LLVM 22.0.0git
LegalizeVectorOps.cpp
Go to the documentation of this file.
1//===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SelectionDAG::LegalizeVectors method.
10//
11// The vector legalizer looks for vector operations which might need to be
12// scalarized and legalizes them. This is a separate step from Legalize because
13// scalarizing can introduce illegal types. For example, suppose we have an
14// ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16// operation, which introduces nodes with the illegal type i64 which must be
17// expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18// the operation must be unrolled, which introduces nodes with the illegal
19// type i8 which must be promoted.
20//
21// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22// or operations that happen to take a vector which are custom-lowered;
23// the legalization for such operations never produces nodes
24// with illegal types, so it's okay to put off legalizing them until
25// SelectionDAG::Legalize runs.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/ADT/DenseMap.h"
39#include "llvm/IR/DataLayout.h"
42#include "llvm/Support/Debug.h"
44#include <cassert>
45#include <cstdint>
46#include <iterator>
47#include <utility>
48
49using namespace llvm;
50
51#define DEBUG_TYPE "legalizevectorops"
52
53namespace {
54
55class VectorLegalizer {
56 SelectionDAG& DAG;
57 const TargetLowering &TLI;
58 bool Changed = false; // Keep track of whether anything changed
59
60 /// For nodes that are of legal width, and that have more than one use, this
61 /// map indicates what regularized operand to use. This allows us to avoid
62 /// legalizing the same thing more than once.
64
65 /// Adds a node to the translation cache.
66 void AddLegalizedOperand(SDValue From, SDValue To) {
67 LegalizedNodes.insert(std::make_pair(From, To));
68 // If someone requests legalization of the new node, return itself.
69 if (From != To)
70 LegalizedNodes.insert(std::make_pair(To, To));
71 }
72
73 /// Legalizes the given node.
74 SDValue LegalizeOp(SDValue Op);
75
76 /// Assuming the node is legal, "legalize" the results.
77 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
78
79 /// Make sure Results are legal and update the translation cache.
80 SDValue RecursivelyLegalizeResults(SDValue Op,
82
83 /// Wrapper to interface LowerOperation with a vector of Results.
84 /// Returns false if the target wants to use default expansion. Otherwise
85 /// returns true. If return is true and the Results are empty, then the
86 /// target wants to keep the input node as is.
87 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
88
89 /// Implements unrolling a VSETCC.
90 SDValue UnrollVSETCC(SDNode *Node);
91
92 /// Implement expand-based legalization of vector operations.
93 ///
94 /// This is just a high-level routine to dispatch to specific code paths for
95 /// operations to legalize them.
97
98 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
99 /// FP_TO_SINT isn't legal.
100 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
101
102 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
103 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
104 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
105
106 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
107 SDValue ExpandSEXTINREG(SDNode *Node);
108
109 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
110 ///
111 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
112 /// type. The contents of the bits in the extended part of each element are
113 /// undef.
114 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
115
116 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
117 ///
118 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
119 /// type, then shifts left and arithmetic shifts right to introduce a sign
120 /// extension.
121 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
122
123 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
124 ///
125 /// Shuffles the low lanes of the operand into place and blends zeros into
126 /// the remaining lanes, finally bitcasting to the proper type.
127 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
128
129 /// Expand bswap of vectors into a shuffle if legal.
130 SDValue ExpandBSWAP(SDNode *Node);
131
132 /// Implement vselect in terms of XOR, AND, OR when blend is not
133 /// supported by the target.
134 SDValue ExpandVSELECT(SDNode *Node);
135 SDValue ExpandVP_SELECT(SDNode *Node);
136 SDValue ExpandVP_MERGE(SDNode *Node);
137 SDValue ExpandVP_REM(SDNode *Node);
138 SDValue ExpandVP_FNEG(SDNode *Node);
139 SDValue ExpandVP_FABS(SDNode *Node);
140 SDValue ExpandVP_FCOPYSIGN(SDNode *Node);
141 SDValue ExpandLOOP_DEPENDENCE_MASK(SDNode *N);
142 SDValue ExpandSELECT(SDNode *Node);
143 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
144 SDValue ExpandStore(SDNode *N);
145 SDValue ExpandFNEG(SDNode *Node);
146 SDValue ExpandFABS(SDNode *Node);
147 SDValue ExpandFCOPYSIGN(SDNode *Node);
148 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
150 SDValue ExpandBITREVERSE(SDNode *Node);
151 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
152 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
153 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
154 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
155 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
156 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157
158 bool tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC,
160
161 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162
163 /// Implements vector promotion.
164 ///
165 /// This is essentially just bitcasting the operands to a different type and
166 /// bitcasting the result back to the original type.
168
169 /// Implements [SU]INT_TO_FP vector promotion.
170 ///
171 /// This is a [zs]ext of the input operand to a larger integer type.
172 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
173
174 /// Implements FP_TO_[SU]INT vector promotion of the result type.
175 ///
176 /// It is promoted to a larger integer type. The result is then
177 /// truncated back to the original type.
178 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
179
180 /// Implements vector setcc operation promotion.
181 ///
182 /// All vector operands are promoted to a vector type with larger element
183 /// type.
184 void PromoteSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
185
186 void PromoteSTRICT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
187
188 /// Calculate the reduction using a type of higher precision and round the
189 /// result to match the original type. Setting NonArithmetic signifies the
190 /// rounding of the result does not affect its value.
191 void PromoteFloatVECREDUCE(SDNode *Node, SmallVectorImpl<SDValue> &Results,
192 bool NonArithmetic);
193
194 void PromoteVECTOR_COMPRESS(SDNode *Node, SmallVectorImpl<SDValue> &Results);
195
196public:
197 VectorLegalizer(SelectionDAG& dag) :
198 DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
199
200 /// Begin legalizer the vector operations in the DAG.
201 bool Run();
202};
203
204} // end anonymous namespace
205
206bool VectorLegalizer::Run() {
207 // Before we start legalizing vector nodes, check if there are any vectors.
208 bool HasVectors = false;
210 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
211 // Check if the values of the nodes contain vectors. We don't need to check
212 // the operands because we are going to check their values at some point.
213 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
214
215 // If we found a vector node we can start the legalization.
216 if (HasVectors)
217 break;
218 }
219
220 // If this basic block has no vectors then no need to legalize vectors.
221 if (!HasVectors)
222 return false;
223
224 // The legalize process is inherently a bottom-up recursive process (users
225 // legalize their uses before themselves). Given infinite stack space, we
226 // could just start legalizing on the root and traverse the whole graph. In
227 // practice however, this causes us to run out of stack space on large basic
228 // blocks. To avoid this problem, compute an ordering of the nodes where each
229 // node is only legalized after all of its operands are legalized.
232 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
233 LegalizeOp(SDValue(&*I, 0));
234
235 // Finally, it's possible the root changed. Get the new root.
236 SDValue OldRoot = DAG.getRoot();
237 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
238 DAG.setRoot(LegalizedNodes[OldRoot]);
239
240 LegalizedNodes.clear();
241
242 // Remove dead nodes now.
243 DAG.RemoveDeadNodes();
244
245 return Changed;
246}
247
248SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
249 assert(Op->getNumValues() == Result->getNumValues() &&
250 "Unexpected number of results");
251 // Generic legalization: just pass the operand through.
252 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
253 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
254 return SDValue(Result, Op.getResNo());
255}
256
258VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
260 assert(Results.size() == Op->getNumValues() &&
261 "Unexpected number of results");
262 // Make sure that the generated code is itself legal.
263 for (unsigned i = 0, e = Results.size(); i != e; ++i) {
264 Results[i] = LegalizeOp(Results[i]);
265 AddLegalizedOperand(Op.getValue(i), Results[i]);
266 }
267
268 return Results[Op.getResNo()];
269}
270
271SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
272 // Note that LegalizeOp may be reentered even from single-use nodes, which
273 // means that we always must cache transformed nodes.
274 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
275 if (I != LegalizedNodes.end()) return I->second;
276
277 // Legalize the operands
279 for (const SDValue &Oper : Op->op_values())
280 Ops.push_back(LegalizeOp(Oper));
281
282 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
283
284 bool HasVectorValueOrOp =
285 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
286 llvm::any_of(Node->op_values(),
287 [](SDValue O) { return O.getValueType().isVector(); });
288 if (!HasVectorValueOrOp)
289 return TranslateLegalizeResults(Op, Node);
290
291 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
292 EVT ValVT;
293 switch (Op.getOpcode()) {
294 default:
295 return TranslateLegalizeResults(Op, Node);
296 case ISD::LOAD: {
297 LoadSDNode *LD = cast<LoadSDNode>(Node);
298 ISD::LoadExtType ExtType = LD->getExtensionType();
299 EVT LoadedVT = LD->getMemoryVT();
300 if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
301 Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
302 break;
303 }
304 case ISD::STORE: {
305 StoreSDNode *ST = cast<StoreSDNode>(Node);
306 EVT StVT = ST->getMemoryVT();
307 MVT ValVT = ST->getValue().getSimpleValueType();
308 if (StVT.isVector() && ST->isTruncatingStore())
309 Action = TLI.getTruncStoreAction(ValVT, StVT);
310 break;
311 }
313 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
314 // This operation lies about being legal: when it claims to be legal,
315 // it should actually be expanded.
316 if (Action == TargetLowering::Legal)
317 Action = TargetLowering::Expand;
318 break;
319#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
320 case ISD::STRICT_##DAGN:
321#include "llvm/IR/ConstrainedOps.def"
322 ValVT = Node->getValueType(0);
323 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
324 Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
325 ValVT = Node->getOperand(1).getValueType();
326 if (Op.getOpcode() == ISD::STRICT_FSETCC ||
327 Op.getOpcode() == ISD::STRICT_FSETCCS) {
328 MVT OpVT = Node->getOperand(1).getSimpleValueType();
329 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(3))->get();
330 Action = TLI.getCondCodeAction(CCCode, OpVT);
331 if (Action == TargetLowering::Legal)
332 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
333 } else {
334 Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
335 }
336 // If we're asked to expand a strict vector floating-point operation,
337 // by default we're going to simply unroll it. That is usually the
338 // best approach, except in the case where the resulting strict (scalar)
339 // operations would themselves use the fallback mutation to non-strict.
340 // In that specific case, just do the fallback on the vector op.
341 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
342 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
343 TargetLowering::Legal) {
344 EVT EltVT = ValVT.getVectorElementType();
345 if (TLI.getOperationAction(Node->getOpcode(), EltVT)
346 == TargetLowering::Expand &&
347 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
348 == TargetLowering::Legal)
349 Action = TargetLowering::Legal;
350 }
351 break;
352 case ISD::ADD:
353 case ISD::SUB:
354 case ISD::MUL:
355 case ISD::MULHS:
356 case ISD::MULHU:
357 case ISD::SDIV:
358 case ISD::UDIV:
359 case ISD::SREM:
360 case ISD::UREM:
361 case ISD::SDIVREM:
362 case ISD::UDIVREM:
363 case ISD::FADD:
364 case ISD::FSUB:
365 case ISD::FMUL:
366 case ISD::FDIV:
367 case ISD::FREM:
368 case ISD::AND:
369 case ISD::OR:
370 case ISD::XOR:
371 case ISD::SHL:
372 case ISD::SRA:
373 case ISD::SRL:
374 case ISD::FSHL:
375 case ISD::FSHR:
376 case ISD::ROTL:
377 case ISD::ROTR:
378 case ISD::ABS:
379 case ISD::ABDS:
380 case ISD::ABDU:
381 case ISD::AVGCEILS:
382 case ISD::AVGCEILU:
383 case ISD::AVGFLOORS:
384 case ISD::AVGFLOORU:
385 case ISD::BSWAP:
386 case ISD::BITREVERSE:
387 case ISD::CTLZ:
388 case ISD::CTTZ:
391 case ISD::CTPOP:
392 case ISD::SELECT:
393 case ISD::VSELECT:
394 case ISD::SELECT_CC:
395 case ISD::ZERO_EXTEND:
396 case ISD::ANY_EXTEND:
397 case ISD::TRUNCATE:
398 case ISD::SIGN_EXTEND:
399 case ISD::FP_TO_SINT:
400 case ISD::FP_TO_UINT:
401 case ISD::FNEG:
402 case ISD::FABS:
403 case ISD::FMINNUM:
404 case ISD::FMAXNUM:
407 case ISD::FMINIMUM:
408 case ISD::FMAXIMUM:
409 case ISD::FMINIMUMNUM:
410 case ISD::FMAXIMUMNUM:
411 case ISD::FCOPYSIGN:
412 case ISD::FSQRT:
413 case ISD::FSIN:
414 case ISD::FCOS:
415 case ISD::FTAN:
416 case ISD::FASIN:
417 case ISD::FACOS:
418 case ISD::FATAN:
419 case ISD::FATAN2:
420 case ISD::FSINH:
421 case ISD::FCOSH:
422 case ISD::FTANH:
423 case ISD::FLDEXP:
424 case ISD::FPOWI:
425 case ISD::FPOW:
426 case ISD::FLOG:
427 case ISD::FLOG2:
428 case ISD::FLOG10:
429 case ISD::FEXP:
430 case ISD::FEXP2:
431 case ISD::FEXP10:
432 case ISD::FCEIL:
433 case ISD::FTRUNC:
434 case ISD::FRINT:
435 case ISD::FNEARBYINT:
436 case ISD::FROUND:
437 case ISD::FROUNDEVEN:
438 case ISD::FFLOOR:
439 case ISD::FP_ROUND:
440 case ISD::FP_EXTEND:
442 case ISD::FMA:
447 case ISD::SMIN:
448 case ISD::SMAX:
449 case ISD::UMIN:
450 case ISD::UMAX:
451 case ISD::SMUL_LOHI:
452 case ISD::UMUL_LOHI:
453 case ISD::SADDO:
454 case ISD::UADDO:
455 case ISD::SSUBO:
456 case ISD::USUBO:
457 case ISD::SMULO:
458 case ISD::UMULO:
460 case ISD::FFREXP:
461 case ISD::FMODF:
462 case ISD::FSINCOS:
463 case ISD::FSINCOSPI:
464 case ISD::SADDSAT:
465 case ISD::UADDSAT:
466 case ISD::SSUBSAT:
467 case ISD::USUBSAT:
468 case ISD::SSHLSAT:
469 case ISD::USHLSAT:
472 case ISD::MGATHER:
474 case ISD::SCMP:
475 case ISD::UCMP:
478 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
479 break;
480 case ISD::SMULFIX:
481 case ISD::SMULFIXSAT:
482 case ISD::UMULFIX:
483 case ISD::UMULFIXSAT:
484 case ISD::SDIVFIX:
485 case ISD::SDIVFIXSAT:
486 case ISD::UDIVFIX:
487 case ISD::UDIVFIXSAT: {
488 unsigned Scale = Node->getConstantOperandVal(2);
489 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
490 Node->getValueType(0), Scale);
491 break;
492 }
493 case ISD::LROUND:
494 case ISD::LLROUND:
495 case ISD::LRINT:
496 case ISD::LLRINT:
497 case ISD::SINT_TO_FP:
498 case ISD::UINT_TO_FP:
515 Action = TLI.getOperationAction(Node->getOpcode(),
516 Node->getOperand(0).getValueType());
517 break;
520 Action = TLI.getOperationAction(Node->getOpcode(),
521 Node->getOperand(1).getValueType());
522 break;
523 case ISD::SETCC: {
524 MVT OpVT = Node->getOperand(0).getSimpleValueType();
525 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
526 Action = TLI.getCondCodeAction(CCCode, OpVT);
527 if (Action == TargetLowering::Legal)
528 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
529 break;
530 }
535 Action =
536 TLI.getPartialReduceMLAAction(Op.getOpcode(), Node->getValueType(0),
537 Node->getOperand(1).getValueType());
538 break;
539
540#define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \
541 case ISD::VPID: { \
542 EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \
543 : Node->getOperand(LEGALPOS).getValueType(); \
544 if (ISD::VPID == ISD::VP_SETCC) { \
545 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
546 Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT()); \
547 if (Action != TargetLowering::Legal) \
548 break; \
549 } \
550 /* Defer non-vector results to LegalizeDAG. */ \
551 if (!Node->getValueType(0).isVector() && \
552 Node->getValueType(0) != MVT::Other) { \
553 Action = TargetLowering::Legal; \
554 break; \
555 } \
556 Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \
557 } break;
558#include "llvm/IR/VPIntrinsics.def"
559 }
560
561 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
562
563 SmallVector<SDValue, 8> ResultVals;
564 switch (Action) {
565 default: llvm_unreachable("This action is not supported yet!");
566 case TargetLowering::Promote:
567 assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
568 "This action is not supported yet!");
569 LLVM_DEBUG(dbgs() << "Promoting\n");
570 Promote(Node, ResultVals);
571 assert(!ResultVals.empty() && "No results for promotion?");
572 break;
573 case TargetLowering::Legal:
574 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
575 break;
576 case TargetLowering::Custom:
577 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
578 if (LowerOperationWrapper(Node, ResultVals))
579 break;
580 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
581 [[fallthrough]];
582 case TargetLowering::Expand:
583 LLVM_DEBUG(dbgs() << "Expanding\n");
584 Expand(Node, ResultVals);
585 break;
586 }
587
588 if (ResultVals.empty())
589 return TranslateLegalizeResults(Op, Node);
590
591 Changed = true;
592 return RecursivelyLegalizeResults(Op, ResultVals);
593}
594
595// FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
596// merge them somehow?
597bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
598 SmallVectorImpl<SDValue> &Results) {
599 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
600
601 if (!Res.getNode())
602 return false;
603
604 if (Res == SDValue(Node, 0))
605 return true;
606
607 // If the original node has one result, take the return value from
608 // LowerOperation as is. It might not be result number 0.
609 if (Node->getNumValues() == 1) {
610 Results.push_back(Res);
611 return true;
612 }
613
614 // If the original node has multiple results, then the return node should
615 // have the same number of results.
616 assert((Node->getNumValues() == Res->getNumValues()) &&
617 "Lowering returned the wrong number of results!");
618
619 // Places new result values base on N result number.
620 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
621 Results.push_back(Res.getValue(I));
622
623 return true;
624}
625
626void VectorLegalizer::PromoteSETCC(SDNode *Node,
627 SmallVectorImpl<SDValue> &Results) {
628 MVT VecVT = Node->getOperand(0).getSimpleValueType();
629 MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
630
631 unsigned ExtOp = VecVT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
632
633 SDLoc DL(Node);
634 SmallVector<SDValue, 5> Operands(Node->getNumOperands());
635
636 Operands[0] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(0));
637 Operands[1] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(1));
638 Operands[2] = Node->getOperand(2);
639
640 if (Node->getOpcode() == ISD::VP_SETCC) {
641 Operands[3] = Node->getOperand(3); // mask
642 Operands[4] = Node->getOperand(4); // evl
643 }
644
645 SDValue Res = DAG.getNode(Node->getOpcode(), DL, Node->getSimpleValueType(0),
646 Operands, Node->getFlags());
647
648 Results.push_back(Res);
649}
650
651void VectorLegalizer::PromoteSTRICT(SDNode *Node,
652 SmallVectorImpl<SDValue> &Results) {
653 MVT VecVT = Node->getOperand(1).getSimpleValueType();
654 MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
655
656 assert(VecVT.isFloatingPoint());
657
658 SDLoc DL(Node);
659 SmallVector<SDValue, 5> Operands(Node->getNumOperands());
661
662 for (unsigned j = 1; j != Node->getNumOperands(); ++j)
663 if (Node->getOperand(j).getValueType().isVector() &&
664 !(ISD::isVPOpcode(Node->getOpcode()) &&
665 ISD::getVPMaskIdx(Node->getOpcode()) == j)) // Skip mask operand.
666 {
667 // promote the vector operand.
668 SDValue Ext =
669 DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {NewVecVT, MVT::Other},
670 {Node->getOperand(0), Node->getOperand(j)});
671 Operands[j] = Ext.getValue(0);
672 Chains.push_back(Ext.getValue(1));
673 } else
674 Operands[j] = Node->getOperand(j); // Skip no vector operand.
675
676 SDVTList VTs = DAG.getVTList(NewVecVT, Node->getValueType(1));
677
678 Operands[0] = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
679
680 SDValue Res =
681 DAG.getNode(Node->getOpcode(), DL, VTs, Operands, Node->getFlags());
682
683 SDValue Round =
684 DAG.getNode(ISD::STRICT_FP_ROUND, DL, {VecVT, MVT::Other},
685 {Res.getValue(1), Res.getValue(0),
686 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)});
687
688 Results.push_back(Round.getValue(0));
689 Results.push_back(Round.getValue(1));
690}
691
692void VectorLegalizer::PromoteFloatVECREDUCE(SDNode *Node,
693 SmallVectorImpl<SDValue> &Results,
694 bool NonArithmetic) {
695 MVT OpVT = Node->getOperand(0).getSimpleValueType();
696 assert(OpVT.isFloatingPoint() && "Expected floating point reduction!");
697 MVT NewOpVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OpVT);
698
699 SDLoc DL(Node);
700 SDValue NewOp = DAG.getNode(ISD::FP_EXTEND, DL, NewOpVT, Node->getOperand(0));
701 SDValue Rdx =
702 DAG.getNode(Node->getOpcode(), DL, NewOpVT.getVectorElementType(), NewOp,
703 Node->getFlags());
704 SDValue Res =
705 DAG.getNode(ISD::FP_ROUND, DL, Node->getValueType(0), Rdx,
706 DAG.getIntPtrConstant(NonArithmetic, DL, /*isTarget=*/true));
707 Results.push_back(Res);
708}
709
710void VectorLegalizer::PromoteVECTOR_COMPRESS(
711 SDNode *Node, SmallVectorImpl<SDValue> &Results) {
712 SDLoc DL(Node);
713 EVT VT = Node->getValueType(0);
714 MVT PromotedVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT.getSimpleVT());
715 assert((VT.isInteger() || VT.getSizeInBits() == PromotedVT.getSizeInBits()) &&
716 "Only integer promotion or bitcasts between types is supported");
717
718 SDValue Vec = Node->getOperand(0);
719 SDValue Mask = Node->getOperand(1);
720 SDValue Passthru = Node->getOperand(2);
721 if (VT.isInteger()) {
722 Vec = DAG.getNode(ISD::ANY_EXTEND, DL, PromotedVT, Vec);
723 Mask = TLI.promoteTargetBoolean(DAG, Mask, PromotedVT);
724 Passthru = DAG.getNode(ISD::ANY_EXTEND, DL, PromotedVT, Passthru);
725 } else {
726 Vec = DAG.getBitcast(PromotedVT, Vec);
727 Passthru = DAG.getBitcast(PromotedVT, Passthru);
728 }
729
731 DAG.getNode(ISD::VECTOR_COMPRESS, DL, PromotedVT, Vec, Mask, Passthru);
732 Result = VT.isInteger() ? DAG.getNode(ISD::TRUNCATE, DL, VT, Result)
733 : DAG.getBitcast(VT, Result);
734 Results.push_back(Result);
735}
736
737void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
738 // For a few operations there is a specific concept for promotion based on
739 // the operand's type.
740 switch (Node->getOpcode()) {
741 case ISD::SINT_TO_FP:
742 case ISD::UINT_TO_FP:
745 // "Promote" the operation by extending the operand.
746 PromoteINT_TO_FP(Node, Results);
747 return;
748 case ISD::FP_TO_UINT:
749 case ISD::FP_TO_SINT:
752 // Promote the operation by extending the operand.
753 PromoteFP_TO_INT(Node, Results);
754 return;
755 case ISD::VP_SETCC:
756 case ISD::SETCC:
757 // Promote the operation by extending the operand.
758 PromoteSETCC(Node, Results);
759 return;
760 case ISD::STRICT_FADD:
761 case ISD::STRICT_FSUB:
762 case ISD::STRICT_FMUL:
763 case ISD::STRICT_FDIV:
765 case ISD::STRICT_FMA:
766 PromoteSTRICT(Node, Results);
767 return;
769 PromoteFloatVECREDUCE(Node, Results, /*NonArithmetic=*/false);
770 return;
775 PromoteFloatVECREDUCE(Node, Results, /*NonArithmetic=*/true);
776 return;
778 PromoteVECTOR_COMPRESS(Node, Results);
779 return;
780
781 case ISD::FP_ROUND:
782 case ISD::FP_EXTEND:
783 // These operations are used to do promotion so they can't be promoted
784 // themselves.
785 llvm_unreachable("Don't know how to promote this operation!");
786 case ISD::VP_FABS:
787 case ISD::VP_FCOPYSIGN:
788 case ISD::VP_FNEG:
789 // Promoting fabs, fneg, and fcopysign changes their semantics.
790 llvm_unreachable("These operations should not be promoted");
791 }
792
793 // There are currently two cases of vector promotion:
794 // 1) Bitcasting a vector of integers to a different type to a vector of the
795 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
796 // 2) Extending a vector of floats to a vector of the same number of larger
797 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
798 assert(Node->getNumValues() == 1 &&
799 "Can't promote a vector with multiple results!");
800 MVT VT = Node->getSimpleValueType(0);
801 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
802 SDLoc dl(Node);
803 SmallVector<SDValue, 4> Operands(Node->getNumOperands());
804
805 for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
806 // Do not promote the mask operand of a VP OP.
807 bool SkipPromote = ISD::isVPOpcode(Node->getOpcode()) &&
808 ISD::getVPMaskIdx(Node->getOpcode()) == j;
809 if (Node->getOperand(j).getValueType().isVector() && !SkipPromote)
810 if (Node->getOperand(j)
811 .getValueType()
812 .getVectorElementType()
813 .isFloatingPoint() &&
815 if (ISD::isVPOpcode(Node->getOpcode())) {
816 unsigned EVLIdx =
818 unsigned MaskIdx = *ISD::getVPMaskIdx(Node->getOpcode());
819 Operands[j] =
820 DAG.getNode(ISD::VP_FP_EXTEND, dl, NVT, Node->getOperand(j),
821 Node->getOperand(MaskIdx), Node->getOperand(EVLIdx));
822 } else {
823 Operands[j] =
824 DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
825 }
826 else
827 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
828 else
829 Operands[j] = Node->getOperand(j);
830 }
831
832 SDValue Res =
833 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
834
835 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
838 if (ISD::isVPOpcode(Node->getOpcode())) {
839 unsigned EVLIdx = *ISD::getVPExplicitVectorLengthIdx(Node->getOpcode());
840 unsigned MaskIdx = *ISD::getVPMaskIdx(Node->getOpcode());
841 Res = DAG.getNode(ISD::VP_FP_ROUND, dl, VT, Res,
842 Node->getOperand(MaskIdx), Node->getOperand(EVLIdx));
843 } else {
844 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res,
845 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
846 }
847 else
848 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
849
850 Results.push_back(Res);
851}
852
853void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
854 SmallVectorImpl<SDValue> &Results) {
855 // INT_TO_FP operations may require the input operand be promoted even
856 // when the type is otherwise legal.
857 bool IsStrict = Node->isStrictFPOpcode();
858 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
859 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
861 "Vectors have different number of elements!");
862
863 SDLoc dl(Node);
864 SmallVector<SDValue, 4> Operands(Node->getNumOperands());
865
866 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
867 Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
870 for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
871 if (Node->getOperand(j).getValueType().isVector())
872 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
873 else
874 Operands[j] = Node->getOperand(j);
875 }
876
877 if (IsStrict) {
878 SDValue Res = DAG.getNode(Node->getOpcode(), dl,
879 {Node->getValueType(0), MVT::Other}, Operands);
880 Results.push_back(Res);
881 Results.push_back(Res.getValue(1));
882 return;
883 }
884
885 SDValue Res =
886 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
887 Results.push_back(Res);
888}
889
890// For FP_TO_INT we promote the result type to a vector type with wider
891// elements and then truncate the result. This is different from the default
892// PromoteVector which uses bitcast to promote thus assumning that the
893// promoted vector type has the same overall size.
894void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
895 SmallVectorImpl<SDValue> &Results) {
896 MVT VT = Node->getSimpleValueType(0);
897 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
898 bool IsStrict = Node->isStrictFPOpcode();
900 "Vectors have different number of elements!");
901
902 unsigned NewOpc = Node->getOpcode();
903 // Change FP_TO_UINT to FP_TO_SINT if possible.
904 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
905 if (NewOpc == ISD::FP_TO_UINT &&
907 NewOpc = ISD::FP_TO_SINT;
908
909 if (NewOpc == ISD::STRICT_FP_TO_UINT &&
911 NewOpc = ISD::STRICT_FP_TO_SINT;
912
913 SDLoc dl(Node);
914 SDValue Promoted, Chain;
915 if (IsStrict) {
916 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
917 {Node->getOperand(0), Node->getOperand(1)});
918 Chain = Promoted.getValue(1);
919 } else
920 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
921
922 // Assert that the converted value fits in the original type. If it doesn't
923 // (eg: because the value being converted is too big), then the result of the
924 // original operation was undefined anyway, so the assert is still correct.
925 if (Node->getOpcode() == ISD::FP_TO_UINT ||
926 Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
927 NewOpc = ISD::AssertZext;
928 else
929 NewOpc = ISD::AssertSext;
930
931 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
932 DAG.getValueType(VT.getScalarType()));
933 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
934 Results.push_back(Promoted);
935 if (IsStrict)
936 Results.push_back(Chain);
937}
938
939std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
940 LoadSDNode *LD = cast<LoadSDNode>(N);
941 return TLI.scalarizeVectorLoad(LD, DAG);
942}
943
944SDValue VectorLegalizer::ExpandStore(SDNode *N) {
945 StoreSDNode *ST = cast<StoreSDNode>(N);
946 SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
947 return TF;
948}
949
950void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
951 switch (Node->getOpcode()) {
952 case ISD::LOAD: {
953 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
954 Results.push_back(Tmp.first);
955 Results.push_back(Tmp.second);
956 return;
957 }
958 case ISD::STORE:
959 Results.push_back(ExpandStore(Node));
960 return;
962 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
963 Results.push_back(Node->getOperand(i));
964 return;
966 if (SDValue Expanded = ExpandSEXTINREG(Node)) {
967 Results.push_back(Expanded);
968 return;
969 }
970 break;
972 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
973 return;
975 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
976 return;
978 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
979 return;
980 case ISD::BSWAP:
981 if (SDValue Expanded = ExpandBSWAP(Node)) {
982 Results.push_back(Expanded);
983 return;
984 }
985 break;
986 case ISD::VP_BSWAP:
987 Results.push_back(TLI.expandVPBSWAP(Node, DAG));
988 return;
989 case ISD::VSELECT:
990 if (SDValue Expanded = ExpandVSELECT(Node)) {
991 Results.push_back(Expanded);
992 return;
993 }
994 break;
995 case ISD::VP_SELECT:
996 if (SDValue Expanded = ExpandVP_SELECT(Node)) {
997 Results.push_back(Expanded);
998 return;
999 }
1000 break;
1001 case ISD::VP_SREM:
1002 case ISD::VP_UREM:
1003 if (SDValue Expanded = ExpandVP_REM(Node)) {
1004 Results.push_back(Expanded);
1005 return;
1006 }
1007 break;
1008 case ISD::VP_FNEG:
1009 if (SDValue Expanded = ExpandVP_FNEG(Node)) {
1010 Results.push_back(Expanded);
1011 return;
1012 }
1013 break;
1014 case ISD::VP_FABS:
1015 if (SDValue Expanded = ExpandVP_FABS(Node)) {
1016 Results.push_back(Expanded);
1017 return;
1018 }
1019 break;
1020 case ISD::VP_FCOPYSIGN:
1021 if (SDValue Expanded = ExpandVP_FCOPYSIGN(Node)) {
1022 Results.push_back(Expanded);
1023 return;
1024 }
1025 break;
1026 case ISD::SELECT:
1027 if (SDValue Expanded = ExpandSELECT(Node)) {
1028 Results.push_back(Expanded);
1029 return;
1030 }
1031 break;
1032 case ISD::SELECT_CC: {
1033 if (Node->getValueType(0).isScalableVector()) {
1034 EVT CondVT = TLI.getSetCCResultType(
1035 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
1036 SDValue SetCC =
1037 DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0),
1038 Node->getOperand(1), Node->getOperand(4));
1039 Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC,
1040 Node->getOperand(2),
1041 Node->getOperand(3)));
1042 return;
1043 }
1044 break;
1045 }
1046 case ISD::FP_TO_UINT:
1047 ExpandFP_TO_UINT(Node, Results);
1048 return;
1049 case ISD::UINT_TO_FP:
1050 ExpandUINT_TO_FLOAT(Node, Results);
1051 return;
1052 case ISD::FNEG:
1053 if (SDValue Expanded = ExpandFNEG(Node)) {
1054 Results.push_back(Expanded);
1055 return;
1056 }
1057 break;
1058 case ISD::FABS:
1059 if (SDValue Expanded = ExpandFABS(Node)) {
1060 Results.push_back(Expanded);
1061 return;
1062 }
1063 break;
1064 case ISD::FCOPYSIGN:
1065 if (SDValue Expanded = ExpandFCOPYSIGN(Node)) {
1066 Results.push_back(Expanded);
1067 return;
1068 }
1069 break;
1070 case ISD::FSUB:
1071 ExpandFSUB(Node, Results);
1072 return;
1073 case ISD::SETCC:
1074 case ISD::VP_SETCC:
1075 ExpandSETCC(Node, Results);
1076 return;
1077 case ISD::ABS:
1078 if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
1079 Results.push_back(Expanded);
1080 return;
1081 }
1082 break;
1083 case ISD::ABDS:
1084 case ISD::ABDU:
1085 if (SDValue Expanded = TLI.expandABD(Node, DAG)) {
1086 Results.push_back(Expanded);
1087 return;
1088 }
1089 break;
1090 case ISD::AVGCEILS:
1091 case ISD::AVGCEILU:
1092 case ISD::AVGFLOORS:
1093 case ISD::AVGFLOORU:
1094 if (SDValue Expanded = TLI.expandAVG(Node, DAG)) {
1095 Results.push_back(Expanded);
1096 return;
1097 }
1098 break;
1099 case ISD::BITREVERSE:
1100 if (SDValue Expanded = ExpandBITREVERSE(Node)) {
1101 Results.push_back(Expanded);
1102 return;
1103 }
1104 break;
1105 case ISD::VP_BITREVERSE:
1106 if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) {
1107 Results.push_back(Expanded);
1108 return;
1109 }
1110 break;
1111 case ISD::CTPOP:
1112 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
1113 Results.push_back(Expanded);
1114 return;
1115 }
1116 break;
1117 case ISD::VP_CTPOP:
1118 if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) {
1119 Results.push_back(Expanded);
1120 return;
1121 }
1122 break;
1123 case ISD::CTLZ:
1125 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
1126 Results.push_back(Expanded);
1127 return;
1128 }
1129 break;
1130 case ISD::VP_CTLZ:
1131 case ISD::VP_CTLZ_ZERO_UNDEF:
1132 if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) {
1133 Results.push_back(Expanded);
1134 return;
1135 }
1136 break;
1137 case ISD::CTTZ:
1139 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
1140 Results.push_back(Expanded);
1141 return;
1142 }
1143 break;
1144 case ISD::VP_CTTZ:
1145 case ISD::VP_CTTZ_ZERO_UNDEF:
1146 if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) {
1147 Results.push_back(Expanded);
1148 return;
1149 }
1150 break;
1151 case ISD::FSHL:
1152 case ISD::VP_FSHL:
1153 case ISD::FSHR:
1154 case ISD::VP_FSHR:
1155 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
1156 Results.push_back(Expanded);
1157 return;
1158 }
1159 break;
1160 case ISD::ROTL:
1161 case ISD::ROTR:
1162 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
1163 Results.push_back(Expanded);
1164 return;
1165 }
1166 break;
1167 case ISD::FMINNUM:
1168 case ISD::FMAXNUM:
1169 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
1170 Results.push_back(Expanded);
1171 return;
1172 }
1173 break;
1174 case ISD::FMINIMUM:
1175 case ISD::FMAXIMUM:
1176 Results.push_back(TLI.expandFMINIMUM_FMAXIMUM(Node, DAG));
1177 return;
1178 case ISD::FMINIMUMNUM:
1179 case ISD::FMAXIMUMNUM:
1180 Results.push_back(TLI.expandFMINIMUMNUM_FMAXIMUMNUM(Node, DAG));
1181 return;
1182 case ISD::SMIN:
1183 case ISD::SMAX:
1184 case ISD::UMIN:
1185 case ISD::UMAX:
1186 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
1187 Results.push_back(Expanded);
1188 return;
1189 }
1190 break;
1191 case ISD::UADDO:
1192 case ISD::USUBO:
1193 ExpandUADDSUBO(Node, Results);
1194 return;
1195 case ISD::SADDO:
1196 case ISD::SSUBO:
1197 ExpandSADDSUBO(Node, Results);
1198 return;
1199 case ISD::UMULO:
1200 case ISD::SMULO:
1201 ExpandMULO(Node, Results);
1202 return;
1203 case ISD::USUBSAT:
1204 case ISD::SSUBSAT:
1205 case ISD::UADDSAT:
1206 case ISD::SADDSAT:
1207 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
1208 Results.push_back(Expanded);
1209 return;
1210 }
1211 break;
1212 case ISD::USHLSAT:
1213 case ISD::SSHLSAT:
1214 if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) {
1215 Results.push_back(Expanded);
1216 return;
1217 }
1218 break;
1221 // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
1222 if (Node->getValueType(0).isScalableVector()) {
1223 if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) {
1224 Results.push_back(Expanded);
1225 return;
1226 }
1227 }
1228 break;
1229 case ISD::SMULFIX:
1230 case ISD::UMULFIX:
1231 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
1232 Results.push_back(Expanded);
1233 return;
1234 }
1235 break;
1236 case ISD::SMULFIXSAT:
1237 case ISD::UMULFIXSAT:
1238 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
1239 // why. Maybe it results in worse codegen compared to the unroll for some
1240 // targets? This should probably be investigated. And if we still prefer to
1241 // unroll an explanation could be helpful.
1242 break;
1243 case ISD::SDIVFIX:
1244 case ISD::UDIVFIX:
1245 ExpandFixedPointDiv(Node, Results);
1246 return;
1247 case ISD::SDIVFIXSAT:
1248 case ISD::UDIVFIXSAT:
1249 break;
1250#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1251 case ISD::STRICT_##DAGN:
1252#include "llvm/IR/ConstrainedOps.def"
1253 ExpandStrictFPOp(Node, Results);
1254 return;
1255 case ISD::VECREDUCE_ADD:
1256 case ISD::VECREDUCE_MUL:
1257 case ISD::VECREDUCE_AND:
1258 case ISD::VECREDUCE_OR:
1259 case ISD::VECREDUCE_XOR:
1270 Results.push_back(TLI.expandVecReduce(Node, DAG));
1271 return;
1276 Results.push_back(TLI.expandPartialReduceMLA(Node, DAG));
1277 return;
1280 Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
1281 return;
1282 case ISD::SREM:
1283 case ISD::UREM:
1284 ExpandREM(Node, Results);
1285 return;
1286 case ISD::VP_MERGE:
1287 if (SDValue Expanded = ExpandVP_MERGE(Node)) {
1288 Results.push_back(Expanded);
1289 return;
1290 }
1291 break;
1292 case ISD::FREM: {
1293 RTLIB::Libcall LC = RTLIB::getREM(Node->getValueType(0));
1294 if (tryExpandVecMathCall(Node, LC, Results))
1295 return;
1296
1297 break;
1298 }
1299 case ISD::FSINCOS:
1300 case ISD::FSINCOSPI: {
1301 EVT VT = Node->getValueType(0);
1302 RTLIB::Libcall LC = Node->getOpcode() == ISD::FSINCOS
1303 ? RTLIB::getSINCOS(VT)
1304 : RTLIB::getSINCOSPI(VT);
1305 if (LC != RTLIB::UNKNOWN_LIBCALL &&
1306 TLI.expandMultipleResultFPLibCall(DAG, LC, Node, Results))
1307 return;
1308
1309 // TODO: Try to see if there's a narrower call available to use before
1310 // scalarizing.
1311 break;
1312 }
1313 case ISD::FMODF: {
1314 EVT VT = Node->getValueType(0);
1315 RTLIB::Libcall LC = RTLIB::getMODF(VT);
1316 if (LC != RTLIB::UNKNOWN_LIBCALL &&
1317 TLI.expandMultipleResultFPLibCall(DAG, LC, Node, Results,
1318 /*CallRetResNo=*/0))
1319 return;
1320 break;
1321 }
1323 Results.push_back(TLI.expandVECTOR_COMPRESS(Node, DAG));
1324 return;
1326 Results.push_back(TLI.expandVectorFindLastActive(Node, DAG));
1327 return;
1328 case ISD::SCMP:
1329 case ISD::UCMP:
1330 Results.push_back(TLI.expandCMP(Node, DAG));
1331 return;
1334 Results.push_back(ExpandLOOP_DEPENDENCE_MASK(Node));
1335 return;
1336
1337 case ISD::FADD:
1338 case ISD::FMUL:
1339 case ISD::FMA:
1340 case ISD::FDIV:
1341 case ISD::FCEIL:
1342 case ISD::FFLOOR:
1343 case ISD::FNEARBYINT:
1344 case ISD::FRINT:
1345 case ISD::FROUND:
1346 case ISD::FROUNDEVEN:
1347 case ISD::FTRUNC:
1348 case ISD::FSQRT:
1349 if (SDValue Expanded = TLI.expandVectorNaryOpBySplitting(Node, DAG)) {
1350 Results.push_back(Expanded);
1351 return;
1352 }
1353 break;
1354 }
1355
1356 SDValue Unrolled = DAG.UnrollVectorOp(Node);
1357 if (Node->getNumValues() == 1) {
1358 Results.push_back(Unrolled);
1359 } else {
1360 assert(Node->getNumValues() == Unrolled->getNumValues() &&
1361 "VectorLegalizer Expand returned wrong number of results!");
1362 for (unsigned I = 0, E = Unrolled->getNumValues(); I != E; ++I)
1363 Results.push_back(Unrolled.getValue(I));
1364 }
1365}
1366
1367SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
1368 // Lower a select instruction where the condition is a scalar and the
1369 // operands are vectors. Lower this select to VSELECT and implement it
1370 // using XOR AND OR. The selector bit is broadcasted.
1371 EVT VT = Node->getValueType(0);
1372 SDLoc DL(Node);
1373
1374 SDValue Mask = Node->getOperand(0);
1375 SDValue Op1 = Node->getOperand(1);
1376 SDValue Op2 = Node->getOperand(2);
1377
1378 assert(VT.isVector() && !Mask.getValueType().isVector()
1379 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
1380
1381 // If we can't even use the basic vector operations of
1382 // AND,OR,XOR, we will have to scalarize the op.
1383 // Notice that the operation may be 'promoted' which means that it is
1384 // 'bitcasted' to another type which is handled.
1385 // Also, we need to be able to construct a splat vector using either
1386 // BUILD_VECTOR or SPLAT_VECTOR.
1387 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
1388 // BUILD_VECTOR?
1389 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1390 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1391 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1394 VT) == TargetLowering::Expand)
1395 return SDValue();
1396
1397 // Generate a mask operand.
1398 EVT MaskTy = VT.changeVectorElementTypeToInteger();
1399
1400 // What is the size of each element in the vector mask.
1401 EVT BitTy = MaskTy.getScalarType();
1402
1403 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
1404 DAG.getConstant(0, DL, BitTy));
1405
1406 // Broadcast the mask so that the entire vector is all one or all zero.
1407 Mask = DAG.getSplat(MaskTy, DL, Mask);
1408
1409 // Bitcast the operands to be the same type as the mask.
1410 // This is needed when we select between FP types because
1411 // the mask is a vector of integers.
1412 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
1413 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
1414
1415 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
1416
1417 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
1418 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
1419 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
1420 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1421}
1422
1423SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
1424 EVT VT = Node->getValueType(0);
1425
1426 // Make sure that the SRA and SHL instructions are available.
1427 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
1428 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
1429 return SDValue();
1430
1431 SDLoc DL(Node);
1432 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
1433
1434 unsigned BW = VT.getScalarSizeInBits();
1435 unsigned OrigBW = OrigTy.getScalarSizeInBits();
1436 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
1437
1438 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
1439 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
1440}
1441
1442// Generically expand a vector anyext in register to a shuffle of the relevant
1443// lanes into the appropriate locations, with other lanes left undef.
1444SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
1445 SDLoc DL(Node);
1446 EVT VT = Node->getValueType(0);
1447 int NumElements = VT.getVectorNumElements();
1448 SDValue Src = Node->getOperand(0);
1449 EVT SrcVT = Src.getValueType();
1450 int NumSrcElements = SrcVT.getVectorNumElements();
1451
1452 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1453 // into a larger vector type.
1454 if (SrcVT.bitsLE(VT)) {
1455 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1456 "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1457 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1458 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1459 NumSrcElements);
1460 Src = DAG.getInsertSubvector(DL, DAG.getUNDEF(SrcVT), Src, 0);
1461 }
1462
1463 // Build a base mask of undef shuffles.
1464 SmallVector<int, 16> ShuffleMask;
1465 ShuffleMask.resize(NumSrcElements, -1);
1466
1467 // Place the extended lanes into the correct locations.
1468 int ExtLaneScale = NumSrcElements / NumElements;
1469 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1470 for (int i = 0; i < NumElements; ++i)
1471 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
1472
1473 return DAG.getNode(
1474 ISD::BITCAST, DL, VT,
1475 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1476}
1477
1478SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1479 SDLoc DL(Node);
1480 EVT VT = Node->getValueType(0);
1481 SDValue Src = Node->getOperand(0);
1482 EVT SrcVT = Src.getValueType();
1483
1484 // First build an any-extend node which can be legalized above when we
1485 // recurse through it.
1487
1488 // Now we need sign extend. Do this by shifting the elements. Even if these
1489 // aren't legal operations, they have a better chance of being legalized
1490 // without full scalarization than the sign extension does.
1491 unsigned EltWidth = VT.getScalarSizeInBits();
1492 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1493 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1494 return DAG.getNode(ISD::SRA, DL, VT,
1495 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1496 ShiftAmount);
1497}
1498
1499// Generically expand a vector zext in register to a shuffle of the relevant
1500// lanes into the appropriate locations, a blend of zero into the high bits,
1501// and a bitcast to the wider element type.
1502SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1503 SDLoc DL(Node);
1504 EVT VT = Node->getValueType(0);
1505 int NumElements = VT.getVectorNumElements();
1506 SDValue Src = Node->getOperand(0);
1507 EVT SrcVT = Src.getValueType();
1508 int NumSrcElements = SrcVT.getVectorNumElements();
1509
1510 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1511 // into a larger vector type.
1512 if (SrcVT.bitsLE(VT)) {
1513 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1514 "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1515 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1516 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1517 NumSrcElements);
1518 Src = DAG.getInsertSubvector(DL, DAG.getUNDEF(SrcVT), Src, 0);
1519 }
1520
1521 // Build up a zero vector to blend into this one.
1522 SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1523
1524 // Shuffle the incoming lanes into the correct position, and pull all other
1525 // lanes from the zero vector.
1526 auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));
1527
1528 int ExtLaneScale = NumSrcElements / NumElements;
1529 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1530 for (int i = 0; i < NumElements; ++i)
1531 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1532
1533 return DAG.getNode(ISD::BITCAST, DL, VT,
1534 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1535}
1536
1537static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1538 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1539 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1540 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1541 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1542}
1543
1544SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1545 EVT VT = Node->getValueType(0);
1546
1547 // Scalable vectors can't use shuffle expansion.
1548 if (VT.isScalableVector())
1549 return TLI.expandBSWAP(Node, DAG);
1550
1551 // Generate a byte wise shuffle mask for the BSWAP.
1552 SmallVector<int, 16> ShuffleMask;
1553 createBSWAPShuffleMask(VT, ShuffleMask);
1554 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1555
1556 // Only emit a shuffle if the mask is legal.
1557 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1558 SDLoc DL(Node);
1559 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1560 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1561 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1562 }
1563
1564 // If we have the appropriate vector bit operations, it is better to use them
1565 // than unrolling and expanding each component.
1566 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1570 return TLI.expandBSWAP(Node, DAG);
1571
1572 // Otherwise let the caller unroll.
1573 return SDValue();
1574}
1575
1576SDValue VectorLegalizer::ExpandBITREVERSE(SDNode *Node) {
1577 EVT VT = Node->getValueType(0);
1578
1579 // We can't unroll or use shuffles for scalable vectors.
1580 if (VT.isScalableVector())
1581 return TLI.expandBITREVERSE(Node, DAG);
1582
1583 // If we have the scalar operation, it's probably cheaper to unroll it.
1585 return SDValue();
1586
1587 // If the vector element width is a whole number of bytes, test if its legal
1588 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1589 // vector. This greatly reduces the number of bit shifts necessary.
1590 unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1591 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1592 SmallVector<int, 16> BSWAPMask;
1593 createBSWAPShuffleMask(VT, BSWAPMask);
1594
1595 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1596 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1598 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1599 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1602 SDLoc DL(Node);
1603 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1604 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1605 BSWAPMask);
1606 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1607 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1608 return Op;
1609 }
1610 }
1611
1612 // If we have the appropriate vector bit operations, it is better to use them
1613 // than unrolling and expanding each component.
1614 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1618 return TLI.expandBITREVERSE(Node, DAG);
1619
1620 // Otherwise unroll.
1621 return SDValue();
1622}
1623
1624SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1625 // Implement VSELECT in terms of XOR, AND, OR
1626 // on platforms which do not support blend natively.
1627 SDLoc DL(Node);
1628
1629 SDValue Mask = Node->getOperand(0);
1630 SDValue Op1 = Node->getOperand(1);
1631 SDValue Op2 = Node->getOperand(2);
1632
1633 EVT VT = Mask.getValueType();
1634
1635 // If we can't even use the basic vector operations of
1636 // AND,OR,XOR, we will have to scalarize the op.
1637 // Notice that the operation may be 'promoted' which means that it is
1638 // 'bitcasted' to another type which is handled.
1639 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1640 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1641 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1642 return SDValue();
1643
1644 // This operation also isn't safe with AND, OR, XOR when the boolean type is
1645 // 0/1 and the select operands aren't also booleans, as we need an all-ones
1646 // vector constant to mask with.
1647 // FIXME: Sign extend 1 to all ones if that's legal on the target.
1648 auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1649 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1650 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1651 Op1.getValueType().getVectorElementType() == MVT::i1))
1652 return SDValue();
1653
1654 // If the mask and the type are different sizes, unroll the vector op. This
1655 // can occur when getSetCCResultType returns something that is different in
1656 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1657 if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1658 return SDValue();
1659
1660 // Bitcast the operands to be the same type as the mask.
1661 // This is needed when we select between FP types because
1662 // the mask is a vector of integers.
1663 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1664 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1665
1666 SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1667
1668 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1669 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1670 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1671 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1672}
1673
1674SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
1675 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1676 // do not support it natively.
1677 SDLoc DL(Node);
1678
1679 SDValue Mask = Node->getOperand(0);
1680 SDValue Op1 = Node->getOperand(1);
1681 SDValue Op2 = Node->getOperand(2);
1682 SDValue EVL = Node->getOperand(3);
1683
1684 EVT VT = Mask.getValueType();
1685
1686 // If we can't even use the basic vector operations of
1687 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1688 if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
1689 TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
1690 TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
1691 return SDValue();
1692
1693 // This operation also isn't safe when the operands aren't also booleans.
1694 if (Op1.getValueType().getVectorElementType() != MVT::i1)
1695 return SDValue();
1696
1697 SDValue Ones = DAG.getAllOnesConstant(DL, VT);
1698 SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Ones, EVL);
1699
1700 Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Ones, EVL);
1701 Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Ones, EVL);
1702 return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Ones, EVL);
1703}
1704
1705SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
1706 // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
1707 // indices less than the EVL/pivot are true. Combine that with the original
1708 // mask for a full-length mask. Use a full-length VSELECT to select between
1709 // the true and false values.
1710 SDLoc DL(Node);
1711
1712 SDValue Mask = Node->getOperand(0);
1713 SDValue Op1 = Node->getOperand(1);
1714 SDValue Op2 = Node->getOperand(2);
1715 SDValue EVL = Node->getOperand(3);
1716
1717 EVT MaskVT = Mask.getValueType();
1718 bool IsFixedLen = MaskVT.isFixedLengthVector();
1719
1720 EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
1721 MaskVT.getVectorElementCount());
1722
1723 // If we can't construct the EVL mask efficiently, it's better to unroll.
1724 if ((IsFixedLen &&
1726 (!IsFixedLen &&
1727 (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
1729 return SDValue();
1730
1731 // If using a SETCC would result in a different type than the mask type,
1732 // unroll.
1733 if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1734 EVLVecVT) != MaskVT)
1735 return SDValue();
1736
1737 SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
1738 SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL);
1739 SDValue EVLMask =
1740 DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
1741
1742 SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
1743 return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
1744}
1745
1746SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) {
1747 // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB.
1748 EVT VT = Node->getValueType(0);
1749
1750 unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV;
1751
1752 if (!TLI.isOperationLegalOrCustom(DivOpc, VT) ||
1753 !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) ||
1754 !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT))
1755 return SDValue();
1756
1757 SDLoc DL(Node);
1758
1759 SDValue Dividend = Node->getOperand(0);
1760 SDValue Divisor = Node->getOperand(1);
1761 SDValue Mask = Node->getOperand(2);
1762 SDValue EVL = Node->getOperand(3);
1763
1764 // X % Y -> X-X/Y*Y
1765 SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL);
1766 SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL);
1767 return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL);
1768}
1769
1770SDValue VectorLegalizer::ExpandVP_FNEG(SDNode *Node) {
1771 EVT VT = Node->getValueType(0);
1772 EVT IntVT = VT.changeVectorElementTypeToInteger();
1773
1774 if (!TLI.isOperationLegalOrCustom(ISD::VP_XOR, IntVT))
1775 return SDValue();
1776
1777 SDValue Mask = Node->getOperand(1);
1778 SDValue EVL = Node->getOperand(2);
1779
1780 SDLoc DL(Node);
1781 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
1782 SDValue SignMask = DAG.getConstant(
1783 APInt::getSignMask(IntVT.getScalarSizeInBits()), DL, IntVT);
1784 SDValue Xor = DAG.getNode(ISD::VP_XOR, DL, IntVT, Cast, SignMask, Mask, EVL);
1785 return DAG.getNode(ISD::BITCAST, DL, VT, Xor);
1786}
1787
1788SDValue VectorLegalizer::ExpandVP_FABS(SDNode *Node) {
1789 EVT VT = Node->getValueType(0);
1790 EVT IntVT = VT.changeVectorElementTypeToInteger();
1791
1792 if (!TLI.isOperationLegalOrCustom(ISD::VP_AND, IntVT))
1793 return SDValue();
1794
1795 SDValue Mask = Node->getOperand(1);
1796 SDValue EVL = Node->getOperand(2);
1797
1798 SDLoc DL(Node);
1799 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
1800 SDValue ClearSignMask = DAG.getConstant(
1802 SDValue ClearSign =
1803 DAG.getNode(ISD::VP_AND, DL, IntVT, Cast, ClearSignMask, Mask, EVL);
1804 return DAG.getNode(ISD::BITCAST, DL, VT, ClearSign);
1805}
1806
1807SDValue VectorLegalizer::ExpandVP_FCOPYSIGN(SDNode *Node) {
1808 EVT VT = Node->getValueType(0);
1809
1810 if (VT != Node->getOperand(1).getValueType())
1811 return SDValue();
1812
1813 EVT IntVT = VT.changeVectorElementTypeToInteger();
1814 if (!TLI.isOperationLegalOrCustom(ISD::VP_AND, IntVT) ||
1815 !TLI.isOperationLegalOrCustom(ISD::VP_XOR, IntVT))
1816 return SDValue();
1817
1818 SDValue Mask = Node->getOperand(2);
1819 SDValue EVL = Node->getOperand(3);
1820
1821 SDLoc DL(Node);
1822 SDValue Mag = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
1823 SDValue Sign = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(1));
1824
1825 SDValue SignMask = DAG.getConstant(
1826 APInt::getSignMask(IntVT.getScalarSizeInBits()), DL, IntVT);
1827 SDValue SignBit =
1828 DAG.getNode(ISD::VP_AND, DL, IntVT, Sign, SignMask, Mask, EVL);
1829
1830 SDValue ClearSignMask = DAG.getConstant(
1832 SDValue ClearedSign =
1833 DAG.getNode(ISD::VP_AND, DL, IntVT, Mag, ClearSignMask, Mask, EVL);
1834
1835 SDValue CopiedSign = DAG.getNode(ISD::VP_OR, DL, IntVT, ClearedSign, SignBit,
1836 Mask, EVL, SDNodeFlags::Disjoint);
1837
1838 return DAG.getNode(ISD::BITCAST, DL, VT, CopiedSign);
1839}
1840
1841SDValue VectorLegalizer::ExpandLOOP_DEPENDENCE_MASK(SDNode *N) {
1842 SDLoc DL(N);
1843 EVT VT = N->getValueType(0);
1844 SDValue SourceValue = N->getOperand(0);
1845 SDValue SinkValue = N->getOperand(1);
1846 SDValue EltSizeInBytes = N->getOperand(2);
1847
1848 // Note: The lane offset is scalable if the mask is scalable.
1849 ElementCount LaneOffsetEC =
1850 ElementCount::get(N->getConstantOperandVal(3), VT.isScalableVT());
1851
1852 EVT PtrVT = SourceValue->getValueType(0);
1853 bool IsReadAfterWrite = N->getOpcode() == ISD::LOOP_DEPENDENCE_RAW_MASK;
1854
1855 // Take the difference between the pointers and divided by the element size,
1856 // to see how many lanes separate them.
1857 SDValue Diff = DAG.getNode(ISD::SUB, DL, PtrVT, SinkValue, SourceValue);
1858 if (IsReadAfterWrite)
1859 Diff = DAG.getNode(ISD::ABS, DL, PtrVT, Diff);
1860 Diff = DAG.getNode(ISD::SDIV, DL, PtrVT, Diff, EltSizeInBytes);
1861
1862 // The pointers do not alias if:
1863 // * Diff <= 0 (WAR_MASK)
1864 // * Diff == 0 (RAW_MASK)
1865 EVT CmpVT =
1866 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), PtrVT);
1867 SDValue Zero = DAG.getConstant(0, DL, PtrVT);
1868 SDValue Cmp = DAG.getSetCC(DL, CmpVT, Diff, Zero,
1869 IsReadAfterWrite ? ISD::SETEQ : ISD::SETLE);
1870
1871 // The pointers do not alias if:
1872 // Lane + LaneOffset < Diff (WAR/RAW_MASK)
1873 SDValue LaneOffset = DAG.getElementCount(DL, PtrVT, LaneOffsetEC);
1874 SDValue MaskN =
1875 DAG.getSelect(DL, PtrVT, Cmp, DAG.getConstant(-1, DL, PtrVT), Diff);
1876
1877 return DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, DL, VT, LaneOffset, MaskN);
1878}
1879
1880void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1881 SmallVectorImpl<SDValue> &Results) {
1882 // Attempt to expand using TargetLowering.
1883 SDValue Result, Chain;
1884 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1885 Results.push_back(Result);
1886 if (Node->isStrictFPOpcode())
1887 Results.push_back(Chain);
1888 return;
1889 }
1890
1891 // Otherwise go ahead and unroll.
1892 if (Node->isStrictFPOpcode()) {
1893 UnrollStrictFPOp(Node, Results);
1894 return;
1895 }
1896
1897 Results.push_back(DAG.UnrollVectorOp(Node));
1898}
1899
1900void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1901 SmallVectorImpl<SDValue> &Results) {
1902 bool IsStrict = Node->isStrictFPOpcode();
1903 unsigned OpNo = IsStrict ? 1 : 0;
1904 SDValue Src = Node->getOperand(OpNo);
1905 EVT SrcVT = Src.getValueType();
1906 EVT DstVT = Node->getValueType(0);
1907 SDLoc DL(Node);
1908
1909 // Attempt to expand using TargetLowering.
1911 SDValue Chain;
1912 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1913 Results.push_back(Result);
1914 if (IsStrict)
1915 Results.push_back(Chain);
1916 return;
1917 }
1918
1919 // Make sure that the SINT_TO_FP and SRL instructions are available.
1920 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) ==
1921 TargetLowering::Expand) ||
1922 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, SrcVT) ==
1923 TargetLowering::Expand)) ||
1924 TLI.getOperationAction(ISD::SRL, SrcVT) == TargetLowering::Expand) {
1925 if (IsStrict) {
1926 UnrollStrictFPOp(Node, Results);
1927 return;
1928 }
1929
1930 Results.push_back(DAG.UnrollVectorOp(Node));
1931 return;
1932 }
1933
1934 unsigned BW = SrcVT.getScalarSizeInBits();
1935 assert((BW == 64 || BW == 32) &&
1936 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1937
1938 // If STRICT_/FMUL is not supported by the target (in case of f16) replace the
1939 // UINT_TO_FP with a larger float and round to the smaller type
1940 if ((!IsStrict && !TLI.isOperationLegalOrCustom(ISD::FMUL, DstVT)) ||
1941 (IsStrict && !TLI.isOperationLegalOrCustom(ISD::STRICT_FMUL, DstVT))) {
1942 EVT FPVT = BW == 32 ? MVT::f32 : MVT::f64;
1943 SDValue UIToFP;
1945 SDValue TargetZero = DAG.getIntPtrConstant(0, DL, /*isTarget=*/true);
1946 EVT FloatVecVT = SrcVT.changeVectorElementType(FPVT);
1947 if (IsStrict) {
1948 UIToFP = DAG.getNode(ISD::STRICT_UINT_TO_FP, DL, {FloatVecVT, MVT::Other},
1949 {Node->getOperand(0), Src});
1950 Result = DAG.getNode(ISD::STRICT_FP_ROUND, DL, {DstVT, MVT::Other},
1951 {Node->getOperand(0), UIToFP, TargetZero});
1952 Results.push_back(Result);
1953 Results.push_back(Result.getValue(1));
1954 } else {
1955 UIToFP = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVecVT, Src);
1956 Result = DAG.getNode(ISD::FP_ROUND, DL, DstVT, UIToFP, TargetZero);
1957 Results.push_back(Result);
1958 }
1959
1960 return;
1961 }
1962
1963 SDValue HalfWord = DAG.getConstant(BW / 2, DL, SrcVT);
1964
1965 // Constants to clear the upper part of the word.
1966 // Notice that we can also use SHL+SHR, but using a constant is slightly
1967 // faster on x86.
1968 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1969 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, SrcVT);
1970
1971 // Two to the power of half-word-size.
1972 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, DstVT);
1973
1974 // Clear upper part of LO, lower HI
1975 SDValue HI = DAG.getNode(ISD::SRL, DL, SrcVT, Src, HalfWord);
1976 SDValue LO = DAG.getNode(ISD::AND, DL, SrcVT, Src, HalfWordMask);
1977
1978 if (IsStrict) {
1979 // Convert hi and lo to floats
1980 // Convert the hi part back to the upper values
1981 // TODO: Can any fast-math-flags be set on these nodes?
1982 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {DstVT, MVT::Other},
1983 {Node->getOperand(0), HI});
1984 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {DstVT, MVT::Other},
1985 {fHI.getValue(1), fHI, TWOHW});
1986 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {DstVT, MVT::Other},
1987 {Node->getOperand(0), LO});
1988
1989 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1990 fLO.getValue(1));
1991
1992 // Add the two halves
1993 SDValue Result =
1994 DAG.getNode(ISD::STRICT_FADD, DL, {DstVT, MVT::Other}, {TF, fHI, fLO});
1995
1996 Results.push_back(Result);
1997 Results.push_back(Result.getValue(1));
1998 return;
1999 }
2000
2001 // Convert hi and lo to floats
2002 // Convert the hi part back to the upper values
2003 // TODO: Can any fast-math-flags be set on these nodes?
2004 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, DstVT, HI);
2005 fHI = DAG.getNode(ISD::FMUL, DL, DstVT, fHI, TWOHW);
2006 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, DstVT, LO);
2007
2008 // Add the two halves
2009 Results.push_back(DAG.getNode(ISD::FADD, DL, DstVT, fHI, fLO));
2010}
2011
2012SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
2013 EVT VT = Node->getValueType(0);
2014 EVT IntVT = VT.changeVectorElementTypeToInteger();
2015
2016 if (!TLI.isOperationLegalOrCustom(ISD::XOR, IntVT))
2017 return SDValue();
2018
2019 // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64.
2021 !VT.isScalableVector())
2022 return SDValue();
2023
2024 SDLoc DL(Node);
2025 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
2026 SDValue SignMask = DAG.getConstant(
2027 APInt::getSignMask(IntVT.getScalarSizeInBits()), DL, IntVT);
2028 SDValue Xor = DAG.getNode(ISD::XOR, DL, IntVT, Cast, SignMask);
2029 return DAG.getNode(ISD::BITCAST, DL, VT, Xor);
2030}
2031
2032SDValue VectorLegalizer::ExpandFABS(SDNode *Node) {
2033 EVT VT = Node->getValueType(0);
2034 EVT IntVT = VT.changeVectorElementTypeToInteger();
2035
2036 if (!TLI.isOperationLegalOrCustom(ISD::AND, IntVT))
2037 return SDValue();
2038
2039 // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64.
2041 !VT.isScalableVector())
2042 return SDValue();
2043
2044 SDLoc DL(Node);
2045 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
2046 SDValue ClearSignMask = DAG.getConstant(
2048 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, Cast, ClearSignMask);
2049 return DAG.getNode(ISD::BITCAST, DL, VT, ClearedSign);
2050}
2051
2052SDValue VectorLegalizer::ExpandFCOPYSIGN(SDNode *Node) {
2053 EVT VT = Node->getValueType(0);
2054 EVT IntVT = VT.changeVectorElementTypeToInteger();
2055
2056 if (VT != Node->getOperand(1).getValueType() ||
2057 !TLI.isOperationLegalOrCustom(ISD::AND, IntVT) ||
2058 !TLI.isOperationLegalOrCustom(ISD::OR, IntVT))
2059 return SDValue();
2060
2061 // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64.
2063 !VT.isScalableVector())
2064 return SDValue();
2065
2066 SDLoc DL(Node);
2067 SDValue Mag = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
2068 SDValue Sign = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(1));
2069
2070 SDValue SignMask = DAG.getConstant(
2071 APInt::getSignMask(IntVT.getScalarSizeInBits()), DL, IntVT);
2072 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, Sign, SignMask);
2073
2074 SDValue ClearSignMask = DAG.getConstant(
2076 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, Mag, ClearSignMask);
2077
2078 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, IntVT, ClearedSign, SignBit,
2080
2081 return DAG.getNode(ISD::BITCAST, DL, VT, CopiedSign);
2082}
2083
2084void VectorLegalizer::ExpandFSUB(SDNode *Node,
2085 SmallVectorImpl<SDValue> &Results) {
2086 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
2087 // we can defer this to operation legalization where it will be lowered as
2088 // a+(-b).
2089 EVT VT = Node->getValueType(0);
2090 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
2092 return; // Defer to LegalizeDAG
2093
2094 if (SDValue Expanded = TLI.expandVectorNaryOpBySplitting(Node, DAG)) {
2095 Results.push_back(Expanded);
2096 return;
2097 }
2098
2099 SDValue Tmp = DAG.UnrollVectorOp(Node);
2100 Results.push_back(Tmp);
2101}
2102
2103void VectorLegalizer::ExpandSETCC(SDNode *Node,
2104 SmallVectorImpl<SDValue> &Results) {
2105 bool NeedInvert = false;
2106 bool IsVP = Node->getOpcode() == ISD::VP_SETCC;
2107 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC ||
2108 Node->getOpcode() == ISD::STRICT_FSETCCS;
2109 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
2110 unsigned Offset = IsStrict ? 1 : 0;
2111
2112 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
2113 SDValue LHS = Node->getOperand(0 + Offset);
2114 SDValue RHS = Node->getOperand(1 + Offset);
2115 SDValue CC = Node->getOperand(2 + Offset);
2116
2117 MVT OpVT = LHS.getSimpleValueType();
2118 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
2119
2120 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
2121 if (IsStrict) {
2122 UnrollStrictFPOp(Node, Results);
2123 return;
2124 }
2125 Results.push_back(UnrollVSETCC(Node));
2126 return;
2127 }
2128
2129 SDValue Mask, EVL;
2130 if (IsVP) {
2131 Mask = Node->getOperand(3 + Offset);
2132 EVL = Node->getOperand(4 + Offset);
2133 }
2134
2135 SDLoc dl(Node);
2136 bool Legalized =
2137 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask,
2138 EVL, NeedInvert, dl, Chain, IsSignaling);
2139
2140 if (Legalized) {
2141 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
2142 // condition code, create a new SETCC node.
2143 if (CC.getNode()) {
2144 if (IsStrict) {
2145 LHS = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(),
2146 {Chain, LHS, RHS, CC}, Node->getFlags());
2147 Chain = LHS.getValue(1);
2148 } else if (IsVP) {
2149 LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0),
2150 {LHS, RHS, CC, Mask, EVL}, Node->getFlags());
2151 } else {
2152 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
2153 Node->getFlags());
2154 }
2155 }
2156
2157 // If we expanded the SETCC by inverting the condition code, then wrap
2158 // the existing SETCC in a NOT to restore the intended condition.
2159 if (NeedInvert) {
2160 if (!IsVP)
2161 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
2162 else
2163 LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0));
2164 }
2165 } else {
2166 assert(!IsStrict && "Don't know how to expand for strict nodes.");
2167
2168 // Otherwise, SETCC for the given comparison type must be completely
2169 // illegal; expand it into a SELECT_CC.
2170 EVT VT = Node->getValueType(0);
2171 LHS = DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
2172 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
2173 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()),
2174 CC, Node->getFlags());
2175 }
2176
2177 Results.push_back(LHS);
2178 if (IsStrict)
2179 Results.push_back(Chain);
2180}
2181
2182void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
2183 SmallVectorImpl<SDValue> &Results) {
2184 SDValue Result, Overflow;
2185 TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
2186 Results.push_back(Result);
2187 Results.push_back(Overflow);
2188}
2189
2190void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
2191 SmallVectorImpl<SDValue> &Results) {
2192 SDValue Result, Overflow;
2193 TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
2194 Results.push_back(Result);
2195 Results.push_back(Overflow);
2196}
2197
2198void VectorLegalizer::ExpandMULO(SDNode *Node,
2199 SmallVectorImpl<SDValue> &Results) {
2200 SDValue Result, Overflow;
2201 if (!TLI.expandMULO(Node, Result, Overflow, DAG))
2202 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
2203
2204 Results.push_back(Result);
2205 Results.push_back(Overflow);
2206}
2207
2208void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
2209 SmallVectorImpl<SDValue> &Results) {
2210 SDNode *N = Node;
2211 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
2212 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
2213 Results.push_back(Expanded);
2214}
2215
2216void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
2217 SmallVectorImpl<SDValue> &Results) {
2218 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
2219 ExpandUINT_TO_FLOAT(Node, Results);
2220 return;
2221 }
2222 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
2223 ExpandFP_TO_UINT(Node, Results);
2224 return;
2225 }
2226
2227 if (Node->getOpcode() == ISD::STRICT_FSETCC ||
2228 Node->getOpcode() == ISD::STRICT_FSETCCS) {
2229 ExpandSETCC(Node, Results);
2230 return;
2231 }
2232
2233 UnrollStrictFPOp(Node, Results);
2234}
2235
2236void VectorLegalizer::ExpandREM(SDNode *Node,
2237 SmallVectorImpl<SDValue> &Results) {
2238 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
2239 "Expected REM node");
2240
2242 if (!TLI.expandREM(Node, Result, DAG))
2243 Result = DAG.UnrollVectorOp(Node);
2244 Results.push_back(Result);
2245}
2246
2247// Try to expand libm nodes into vector math routine calls. Callers provide the
2248// LibFunc equivalent of the passed in Node, which is used to lookup mappings
2249// within TargetLibraryInfo. The only mappings considered are those where the
2250// result and all operands are the same vector type. While predicated nodes are
2251// not supported, we will emit calls to masked routines by passing in an all
2252// true mask.
2253bool VectorLegalizer::tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC,
2254 SmallVectorImpl<SDValue> &Results) {
2255 // Chain must be propagated but currently strict fp operations are down
2256 // converted to their none strict counterpart.
2257 assert(!Node->isStrictFPOpcode() && "Unexpected strict fp operation!");
2258
2259 RTLIB::LibcallImpl LCImpl = TLI.getLibcallImpl(LC);
2260 if (LCImpl == RTLIB::Unsupported)
2261 return false;
2262
2263 EVT VT = Node->getValueType(0);
2264 const RTLIB::RuntimeLibcallsInfo &RTLCI = TLI.getRuntimeLibcallsInfo();
2265 LLVMContext &Ctx = *DAG.getContext();
2266
2267 auto [FuncTy, FuncAttrs] = RTLCI.getFunctionTy(
2268 Ctx, DAG.getSubtarget().getTargetTriple(), DAG.getDataLayout(), LCImpl);
2269
2270 SDLoc DL(Node);
2271 TargetLowering::ArgListTy Args;
2272
2273 bool HasMaskArg = RTLCI.hasVectorMaskArgument(LCImpl);
2274
2275 // Sanity check just in case function has unexpected parameters.
2276 assert(FuncTy->getNumParams() == Node->getNumOperands() + HasMaskArg &&
2277 EVT::getEVT(FuncTy->getReturnType(), true) == VT &&
2278 "mismatch in value type and call signature type");
2279
2280 for (unsigned I = 0, E = FuncTy->getNumParams(); I != E; ++I) {
2281 Type *ParamTy = FuncTy->getParamType(I);
2282
2283 if (HasMaskArg && I == E - 1) {
2284 assert(cast<VectorType>(ParamTy)->getElementType()->isIntegerTy(1) &&
2285 "unexpected vector mask type");
2286 EVT MaskVT = TLI.getSetCCResultType(DAG.getDataLayout(), Ctx, VT);
2287 Args.emplace_back(DAG.getBoolConstant(true, DL, MaskVT, VT),
2288 MaskVT.getTypeForEVT(Ctx));
2289
2290 } else {
2291 SDValue Op = Node->getOperand(I);
2292 assert(Op.getValueType() == EVT::getEVT(ParamTy, true) &&
2293 "mismatch in value type and call argument type");
2294 Args.emplace_back(Op, ParamTy);
2295 }
2296 }
2297
2298 // Emit a call to the vector function.
2299 SDValue Callee =
2300 DAG.getExternalSymbol(LCImpl, TLI.getPointerTy(DAG.getDataLayout()));
2301 CallingConv::ID CC = RTLCI.getLibcallImplCallingConv(LCImpl);
2302
2303 TargetLowering::CallLoweringInfo CLI(DAG);
2304 CLI.setDebugLoc(DL)
2305 .setChain(DAG.getEntryNode())
2306 .setLibCallee(CC, FuncTy->getReturnType(), Callee, std::move(Args));
2307
2308 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2309 Results.push_back(CallResult.first);
2310 return true;
2311}
2312
2313void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
2314 SmallVectorImpl<SDValue> &Results) {
2315 EVT VT = Node->getValueType(0);
2316 EVT EltVT = VT.getVectorElementType();
2317 unsigned NumElems = VT.getVectorNumElements();
2318 unsigned NumOpers = Node->getNumOperands();
2319 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2320
2321 EVT TmpEltVT = EltVT;
2322 if (Node->getOpcode() == ISD::STRICT_FSETCC ||
2323 Node->getOpcode() == ISD::STRICT_FSETCCS)
2324 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
2325 *DAG.getContext(), TmpEltVT);
2326
2327 EVT ValueVTs[] = {TmpEltVT, MVT::Other};
2328 SDValue Chain = Node->getOperand(0);
2329 SDLoc dl(Node);
2330
2331 SmallVector<SDValue, 32> OpValues;
2332 SmallVector<SDValue, 32> OpChains;
2333 for (unsigned i = 0; i < NumElems; ++i) {
2335 SDValue Idx = DAG.getVectorIdxConstant(i, dl);
2336
2337 // The Chain is the first operand.
2338 Opers.push_back(Chain);
2339
2340 // Now process the remaining operands.
2341 for (unsigned j = 1; j < NumOpers; ++j) {
2342 SDValue Oper = Node->getOperand(j);
2343 EVT OperVT = Oper.getValueType();
2344
2345 if (OperVT.isVector())
2346 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2347 OperVT.getVectorElementType(), Oper, Idx);
2348
2349 Opers.push_back(Oper);
2350 }
2351
2352 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
2353 SDValue ScalarResult = ScalarOp.getValue(0);
2354 SDValue ScalarChain = ScalarOp.getValue(1);
2355
2356 if (Node->getOpcode() == ISD::STRICT_FSETCC ||
2357 Node->getOpcode() == ISD::STRICT_FSETCCS)
2358 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
2359 DAG.getAllOnesConstant(dl, EltVT),
2360 DAG.getConstant(0, dl, EltVT));
2361
2362 OpValues.push_back(ScalarResult);
2363 OpChains.push_back(ScalarChain);
2364 }
2365
2366 SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
2367 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
2368
2369 Results.push_back(Result);
2370 Results.push_back(NewChain);
2371}
2372
2373SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
2374 EVT VT = Node->getValueType(0);
2375 unsigned NumElems = VT.getVectorNumElements();
2376 EVT EltVT = VT.getVectorElementType();
2377 SDValue LHS = Node->getOperand(0);
2378 SDValue RHS = Node->getOperand(1);
2379 SDValue CC = Node->getOperand(2);
2380 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
2381 SDLoc dl(Node);
2382 SmallVector<SDValue, 8> Ops(NumElems);
2383 for (unsigned i = 0; i < NumElems; ++i) {
2384 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
2385 DAG.getVectorIdxConstant(i, dl));
2386 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
2387 DAG.getVectorIdxConstant(i, dl));
2388 // FIXME: We should use i1 setcc + boolext here, but it causes regressions.
2389 Ops[i] = DAG.getNode(ISD::SETCC, dl,
2391 *DAG.getContext(), TmpEltVT),
2392 LHSElem, RHSElem, CC);
2393 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
2394 DAG.getBoolConstant(true, dl, EltVT, VT),
2395 DAG.getConstant(0, dl, EltVT));
2396 }
2397 return DAG.getBuildVector(VT, dl, Ops);
2398}
2399
2401 return VectorLegalizer(*this).Run();
2402}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file defines the DenseMap class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl< int > &ShuffleMask)
#define I(x, y, z)
Definition MD5.cpp:57
#define T
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
This file describes how to lower LLVM code to machine code.
Value * RHS
Value * LHS
BinaryOperator * Mul
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:230
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
bool isBigEndian() const
Definition DataLayout.h:215
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
size_t size() const
Definition Function.h:856
const Triple & getTargetTriple() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
Represents one node in the SelectionDAG.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC)
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI bool LegalizeVectors()
This transforms the SelectionDAG into a SelectionDAG that only uses vector math operations supported ...
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
allnodes_const_iterator allnodes_end() const
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
ilist< SDNode >::iterator allnodes_iterator
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void resize(size_type N)
void push_back(const T &Elt)
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool, EVT ValVT) const
Promote the given target boolean to a target boolean of the given type.
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
bool isStrictFPEnabled() const
Return true if the target support strict float operation.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
LegalizeAction getPartialReduceMLAAction(unsigned Opc, EVT AccVT, EVT InputVT) const
Return how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type InputVT should be treated.
LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
const RTLIB::RuntimeLibcallsInfo & getRuntimeLibcallsInfo() const
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
bool expandMultipleResultFPLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={}) const
Expands a node with multiple results to an FP or vector libcall.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const
Expand VECTOR_FIND_LAST_ACTIVE nodes.
SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const
Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations, consisting of zext/sext,...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:809
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:782
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:506
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:773
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:389
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:395
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:843
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:513
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:870
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:412
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:746
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:900
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
Definition ISDOpcodes.h:510
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:983
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:402
@ STRICT_FSQRT
Constrained versions of libm-equivalent floating point intrinsics.
Definition ISDOpcodes.h:433
@ PARTIAL_REDUCE_UMLA
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:834
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:714
@ STRICT_UINT_TO_FP
Definition ISDOpcodes.h:480
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:781
@ PARTIAL_REDUCE_FMLA
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:690
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:536
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:786
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:671
@ GET_ACTIVE_LANE_MASK
GET_ACTIVE_LANE_MASK - this corrosponds to the llvm.get.active.lane.mask intrinsic.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:703
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:764
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:571
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:840
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:801
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:381
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:889
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:878
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:408
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:968
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:795
@ STRICT_SINT_TO_FP
STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to a floating point value.
Definition ISDOpcodes.h:479
@ MGATHER
Masked gather and scatter - load and store operations for a vector of random addresses with additiona...
@ STRICT_FP_TO_UINT
Definition ISDOpcodes.h:473
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:495
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:472
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:916
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:500
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:738
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:734
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:709
@ STRICT_FADD
Constrained versions of the binary floating point operators.
Definition ISDOpcodes.h:422
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:949
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:698
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:911
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:935
@ VECREDUCE_FMINIMUM
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:846
@ VECREDUCE_SEQ_FMUL
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:529
@ PARTIAL_REDUCE_SUMLA
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:721
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:551
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI Libcall getREM(EVT VT)
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:532
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
@ Xor
Bitwise or logical XOR of integers.
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
#define N
Extended Value Type.
Definition ValueTypes.h:35
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
Definition ValueTypes.h:94
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
bool isScalableVT() const
Return true if the type is a scalable type.
Definition ValueTypes.h:187
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
CallingConv::ID getLibcallImplCallingConv(RTLIB::LibcallImpl Call) const
Get the CallingConv that should be used for the specified libcall.
std::pair< FunctionType *, AttributeList > getFunctionTy(LLVMContext &Ctx, const Triple &TT, const DataLayout &DL, RTLIB::LibcallImpl LibcallImpl) const
static bool hasVectorMaskArgument(RTLIB::LibcallImpl Impl)
Returns true if the function has a vector mask argument, which is assumed to be the last argument.