filter, make a new one.
4837 if (NewFilterElts.size() < NumTypeInfos)
4838 MakeNewFilter = true;
4839 }
4840 if (MakeNewFilter) {
4841 FilterType = ArrayType::get(FilterType->getElementType(),
4842 NewFilterElts.size());
4843 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
4844 MakeNewInstruction = true;
4845 }
4846
4847 NewClauses.push_back(FilterClause);
4848
4849 // If the new filter is empty then it will catch everything so there is
4850 // no point in keeping any following clauses or marking the landingpad
4851 // as having a cleanup. The case of the original filter being empty was
4852 // already handled above.
4853 if (MakeNewFilter && !NewFilterElts.size()) {
4854 assert(MakeNewInstruction && "New filter but not a new instruction!");
4855 CleanupFlag = false;
4856 break;
4857 }
4858 }
4859 }
4860
4861 // If several filters occur in a row then reorder them so that the shortest
4862 // filters come first (those with the smallest number of elements). This is
4863 // advantageous because shorter filters are more likely to match, speeding up
4864 // unwinding, but mostly because it increases the effectiveness of the other
4865 // filter optimizations below.
4866 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
4867 unsigned j;
4868 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
4869 for (j = i; j != e; ++j)
4870 if (!isa<ArrayType>(NewClauses[j]->getType()))
4871 break;
4872
4873 // Check whether the filters are already sorted by length. We need to know
4874 // if sorting them is actually going to do anything so that we only make a
4875 // new landingpad instruction if it does.
4876 for (unsigned k = i; k + 1 < j; ++k)
4877 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
4878 // Not sorted, so sort the filters now. Doing an unstable sort would be
4879 // correct too but reordering filters pointlessly might confuse users.
4880 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
4882 MakeNewInstruction = true;
4883 break;
4884 }
4885
4886 // Look for the next batch of filters.
4887 i = j + 1;
4888 }
4889
4890 // If typeinfos matched if and only if equal, then the elements of a filter L
4891 // that occurs later than a filter F could be replaced by the intersection of
4892 // the elements of F and L. In reality two typeinfos can match without being
4893 // equal (for example if one represents a C++ class, and the other some class
4894 // derived from it) so it would be wrong to perform this transform in general.
4895 // However the transform is correct and useful if F is a subset of L. In that
4896 // case L can be replaced by F, and thus removed altogether since repeating a
4897 // filter is pointless. So here we look at all pairs of filters F and L where
4898 // L follows F in the list of clauses, and remove L if every element of F is
4899 // an element of L. This can occur when inlining C++ functions with exception
4900 // specifications.
4901 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
4902 // Examine each filter in turn.
4903 Value *Filter = NewClauses[i];
4904 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
4905 if (!FTy)
4906 // Not a filter - skip it.
4907 continue;
4908 unsigned FElts = FTy->getNumElements();
4909 // Examine each filter following this one. Doing this backwards means that
4910 // we don't have to worry about filters disappearing under us when removed.
4911 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
4912 Value *LFilter = NewClauses[j];
4913 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
4914 if (!LTy)
4915 // Not a filter - skip it.
4916 continue;
4917 // If Filter is a subset of LFilter, i.e. every element of Filter is also
4918 // an element of LFilter, then discard LFilter.
4919 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
4920 // If Filter is empty then it is a subset of LFilter.
4921 if (!FElts) {
4922 // Discard LFilter.
4923 NewClauses.erase(J);
4924 MakeNewInstruction = true;
4925 // Move on to the next filter.
4926 continue;
4927 }
4928 unsigned LElts = LTy->getNumElements();
4929 // If Filter is longer than LFilter then it cannot be a subset of it.
4930 if (FElts > LElts)
4931 // Move on to the next filter.
4932 continue;
4933 // At this point we know that LFilter has at least one element.
4934 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
4935 // Filter is a subset of LFilter iff Filter contains only zeros (as we
4936 // already know that Filter is not longer than LFilter).
4938 assert(FElts <= LElts && "Should have handled this case earlier!");
4939 // Discard LFilter.
4940 NewClauses.erase(J);
4941 MakeNewInstruction = true;
4942 }
4943 // Move on to the next filter.
4944 continue;
4945 }
4946 ConstantArray *LArray = cast<ConstantArray>(LFilter);
4947 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
4948 // Since Filter is non-empty and contains only zeros, it is a subset of
4949 // LFilter iff LFilter contains a zero.
4950 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
4951 for (unsigned l = 0; l != LElts; ++l)
4952 if (LArray->getOperand(l)->isNullValue()) {
4953 // LFilter contains a zero - discard it.
4954 NewClauses.erase(J);
4955 MakeNewInstruction = true;
4956 break;
4957 }
4958 // Move on to the next filter.
4959 continue;
4960 }
4961 // At this point we know that both filters are ConstantArrays. Loop over
4962 // operands to see whether every element of Filter is also an element of
4963 // LFilter. Since filters tend to be short this is probably faster than
4964 // using a method that scales nicely.
4966 bool AllFound = true;
4967 for (unsigned f = 0; f != FElts; ++f) {
4968 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
4969 AllFound = false;
4970 for (unsigned l = 0; l != LElts; ++l) {
4971 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
4972 if (LTypeInfo == FTypeInfo) {
4973 AllFound = true;
4974 break;
4975 }
4976 }
4977 if (!AllFound)
4978 break;
4979 }
4980 if (AllFound) {
4981 // Discard LFilter.
4982 NewClauses.erase(J);
4983 MakeNewInstruction = true;
4984 }
4985 // Move on to the next filter.
4986 }
4987 }
4988
4989 // If we changed any of the clauses, replace the old landingpad instruction
4990 // with a new one.
4991 if (MakeNewInstruction) {
4993 NewClauses.size());
4994 for (Constant *C : NewClauses)
4995 NLI->addClause(C);
4996 // A landing pad with no clauses must have the cleanup flag set. It is
4997 // theoretically possible, though highly unlikely, that we eliminated all
4998 // clauses. If so, force the cleanup flag to true.
4999 if (NewClauses.empty())
5000 CleanupFlag = true;
5001 NLI->setCleanup(CleanupFlag);
5002 return NLI;
5003 }
5004
5005 // Even if none of the clauses changed, we may nonetheless have understood
5006 // that the cleanup flag is pointless. Clear it if so.
5007 if (LI.isCleanup() != CleanupFlag) {
5008 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
5009 LI.setCleanup(CleanupFlag);
5010 return &LI;
5011 }
5012
5013 return nullptr;
5014}
5015
5016Value *
5018 // Try to push freeze through instructions that propagate but don't produce
5019 // poison as far as possible. If an operand of freeze does not produce poison
5020 // then push the freeze through to the operands that are not guaranteed
5021 // non-poison. The actual transform is as follows.
5022 // Op1 = ... ; Op1 can be poison
5023 // Op0 = Inst(Op1, NonPoisonOps...)
5024 // ... = Freeze(Op0)
5025 // =>
5026 // Op1 = ...
5027 // Op1.fr = Freeze(Op1)
5028 // ... = Inst(Op1.fr, NonPoisonOps...)
5029
5030 auto CanPushFreeze = [](Value *V) {
5031 if (!isa<Instruction>(V) || isa<PHINode>(V))
5032 return false;
5033
5034 // We can't push the freeze through an instruction which can itself create
5035 // poison. If the only source of new poison is flags, we can simply
5036 // strip them (since we know the only use is the freeze and nothing can
5037 // benefit from them.)
5039 /*ConsiderFlagsAndMetadata*/ false);
5040 };
5041
5042 // Pushing freezes up long instruction chains can be expensive. Instead,
5043 // we directly push the freeze all the way to the leaves. However, we leave
5044 // deduplication of freezes on the same value for freezeOtherUses().
5045 Use *OrigUse = &OrigFI.getOperandUse(0);
5048 Worklist.push_back(OrigUse);
5049 while (!Worklist.empty()) {
5050 auto *U = Worklist.pop_back_val();
5051 Value *V = U->get();
5052 if (!CanPushFreeze(V)) {
5053 // If we can't push through the original instruction, abort the transform.
5054 if (U == OrigUse)
5055 return nullptr;
5056
5057 auto *UserI = cast<Instruction>(U->getUser());
5058 Builder.SetInsertPoint(UserI);
5059 Value *Frozen = Builder.CreateFreeze(V, V->getName() + ".fr");
5060 U->set(Frozen);
5061 continue;
5062 }
5063
5064 auto *I = cast<Instruction>(V);
5065 if (!Visited.insert(I).second)
5066 continue;
5067
5068 // reverse() to emit freezes in a more natural order.
5069 for (Use &Op : reverse(I->operands())) {
5070 Value *OpV = Op.get();
5072 continue;
5073 Worklist.push_back(&Op);
5074 }
5075
5076 I->dropPoisonGeneratingAnnotations();
5077 this->Worklist.add(I);
5078 }
5079
5080 return OrigUse->get();
5081}
5082
5084 PHINode *PN) {
5085 // Detect whether this is a recurrence with a start value and some number of
5086 // backedge values. We'll check whether we can push the freeze through the
5087 // backedge values (possibly dropping poison flags along the way) until we
5088 // reach the phi again. In that case, we can move the freeze to the start
5089 // value.
5090 Use *StartU = nullptr;
5092 for (Use &U : PN->incoming_values()) {
5093 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
5094 // Add backedge value to worklist.
5095 Worklist.push_back(U.get());
5096 continue;
5097 }
5098
5099 // Don't bother handling multiple start values.
5100 if (StartU)
5101 return nullptr;
5102 StartU = &U;
5103 }
5104
5105 if (!StartU || Worklist.empty())
5106 return nullptr; // Not a recurrence.
5107
5108 Value *StartV = StartU->get();
5109 BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
5110 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
5111 // We can't insert freeze if the start value is the result of the
5112 // terminator (e.g. an invoke).
5113 if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
5114 return nullptr;
5115
5118 while (!Worklist.empty()) {
5119 Value *V = Worklist.pop_back_val();
5120 if (!Visited.insert(V).second)
5121 continue;
5122
5123 if (Visited.size() > 32)
5124 return nullptr; // Limit the total number of values we inspect.
5125
5126 // Assume that PN is non-poison, because it will be after the transform.
5127 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
5128 continue;
5129
5132 /*ConsiderFlagsAndMetadata*/ false))
5133 return nullptr;
5134
5135 DropFlags.push_back(I);
5136 append_range(Worklist, I->operands());
5137 }
5138
5139 for (Instruction *I : DropFlags)
5140 I->dropPoisonGeneratingAnnotations();
5141
5142 if (StartNeedsFreeze) {
5143 Builder.SetInsertPoint(StartBB->getTerminator());
5144 Value *FrozenStartV = Builder.CreateFreeze(StartV,
5145 StartV->getName() + ".fr");
5146 replaceUse(*StartU, FrozenStartV);
5147 }
5148 return replaceInstUsesWith(FI, PN);
5149}
5150
5152 Value *Op = FI.getOperand(0);
5153
5154 if (isa<Constant>(Op) || Op->hasOneUse())
5155 return false;
5156
5157 // Move the freeze directly after the definition of its operand, so that
5158 // it dominates the maximum number of uses. Note that it may not dominate
5159 // *all* uses if the operand is an invoke/callbr and the use is in a phi on
5160 // the normal/default destination. This is why the domination check in the
5161 // replacement below is still necessary.
5162 BasicBlock::iterator MoveBefore;
5163 if (isa<Argument>(Op)) {
5164 MoveBefore =
5166 } else {
5167 auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
5168 if (!MoveBeforeOpt)
5169 return false;
5170 MoveBefore = *MoveBeforeOpt;
5171 }
5172
5173 // Re-point iterator to come after any debug-info records.
5174 MoveBefore.setHeadBit(false);
5175
5176 bool Changed = false;
5177 if (&FI != &*MoveBefore) {
5178 FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
5179 Changed = true;
5180 }
5181
5182 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
5183 bool Dominates = DT.dominates(&FI, U);
5184 Changed |= Dominates;
5185 return Dominates;
5186 });
5187
5188 return Changed;
5189}
5190
5191// Check if any direct or bitcast user of this value is a shuffle instruction.
5193 for (auto *U : V->users()) {
5195 return true;
5196 else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
5197 return true;
5198 }
5199 return false;
5200}
5201
5203 Value *Op0 = I.getOperand(0);
5204
5205 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
5206 return replaceInstUsesWith(I, V);
5207
5208 // freeze (phi const, x) --> phi const, (freeze x)
5209 if (auto *PN = dyn_cast<PHINode>(Op0)) {
5210 if (Instruction *NV = foldOpIntoPhi(I, PN))
5211 return NV;
5212 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
5213 return NV;
5214 }
5215
5217 return replaceInstUsesWith(I, NI);
5218
5219 // If I is freeze(undef), check its uses and fold it to a fixed constant.
5220 // - or: pick -1
5221 // - select's condition: if the true value is constant, choose it by making
5222 // the condition true.
5223 // - phi: pick the common constant across operands
5224 // - default: pick 0
5225 //
5226 // Note that this transform is intentionally done here rather than
5227 // via an analysis in InstSimplify or at individual user sites. That is
5228 // because we must produce the same value for all uses of the freeze -
5229 // it's the reason "freeze" exists!
5230 //
5231 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
5232 // duplicating logic for binops at least.
5233 auto getUndefReplacement = [&](Type *Ty) {
5234 auto pickCommonConstantFromPHI = [](PHINode &PN) -> Value * {
5235 // phi(freeze(undef), C, C). Choose C for freeze so the PHI can be
5236 // removed.
5237 Constant *BestValue = nullptr;
5238 for (Value *V : PN.incoming_values()) {
5239 if (match(V, m_Freeze(m_Undef())))
5240 continue;
5241
5243 if (!C)
5244 return nullptr;
5245
5247 return nullptr;
5248
5249 if (BestValue && BestValue != C)
5250 return nullptr;
5251
5252 BestValue = C;
5253 }
5254 return BestValue;
5255 };
5256
5257 Value *NullValue = Constant::getNullValue(Ty);
5258 Value *BestValue = nullptr;
5259 for (auto *U : I.users()) {
5260 Value *V = NullValue;
5261 if (match(U, m_Or(m_Value(), m_Value())))
5263 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
5264 V = ConstantInt::getTrue(Ty);
5265 else if (match(U, m_c_Select(m_Specific(&I), m_Value(V)))) {
5266 if (V == &I || !isGuaranteedNotToBeUndefOrPoison(V, &AC, &I, &DT))
5267 V = NullValue;
5268 } else if (auto *PHI = dyn_cast<PHINode>(U)) {
5269 if (Value *MaybeV = pickCommonConstantFromPHI(*PHI))
5270 V = MaybeV;
5271 }
5272
5273 if (!BestValue)
5274 BestValue = V;
5275 else if (BestValue != V)
5276 BestValue = NullValue;
5277 }
5278 assert(BestValue && "Must have at least one use");
5279 assert(BestValue != &I && "Cannot replace with itself");
5280 return BestValue;
5281 };
5282
5283 if (match(Op0, m_Undef())) {
5284 // Don't fold freeze(undef/poison) if it's used as a vector operand in
5285 // a shuffle. This may improve codegen for shuffles that allow
5286 // unspecified inputs.
5288 return nullptr;
5289 return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
5290 }
5291
5292 auto getFreezeVectorReplacement = [](Constant *C) -> Constant * {
5293 Type *Ty = C->getType();
5294 auto *VTy = dyn_cast<FixedVectorType>(Ty);
5295 if (!VTy)
5296 return nullptr;
5297 unsigned NumElts = VTy->getNumElements();
5298 Constant *BestValue = Constant::getNullValue(VTy->getScalarType());
5299 for (unsigned i = 0; i != NumElts; ++i) {
5300 Constant *EltC = C->getAggregateElement(i);
5301 if (EltC && !match(EltC, m_Undef())) {
5302 BestValue = EltC;
5303 break;
5304 }
5305 }
5306 return Constant::replaceUndefsWith(C, BestValue);
5307 };
5308
5309 Constant *C;
5310 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement() &&
5311 !C->containsConstantExpression()) {
5312 if (Constant *Repl = getFreezeVectorReplacement(C))
5313 return replaceInstUsesWith(I, Repl);
5314 }
5315
5316 // Replace uses of Op with freeze(Op).
5317 if (freezeOtherUses(I))
5318 return &I;
5319
5320 return nullptr;
5321}
5322
5323/// Check for case where the call writes to an otherwise dead alloca. This
5324/// shows up for unused out-params in idiomatic C/C++ code. Note that this
5325/// helper *only* analyzes the write; doesn't check any other legality aspect.
5327 auto *CB = dyn_cast<CallBase>(I);
5328 if (!CB)
5329 // TODO: handle e.g. store to alloca here - only worth doing if we extend
5330 // to allow reload along used path as described below. Otherwise, this
5331 // is simply a store to a dead allocation which will be removed.
5332 return false;
5333 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
5334 if (!Dest)
5335 return false;
5336 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
5337 if (!AI)
5338 // TODO: allow malloc?
5339 return false;
5340 // TODO: allow memory access dominated by move point? Note that since AI
5341 // could have a reference to itself captured by the call, we would need to
5342 // account for cycles in doing so.
5343 SmallVector<const User *> AllocaUsers;
5345 auto pushUsers = [&](const Instruction &I) {
5346 for (const User *U : I.users()) {
5347 if (Visited.insert(U).second)
5348 AllocaUsers.push_back(U);
5349 }
5350 };
5351 pushUsers(*AI);
5352 while (!AllocaUsers.empty()) {
5353 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
5354 if (isa<GetElementPtrInst>(UserI) || isa<AddrSpaceCastInst>(UserI)) {
5355 pushUsers(*UserI);
5356 continue;
5357 }
5358 if (UserI == CB)
5359 continue;
5360 // TODO: support lifetime.start/end here
5361 return false;
5362 }
5363 return true;
5364}
5365
5366/// Try to move the specified instruction from its current block into the
5367/// beginning of DestBlock, which can only happen if it's safe to move the
5368/// instruction past all of the instructions between it and the end of its
5369/// block.
5371 BasicBlock *DestBlock) {
5372 BasicBlock *SrcBlock = I->getParent();
5373
5374 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
5375 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
5376 I->isTerminator())
5377 return false;
5378
5379 // Do not sink static or dynamic alloca instructions. Static allocas must
5380 // remain in the entry block, and dynamic allocas must not be sunk in between
5381 // a stacksave / stackrestore pair, which would incorrectly shorten its
5382 // lifetime.
5383 if (isa<AllocaInst>(I))
5384 return false;
5385
5386 // Do not sink into catchswitch blocks.
5387 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
5388 return false;
5389
5390 // Do not sink convergent call instructions.
5391 if (auto *CI = dyn_cast<CallInst>(I)) {
5392 if (CI->isConvergent())
5393 return false;
5394 }
5395
5396 // Unless we can prove that the memory write isn't visibile except on the
5397 // path we're sinking to, we must bail.
5398 if (I->mayWriteToMemory()) {
5399 if (!SoleWriteToDeadLocal(I, TLI))
5400 return false;
5401 }
5402
5403 // We can only sink load instructions if there is nothing between the load and
5404 // the end of block that could change the value.
5405 if (I->mayReadFromMemory() &&
5406 !I->hasMetadata(LLVMContext::MD_invariant_load)) {
5407 // We don't want to do any sophisticated alias analysis, so we only check
5408 // the instructions after I in I's parent block if we try to sink to its
5409 // successor block.
5410 if (DestBlock->getUniquePredecessor() != I->getParent())
5411 return false;
5412 for (BasicBlock::iterator Scan = std::next(I->getIterator()),
5413 E = I->getParent()->end();
5414 Scan != E; ++Scan)
5415 if (Scan->mayWriteToMemory())
5416 return false;
5417 }
5418
5419 I->dropDroppableUses([&](const Use *U) {
5420 auto *I = dyn_cast<Instruction>(U->getUser());
5421 if (I && I->getParent() != DestBlock) {
5422 Worklist.add(I);
5423 return true;
5424 }
5425 return false;
5426 });
5427 /// FIXME: We could remove droppable uses that are not dominated by
5428 /// the new position.
5429
5430 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
5431 I->moveBefore(*DestBlock, InsertPos);
5432 ++NumSunkInst;
5433
5434 // Also sink all related debug uses from the source basic block. Otherwise we
5435 // get debug use before the def. Attempt to salvage debug uses first, to
5436 // maximise the range variables have location for. If we cannot salvage, then
5437 // mark the location undef: we know it was supposed to receive a new location
5438 // here, but that computation has been sunk.
5439 SmallVector<DbgVariableRecord *, 2> DbgVariableRecords;
5440 findDbgUsers(I, DbgVariableRecords);
5441 if (!DbgVariableRecords.empty())
5442 tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock,
5443 DbgVariableRecords);
5444
5445 // PS: there are numerous flaws with this behaviour, not least that right now
5446 // assignments can be re-ordered past other assignments to the same variable
5447 // if they use different Values. Creating more undef assignements can never be
5448 // undone. And salvaging all users outside of this block can un-necessarily
5449 // alter the lifetime of the live-value that the variable refers to.
5450 // Some of these things can be resolved by tolerating debug use-before-defs in
5451 // LLVM-IR, however it depends on the instruction-referencing CodeGen backend
5452 // being used for more architectures.
5453
5454 return true;
5455}
5456
5458 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
5459 BasicBlock *DestBlock,
5460 SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
5461 // For all debug values in the destination block, the sunk instruction
5462 // will still be available, so they do not need to be dropped.
5463
5464 // Fetch all DbgVariableRecords not already in the destination.
5465 SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage;
5466 for (auto &DVR : DbgVariableRecords)
5467 if (DVR->getParent() != DestBlock)
5468 DbgVariableRecordsToSalvage.push_back(DVR);
5469
5470 // Fetch a second collection, of DbgVariableRecords in the source block that
5471 // we're going to sink.
5472 SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink;
5473 for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage)
5474 if (DVR->getParent() == SrcBlock)
5475 DbgVariableRecordsToSink.push_back(DVR);
5476
5477 // Sort DbgVariableRecords according to their position in the block. This is a
5478 // partial order: DbgVariableRecords attached to different instructions will
5479 // be ordered by the instruction order, but DbgVariableRecords attached to the
5480 // same instruction won't have an order.
5481 auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool {
5482 return B->getInstruction()->comesBefore(A->getInstruction());
5483 };
5484 llvm::stable_sort(DbgVariableRecordsToSink, Order);
5485
5486 // If there are two assignments to the same variable attached to the same
5487 // instruction, the ordering between the two assignments is important. Scan
5488 // for this (rare) case and establish which is the last assignment.
5489 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
5491 if (DbgVariableRecordsToSink.size() > 1) {
5493 // Count how many assignments to each variable there is per instruction.
5494 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
5495 DebugVariable DbgUserVariable =
5496 DebugVariable(DVR->getVariable(), DVR->getExpression(),
5497 DVR->getDebugLoc()->getInlinedAt());
5498 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
5499 }
5500
5501 // If there are any instructions with two assignments, add them to the
5502 // FilterOutMap to record that they need extra filtering.
5504 for (auto It : CountMap) {
5505 if (It.second > 1) {
5506 FilterOutMap[It.first] = nullptr;
5507 DupSet.insert(It.first.first);
5508 }
5509 }
5510
5511 // For all instruction/variable pairs needing extra filtering, find the
5512 // latest assignment.
5513 for (const Instruction *Inst : DupSet) {
5514 for (DbgVariableRecord &DVR :
5515 llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) {
5516 DebugVariable DbgUserVariable =
5517 DebugVariable(DVR.getVariable(), DVR.getExpression(),
5518 DVR.getDebugLoc()->getInlinedAt());
5519 auto FilterIt =
5520 FilterOutMap.find(std::make_pair(Inst, DbgUserVariable));
5521 if (FilterIt == FilterOutMap.end())
5522 continue;
5523 if (FilterIt->second != nullptr)
5524 continue;
5525 FilterIt->second = &DVR;
5526 }
5527 }
5528 }
5529
5530 // Perform cloning of the DbgVariableRecords that we plan on sinking, filter
5531 // out any duplicate assignments identified above.
5533 SmallSet<DebugVariable, 4> SunkVariables;
5534 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
5536 continue;
5537
5538 DebugVariable DbgUserVariable =
5539 DebugVariable(DVR->getVariable(), DVR->getExpression(),
5540 DVR->getDebugLoc()->getInlinedAt());
5541
5542 // For any variable where there were multiple assignments in the same place,
5543 // ignore all but the last assignment.
5544 if (!FilterOutMap.empty()) {
5545 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
5546 auto It = FilterOutMap.find(IVP);
5547
5548 // Filter out.
5549 if (It != FilterOutMap.end() && It->second != DVR)
5550 continue;
5551 }
5552
5553 if (!SunkVariables.insert(DbgUserVariable).second)
5554 continue;
5555
5556 if (DVR->isDbgAssign())
5557 continue;
5558
5559 DVRClones.emplace_back(DVR->clone());
5560 LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n');
5561 }
5562
5563 // Perform salvaging without the clones, then sink the clones.
5564 if (DVRClones.empty())
5565 return;
5566
5567 salvageDebugInfoForDbgValues(*I, DbgVariableRecordsToSalvage);
5568
5569 // The clones are in reverse order of original appearance. Assert that the
5570 // head bit is set on the iterator as we _should_ have received it via
5571 // getFirstInsertionPt. Inserting like this will reverse the clone order as
5572 // we'll repeatedly insert at the head, such as:
5573 // DVR-3 (third insertion goes here)
5574 // DVR-2 (second insertion goes here)
5575 // DVR-1 (first insertion goes here)
5576 // Any-Prior-DVRs
5577 // InsertPtInst
5578 assert(InsertPos.getHeadBit());
5579 for (DbgVariableRecord *DVRClone : DVRClones) {
5580 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
5581 LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n');
5582 }
5583}
5584
5586 while (!Worklist.isEmpty()) {
5587 // Walk deferred instructions in reverse order, and push them to the
5588 // worklist, which means they'll end up popped from the worklist in-order.
5589 while (Instruction *I = Worklist.popDeferred()) {
5590 // Check to see if we can DCE the instruction. We do this already here to
5591 // reduce the number of uses and thus allow other folds to trigger.
5592 // Note that eraseInstFromFunction() may push additional instructions on
5593 // the deferred worklist, so this will DCE whole instruction chains.
5596 ++NumDeadInst;
5597 continue;
5598 }
5599
5600 Worklist.push(I);
5601 }
5602
5603 Instruction *I = Worklist.removeOne();
5604 if (I == nullptr) continue; // skip null values.
5605
5606 // Check to see if we can DCE the instruction.
5609 ++NumDeadInst;
5610 continue;
5611 }
5612
5613 if (!DebugCounter::shouldExecute(VisitCounter))
5614 continue;
5615
5616 // See if we can trivially sink this instruction to its user if we can
5617 // prove that the successor is not executed more frequently than our block.
5618 // Return the UserBlock if successful.
5619 auto getOptionalSinkBlockForInst =
5620 [this](Instruction *I) -> std::optional<BasicBlock *> {
5621 if (!EnableCodeSinking)
5622 return std::nullopt;
5623
5624 BasicBlock *BB = I->getParent();
5625 BasicBlock *UserParent = nullptr;
5626 unsigned NumUsers = 0;
5627
5628 for (Use &U : I->uses()) {
5629 User *User = U.getUser();
5630 if (User->isDroppable())
5631 continue;
5632 if (NumUsers > MaxSinkNumUsers)
5633 return std::nullopt;
5634
5635 Instruction *UserInst = cast<Instruction>(User);
5636 // Special handling for Phi nodes - get the block the use occurs in.
5637 BasicBlock *UserBB = UserInst->getParent();
5638 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
5639 UserBB = PN->getIncomingBlock(U);
5640 // Bail out if we have uses in different blocks. We don't do any
5641 // sophisticated analysis (i.e finding NearestCommonDominator of these
5642 // use blocks).
5643 if (UserParent && UserParent != UserBB)
5644 return std::nullopt;
5645 UserParent = UserBB;
5646
5647 // Make sure these checks are done only once, naturally we do the checks
5648 // the first time we get the userparent, this will save compile time.
5649 if (NumUsers == 0) {
5650 // Try sinking to another block. If that block is unreachable, then do
5651 // not bother. SimplifyCFG should handle it.
5652 if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
5653 return std::nullopt;
5654
5655 auto *Term = UserParent->getTerminator();
5656 // See if the user is one of our successors that has only one
5657 // predecessor, so that we don't have to split the critical edge.
5658 // Another option where we can sink is a block that ends with a
5659 // terminator that does not pass control to other block (such as
5660 // return or unreachable or resume). In this case:
5661 // - I dominates the User (by SSA form);
5662 // - the User will be executed at most once.
5663 // So sinking I down to User is always profitable or neutral.
5664 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
5665 return std::nullopt;
5666
5667 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
5668 }
5669
5670 NumUsers++;
5671 }
5672
5673 // No user or only has droppable users.
5674 if (!UserParent)
5675 return std::nullopt;
5676
5677 return UserParent;
5678 };
5679
5680 auto OptBB = getOptionalSinkBlockForInst(I);
5681 if (OptBB) {
5682 auto *UserParent = *OptBB;
5683 // Okay, the CFG is simple enough, try to sink this instruction.
5684 if (tryToSinkInstruction(I, UserParent)) {
5685 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
5686 MadeIRChange = true;
5687 // We'll add uses of the sunk instruction below, but since
5688 // sinking can expose opportunities for it's *operands* add
5689 // them to the worklist
5690 for (Use &U : I->operands())
5691 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
5692 Worklist.push(OpI);
5693 }
5694 }
5695
5696 // Now that we have an instruction, try combining it to simplify it.
5697 Builder.SetInsertPoint(I);
5698 Builder.CollectMetadataToCopy(
5699 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5700
5701#ifndef NDEBUG
5702 std::string OrigI;
5703#endif
5704 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS););
5705 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
5706
5707 if (Instruction *Result = visit(*I)) {
5708 ++NumCombined;
5709 // Should we replace the old instruction with a new one?
5710 if (Result != I) {
5711 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
5712 << " New = " << *Result << '\n');
5713
5714 // We copy the old instruction's DebugLoc to the new instruction, unless
5715 // InstCombine already assigned a DebugLoc to it, in which case we
5716 // should trust the more specifically selected DebugLoc.
5717 Result->setDebugLoc(Result->getDebugLoc().orElse(I->getDebugLoc()));
5718 // We also copy annotation metadata to the new instruction.
5719 Result->copyMetadata(*I, LLVMContext::MD_annotation);
5720 // Everything uses the new instruction now.
5721 I->replaceAllUsesWith(Result);
5722
5723 // Move the name to the new instruction first.
5724 Result->takeName(I);
5725
5726 // Insert the new instruction into the basic block...
5727 BasicBlock *InstParent = I->getParent();
5728 BasicBlock::iterator InsertPos = I->getIterator();
5729
5730 // Are we replace a PHI with something that isn't a PHI, or vice versa?
5731 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
5732 // We need to fix up the insertion point.
5733 if (isa<PHINode>(I)) // PHI -> Non-PHI
5734 InsertPos = InstParent->getFirstInsertionPt();
5735 else // Non-PHI -> PHI
5736 InsertPos = InstParent->getFirstNonPHIIt();
5737 }
5738
5739 Result->insertInto(InstParent, InsertPos);
5740
5741 // Push the new instruction and any users onto the worklist.
5742 Worklist.pushUsersToWorkList(*Result);
5743 Worklist.push(Result);
5744
5746 } else {
5747 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
5748 << " New = " << *I << '\n');
5749
5750 // If the instruction was modified, it's possible that it is now dead.
5751 // if so, remove it.
5754 } else {
5755 Worklist.pushUsersToWorkList(*I);
5756 Worklist.push(I);
5757 }
5758 }
5759 MadeIRChange = true;
5760 }
5761 }
5762
5763 Worklist.zap();
5764 return MadeIRChange;
5765}
5766
5767// Track the scopes used by !alias.scope and !noalias. In a function, a
5768// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
5769// by both sets. If not, the declaration of the scope can be safely omitted.
5770// The MDNode of the scope can be omitted as well for the instructions that are
5771// part of this function. We do not do that at this point, as this might become
5772// too time consuming to do.
5774 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
5775 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
5776
5777public:
5779 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
5780 if (!I->hasMetadataOtherThanDebugLoc())
5781 return;
5782
5783 auto Track = [](Metadata *ScopeList, auto &Container) {
5784 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
5785 if (!MDScopeList || !Container.insert(MDScopeList).second)
5786 return;
5787 for (const auto &MDOperand : MDScopeList->operands())
5788 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
5789 Container.insert(MDScope);
5790 };
5791
5792 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5793 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5794 }
5795
5798 if (!Decl)
5799 return false;
5800
5801 assert(Decl->use_empty() &&
5802 "llvm.experimental.noalias.scope.decl in use ?");
5803 const MDNode *MDSL = Decl->getScopeList();
5804 assert(MDSL->getNumOperands() == 1 &&
5805 "llvm.experimental.noalias.scope should refer to a single scope");
5806 auto &MDOperand = MDSL->getOperand(0);
5807 if (auto *MD = dyn_cast<MDNode>(MDOperand))
5808 return !UsedAliasScopesAndLists.contains(MD) ||
5809 !UsedNoAliasScopesAndLists.contains(MD);
5810
5811 // Not an MDNode ? throw away.
5812 return true;
5813 }
5814};
5815
5816/// Populate the IC worklist from a function, by walking it in reverse
5817/// post-order and adding all reachable code to the worklist.
5818///
5819/// This has a couple of tricks to make the code faster and more powerful. In
5820/// particular, we constant fold and DCE instructions as we go, to avoid adding
5821/// them to the worklist (this significantly speeds up instcombine on code where
5822/// many instructions are dead or constant). Additionally, if we find a branch
5823/// whose condition is a known constant, we only visit the reachable successors.
5825 bool MadeIRChange = false;
5827 SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
5828 DenseMap<Constant *, Constant *> FoldedConstants;
5829 AliasScopeTracker SeenAliasScopes;
5830
5831 auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
5832 for (BasicBlock *Succ : successors(BB))
5833 if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
5834 for (PHINode &PN : Succ->phis())
5835 for (Use &U : PN.incoming_values())
5836 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
5837 U.set(PoisonValue::get(PN.getType()));
5838 MadeIRChange = true;
5839 }
5840 };
5841
5842 for (BasicBlock *BB : RPOT) {
5843 if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
5844 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
5845 })) {
5846 HandleOnlyLiveSuccessor(BB, nullptr);
5847 continue;
5848 }
5849 LiveBlocks.insert(BB);
5850
5851 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
5852 // ConstantProp instruction if trivially constant.
5853 if (!Inst.use_empty() &&
5854 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
5855 if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
5856 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
5857 << '\n');
5858 Inst.replaceAllUsesWith(C);
5859 ++NumConstProp;
5860 if (isInstructionTriviallyDead(&Inst, &TLI))
5861 Inst.eraseFromParent();
5862 MadeIRChange = true;
5863 continue;
5864 }
5865
5866 // See if we can constant fold its operands.
5867 for (Use &U : Inst.operands()) {
5869 continue;
5870
5871 auto *C = cast<Constant>(U);
5872 Constant *&FoldRes = FoldedConstants[C];
5873 if (!FoldRes)
5874 FoldRes = ConstantFoldConstant(C, DL, &TLI);
5875
5876 if (FoldRes != C) {
5877 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
5878 << "\n Old = " << *C
5879 << "\n New = " << *FoldRes << '\n');
5880 U = FoldRes;
5881 MadeIRChange = true;
5882 }
5883 }
5884
5885 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
5886 // these call instructions consumes non-trivial amount of time and
5887 // provides no value for the optimization.
5888 if (!Inst.isDebugOrPseudoInst()) {
5889 InstrsForInstructionWorklist.push_back(&Inst);
5890 SeenAliasScopes.analyse(&Inst);
5891 }
5892 }
5893
5894 // If this is a branch or switch on a constant, mark only the single
5895 // live successor. Otherwise assume all successors are live.
5896 Instruction *TI = BB->getTerminator();
5897 if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
5898 if (isa<UndefValue>(BI->getCondition())) {
5899 // Branch on undef is UB.
5900 HandleOnlyLiveSuccessor(BB, nullptr);
5901 continue;
5902 }
5903 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
5904 bool CondVal = Cond->getZExtValue();
5905 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5906 continue;
5907 }
5908 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
5909 if (isa<UndefValue>(SI->getCondition())) {
5910 // Switch on undef is UB.
5911 HandleOnlyLiveSuccessor(BB, nullptr);
5912 continue;
5913 }
5914 if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
5915 HandleOnlyLiveSuccessor(BB,
5916 SI->findCaseValue(Cond)->getCaseSuccessor());
5917 continue;
5918 }
5919 }
5920 }
5921
5922 // Remove instructions inside unreachable blocks. This prevents the
5923 // instcombine code from having to deal with some bad special cases, and
5924 // reduces use counts of instructions.
5925 for (BasicBlock &BB : F) {
5926 if (LiveBlocks.count(&BB))
5927 continue;
5928
5929 unsigned NumDeadInstInBB;
5930 NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
5931
5932 MadeIRChange |= NumDeadInstInBB != 0;
5933 NumDeadInst += NumDeadInstInBB;
5934 }
5935
5936 // Once we've found all of the instructions to add to instcombine's worklist,
5937 // add them in reverse order. This way instcombine will visit from the top
5938 // of the function down. This jives well with the way that it adds all uses
5939 // of instructions to the worklist after doing a transformation, thus avoiding
5940 // some N^2 behavior in pathological cases.
5941 Worklist.reserve(InstrsForInstructionWorklist.size());
5942 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
5943 // DCE instruction if trivially dead. As we iterate in reverse program
5944 // order here, we will clean up whole chains of dead instructions.
5945 if (isInstructionTriviallyDead(Inst, &TLI) ||
5946 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
5947 ++NumDeadInst;
5948 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
5949 salvageDebugInfo(*Inst);
5950 Inst->eraseFromParent();
5951 MadeIRChange = true;
5952 continue;
5953 }
5954
5955 Worklist.push(Inst);
5956 }
5957
5958 return MadeIRChange;
5959}
5960
5962 // Collect backedges.
5964 for (BasicBlock *BB : RPOT) {
5965 Visited.insert(BB);
5966 for (BasicBlock *Succ : successors(BB))
5967 if (Visited.contains(Succ))
5968 BackEdges.insert({BB, Succ});
5969 }
5970 ComputedBackEdges = true;
5971}
5972
5978 const InstCombineOptions &Opts) {
5979 auto &DL = F.getDataLayout();
5980 bool VerifyFixpoint = Opts.VerifyFixpoint &&
5981 !F.hasFnAttribute("instcombine-no-verify-fixpoint");
5982
5983 /// Builder - This is an IRBuilder that automatically inserts new
5984 /// instructions into the worklist when they are created.
5986 F.getContext(), TargetFolder(DL),
5987 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
5988 Worklist.add(I);
5989 if (auto *Assume = dyn_cast<AssumeInst>(I))
5990 AC.registerAssumption(Assume);
5991 }));
5992
5994
5995 // Lower dbg.declare intrinsics otherwise their value may be clobbered
5996 // by instcombiner.
5997 bool MadeIRChange = false;
5999 MadeIRChange = LowerDbgDeclare(F);
6000
6001 // Iterate while there is work to do.
6002 unsigned Iteration = 0;
6003 while (true) {
6004 if (Iteration >= Opts.MaxIterations && !VerifyFixpoint) {
6005 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
6006 << " on " << F.getName()
6007 << " reached; stopping without verifying fixpoint\n");
6008 break;
6009 }
6010
6011 ++Iteration;
6012 ++NumWorklistIterations;
6013 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
6014 << F.getName() << "\n");
6015
6016 InstCombinerImpl IC(Worklist, Builder, F, AA, AC, TLI, TTI, DT, ORE, BFI,
6017 BPI, PSI, DL, RPOT);
6019 bool MadeChangeInThisIteration = IC.prepareWorklist(F);
6020 MadeChangeInThisIteration |= IC.run();
6021 if (!MadeChangeInThisIteration)
6022 break;
6023
6024 MadeIRChange = true;
6025 if (Iteration > Opts.MaxIterations) {
6027 "Instruction Combining on " + Twine(F.getName()) +
6028 " did not reach a fixpoint after " + Twine(Opts.MaxIterations) +
6029 " iterations. " +
6030 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
6031 "'instcombine-no-verify-fixpoint' to suppress this error.");
6032 }
6033 }
6034
6035 if (Iteration == 1)
6036 ++NumOneIteration;
6037 else if (Iteration == 2)
6038 ++NumTwoIterations;
6039 else if (Iteration == 3)
6040 ++NumThreeIterations;
6041 else
6042 ++NumFourOrMoreIterations;
6043
6044 return MadeIRChange;
6045}
6046
6048
6050 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
6051 static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
6052 OS, MapClassName2PassName);
6053 OS << '<';
6054 OS << "max-iterations=" << Options.MaxIterations << ";";
6055 OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
6056 OS << '>';
6057}
6058
6059char InstCombinePass::ID = 0;
6060
6063 auto &LRT = AM.getResult<LastRunTrackingAnalysis>(F);
6064 // No changes since last InstCombine pass, exit early.
6065 if (LRT.shouldSkip(&ID))
6066 return PreservedAnalyses::all();
6067
6068 auto &AC = AM.getResult<AssumptionAnalysis>(F);
6069 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
6070 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
6072 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
6073
6074 auto *AA = &AM.getResult<AAManager>(F);
6075 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
6076 ProfileSummaryInfo *PSI =
6077 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
6078 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
6079 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
6081
6082 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
6083 BFI, BPI, PSI, Options)) {
6084 // No changes, all analyses are preserved.
6085 LRT.update(&ID, /*Changed=*/false);
6086 return PreservedAnalyses::all();
6087 }
6088
6089 // Mark all the analyses that instcombine updates as preserved.
6091 LRT.update(&ID, /*Changed=*/true);
6094 return PA;
6095}
6096
6112
6114 if (skipFunction(F))
6115 return false;
6116
6117 // Required analyses.
6118 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6119 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6120 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
6122 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6124
6125 // Optional analyses.
6126 ProfileSummaryInfo *PSI =
6128 BlockFrequencyInfo *BFI =
6129 (PSI && PSI->hasProfileSummary()) ?
6131 nullptr;
6132 BranchProbabilityInfo *BPI = nullptr;
6133 if (auto *WrapperPass =
6135 BPI = &WrapperPass->getBPI();
6136
6137 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
6138 BFI, BPI, PSI, InstCombineOptions());
6139}
6140
6142
6146
6148 "Combine redundant instructions", false, false)
6159 "Combine redundant instructions", false, false)
6160
6161// Initialization Routines
6165
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI)
DXIL Resource Access
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
static bool isSigned(unsigned int Opcode)
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
iv Induction Variable Users
Definition IVUsers.cpp:48
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static Constant * constantFoldBinOpWithSplat(unsigned Opcode, Constant *Vector, Constant *Splat, bool SplatLHS, const DataLayout &DL)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * combineConstantOffsets(GetElementPtrInst &GEP, InstCombinerImpl &IC)
Combine constant offsets separated by variable offsets.
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const InstCombineOptions &Opts)
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP)
Return true if we should canonicalize the gep to an i8 ptradd.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static Value * foldFrexpOfSelect(ExtractValueInst &EV, IntrinsicInst *FrexpCall, SelectInst *SelectInst, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, GEPOperator *Src, InstCombinerImpl &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static Value * simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Instruction * foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, IRBuilderBase &Builder)
static std::optional< ModRefInfo > isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI, bool KnowInit)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, GEPOperator &GEP2)
Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) transform.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
This file contains the declarations for metadata subclasses.
#define T
uint64_t IntrinsicInst * II
static bool IsSelect(MachineInstr &MI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition PassSupport.h:39
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
unsigned OpIndex
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static unsigned getScalarSizeInBits(Type *Ty)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
Definition APFloat.cpp:290
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition APInt.cpp:1758
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Definition APInt.cpp:1890
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:372
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1151
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:307
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition Pass.cpp:270
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition ArrayRef.h:220
size_t size() const
size - Get the array size.
Definition ArrayRef.h:143
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
uint64_t getNumElements() const
Type * getElementType() const
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM_ABI void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
LLVM_ABI uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Definition Attributes.h:223
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
Definition BasicBlock.h:482
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
size_t size() const
Definition BasicBlock.h:480
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Definition InstrTypes.h:374
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition InstrTypes.h:294
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
ConstantArray - Constant Array Declarations.
Definition Constants.h:433
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition Constants.h:776
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
LLVM_ABI bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
Definition Constants.h:517
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
const Constant * stripPointerCasts() const
Definition Constant.h:219
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(unsigned CounterName)
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
bool empty() const
Definition DenseMap.h:109
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
Legacy analysis pass which computes a DominatorTree.
Definition Dominators.h:322
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
This instruction extracts a struct member or array element value from an aggregate value.
ArrayRef< unsigned > getIndices() const
iterator_range< idx_iterator > indices() const
idx_iterator idx_end() const
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
idx_iterator idx_begin() const
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition Operator.h:200
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
FunctionPass(char &pid)
Definition Pass.h:316
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
Definition Pass.cpp:188
const BasicBlock & getEntryBlock() const
Definition Function.h:807
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags all()
static GEPNoWrapFlags noUnsignedWrap()
GEPNoWrapFlags intersectForReassociate(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep (gep, p, y), x).
bool hasNoUnsignedWrap() const
bool isInBounds() const
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
static GEPNoWrapFlags none()
GEPNoWrapFlags getNoWrapFlags() const
Definition Operator.h:425
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2039
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Definition IRBuilder.h:538
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
Definition IRBuilder.h:75
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI InstCombinePass(InstCombineOptions Opts={})
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
bool prepareWorklist(Function &F)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * foldBinopWithRecurrence(BinaryOperator &BO)
Try to fold binary operators whose operands are simple interleaved recurrences to a single recurrence...
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; }...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
Value * SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask, KnownFPClass &Known, Instruction *CxtI, unsigned Depth=0)
Attempts to replace V with a simpler value based on the demanded floating-point classes.
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
SimplifyQuery SQ
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
TargetLibraryInfo & TLI
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
BranchProbabilityInfo * BPI
ReversePostOrderTraversal< BasicBlock * > & RPOT
const DataLayout & DL
DomConditionCache DC
const bool MinimizeSize
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
AssumptionCache & AC
void addToWorklist(Instruction *I)
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
SmallDenseSet< std::pair< const BasicBlock *, const BasicBlock * >, 8 > BackEdges
Backedges, used to avoid pushing instructions across backedges in cases where this may result in infi...
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
DominatorTree & DT
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
BuilderTy & Builder
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
bool isBackEdge(const BasicBlock *From, const BasicBlock *To)
void visit(Iterator Start, Iterator End)
Definition InstVisitor.h:87
The legacy pass manager's instcombine pass.
Definition InstCombine.h:68
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
void add(Instruction *I)
Add instruction to the worklist.
LLVM_ABI void dropUBImplyingAttrsAndMetadata(ArrayRef< unsigned > Keep={})
Drop any attributes or metadata that can cause immediate undefined behavior.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isTerminator() const
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
bool isShift() const
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
bool isIntDivRem() const
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
A wrapper class for inspecting calls to intrinsic functions.
Invoke instruction.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
A function/module analysis which provides an empty LastRunTrackingInfo.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
This is the common base class for memset/memcpy/memmove.
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
Root of the metadata hierarchy.
Definition Metadata.h:64
Value * getLHS() const
Value * getRHS() const
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
MDNode * getScopeList() const
OptimizationRemarkEmitter legacy analysis pass.
The optimization diagnostic interface.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition Operator.h:105
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
Definition Constants.h:1468
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Definition Registry.h:44
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:150
This instruction constructs a fixed permutation of two input vectors.
size_type size() const
Definition SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:338
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Multiway switch.
TargetFolder - Create constants with target dependent folding.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
Definition Type.cpp:62
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
Use * op_iterator
Definition User.h:279
op_range operands()
Definition User.h:292
op_iterator op_begin()
Definition User.h:284
const Use & getOperandUse(unsigned i) const
Definition User.h:245
LLVM_ABI bool isDroppable() const
A droppable user is a user for which uses can be dropped without affecting correctness and should be ...
Definition User.cpp:118
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:24
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
op_iterator op_end()
Definition User.h:286
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
Definition Value.h:759
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
bool hasUseList() const
Check if this Value has a use-list.
Definition Value.h:344
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition Value.cpp:150
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition Value.cpp:881
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Value handle that is nullable, but tries to track the Value.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
reverse_self_iterator getReverseIterator()
Definition ilist_node.h:126
self_iterator getIterator()
Definition ilist_node.h:123
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
Definition Attributor.h:165
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
NNegZExt_match< OpTy > m_NNegZExt(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
Splat_match< T > m_ConstantSplat(const T &SubPattern)
Match a constant splat. TODO: Extend this to non-constant splats.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_VectorInsert(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Offset
Definition DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void stable_sort(R &&Range)
Definition STLExtras.h:2058
LLVM_ABI void initializeInstructionCombiningPassPass(PassRegistry &)
LLVM_ABI unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
Definition Local.cpp:2485
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
bool succ_empty(const Instruction *I)
Definition CFG.h:257
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI FunctionPass * createInstructionCombiningPass()
LLVM_ABI void findDbgValues(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the dbg.values describing a value.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1724
auto successors(const MachineBasicBlock *BB)
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
gep_type_iterator gep_type_end(const User *GEP)
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1537
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
Definition Local.cpp:2468
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition Local.cpp:402
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
Definition Local.cpp:22
constexpr unsigned MaxAnalysisRecursionDepth
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool isModSet(const ModRefInfo MRI)
Definition ModRef.h:49
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool LowerDbgDeclare(Function &F)
Lowers dbg.declare records into appropriate set of dbg.value records.
Definition Local.cpp:1795
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, StoreInst *SI, DIBuilder &Builder)
Inserts a dbg.value record before a store to an alloca'd value that has an associated dbg....
Definition Local.cpp:1662
LLVM_ABI void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
Definition Local.cpp:2037
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
Definition Local.cpp:2414
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:323
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
Definition ModRef.h:28
@ Ref
The access may reference the value stored in memory.
Definition ModRef.h:32
@ ModRef
The access may reference and may modify the value stored in memory.
Definition ModRef.h:36
@ Mod
The access may modify the value stored in memory.
Definition ModRef.h:34
@ NoModRef
The access neither references nor modifies the value stored in memory.
Definition ModRef.h:30
TargetTransformInfo TTI
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1961
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition STLExtras.h:2088
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
bool isRefSet(const ModRefInfo MRI)
Definition ModRef.h:52
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Definition KnownBits.h:251
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
SimplifyQuery getWithInstruction(const Instruction *I) const