LLVM 22.0.0git
SelectionDAGBuilder.cpp
Go to the documentation of this file.
1//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements routines for translating from LLVM IR into SelectionDAG IR.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SelectionDAGBuilder.h"
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/Analysis/Loads.h"
57#include "llvm/IR/Argument.h"
58#include "llvm/IR/Attributes.h"
59#include "llvm/IR/BasicBlock.h"
60#include "llvm/IR/CFG.h"
61#include "llvm/IR/CallingConv.h"
62#include "llvm/IR/Constant.h"
64#include "llvm/IR/Constants.h"
65#include "llvm/IR/DataLayout.h"
66#include "llvm/IR/DebugInfo.h"
71#include "llvm/IR/Function.h"
73#include "llvm/IR/InlineAsm.h"
74#include "llvm/IR/InstrTypes.h"
77#include "llvm/IR/Intrinsics.h"
78#include "llvm/IR/IntrinsicsAArch64.h"
79#include "llvm/IR/IntrinsicsAMDGPU.h"
80#include "llvm/IR/IntrinsicsWebAssembly.h"
81#include "llvm/IR/LLVMContext.h"
83#include "llvm/IR/Metadata.h"
84#include "llvm/IR/Module.h"
85#include "llvm/IR/Operator.h"
87#include "llvm/IR/Statepoint.h"
88#include "llvm/IR/Type.h"
89#include "llvm/IR/User.h"
90#include "llvm/IR/Value.h"
91#include "llvm/MC/MCContext.h"
96#include "llvm/Support/Debug.h"
104#include <cstddef>
105#include <limits>
106#include <optional>
107#include <tuple>
108
109using namespace llvm;
110using namespace PatternMatch;
111using namespace SwitchCG;
112
113#define DEBUG_TYPE "isel"
114
115/// LimitFloatPrecision - Generate low-precision inline sequences for
116/// some float libcalls (6, 8 or 12 bits).
117static unsigned LimitFloatPrecision;
118
119static cl::opt<bool>
120 InsertAssertAlign("insert-assert-align", cl::init(true),
121 cl::desc("Insert the experimental `assertalign` node."),
123
125 LimitFPPrecision("limit-float-precision",
126 cl::desc("Generate low-precision inline sequences "
127 "for some float libcalls"),
129 cl::init(0));
130
132 "switch-peel-threshold", cl::Hidden, cl::init(66),
133 cl::desc("Set the case probability threshold for peeling the case from a "
134 "switch statement. A value greater than 100 will void this "
135 "optimization"));
136
137// Limit the width of DAG chains. This is important in general to prevent
138// DAG-based analysis from blowing up. For example, alias analysis and
139// load clustering may not complete in reasonable time. It is difficult to
140// recognize and avoid this situation within each individual analysis, and
141// future analyses are likely to have the same behavior. Limiting DAG width is
142// the safe approach and will be especially important with global DAGs.
143//
144// MaxParallelChains default is arbitrarily high to avoid affecting
145// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
146// sequence over this should have been converted to llvm.memcpy by the
147// frontend. It is easy to induce this behavior with .ll code such as:
148// %buffer = alloca [4096 x i8]
149// %data = load [4096 x i8]* %argPtr
150// store [4096 x i8] %data, [4096 x i8]* %buffer
151static const unsigned MaxParallelChains = 64;
152
154 const SDValue *Parts, unsigned NumParts,
155 MVT PartVT, EVT ValueVT, const Value *V,
156 SDValue InChain,
157 std::optional<CallingConv::ID> CC);
158
159/// getCopyFromParts - Create a value that contains the specified legal parts
160/// combined into the value they represent. If the parts combine to a type
161/// larger than ValueVT then AssertOp can be used to specify whether the extra
162/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163/// (ISD::AssertSext).
164static SDValue
165getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
166 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
167 SDValue InChain,
168 std::optional<CallingConv::ID> CC = std::nullopt,
169 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
170 // Let the target assemble the parts if it wants to
171 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
173 PartVT, ValueVT, CC))
174 return Val;
175
176 if (ValueVT.isVector())
177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
178 InChain, CC);
179
180 assert(NumParts > 0 && "No parts to assemble!");
181 SDValue Val = Parts[0];
182
183 if (NumParts > 1) {
184 // Assemble the value from multiple parts.
185 if (ValueVT.isInteger()) {
186 unsigned PartBits = PartVT.getSizeInBits();
187 unsigned ValueBits = ValueVT.getSizeInBits();
188
189 // Assemble the power of 2 part.
190 unsigned RoundParts = llvm::bit_floor(NumParts);
191 unsigned RoundBits = PartBits * RoundParts;
192 EVT RoundVT = RoundBits == ValueBits ?
193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194 SDValue Lo, Hi;
195
196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197
198 if (RoundParts > 2) {
199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
200 InChain);
201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
202 PartVT, HalfVT, V, InChain);
203 } else {
204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206 }
207
208 if (DAG.getDataLayout().isBigEndian())
209 std::swap(Lo, Hi);
210
211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212
213 if (RoundParts < NumParts) {
214 // Assemble the trailing non-power-of-2 part.
215 unsigned OddParts = NumParts - RoundParts;
216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218 OddVT, V, InChain, CC);
219
220 // Combine the round and odd parts.
221 Lo = Val;
222 if (DAG.getDataLayout().isBigEndian())
223 std::swap(Lo, Hi);
224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226 Hi = DAG.getNode(
227 ISD::SHL, DL, TotalVT, Hi,
228 DAG.getShiftAmountConstant(Lo.getValueSizeInBits(), TotalVT, DL));
229 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
230 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
231 }
232 } else if (PartVT.isFloatingPoint()) {
233 // FP split into multiple FP parts (for ppcf128)
234 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
235 "Unexpected split");
236 SDValue Lo, Hi;
237 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
238 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
239 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
240 std::swap(Lo, Hi);
241 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
242 } else {
243 // FP split into integer parts (soft fp)
244 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
245 !PartVT.isVector() && "Unexpected split");
246 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
247 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
248 InChain, CC);
249 }
250 }
251
252 // There is now one part, held in Val. Correct it to match ValueVT.
253 // PartEVT is the type of the register class that holds the value.
254 // ValueVT is the type of the inline asm operation.
255 EVT PartEVT = Val.getValueType();
256
257 if (PartEVT == ValueVT)
258 return Val;
259
260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261 ValueVT.bitsLT(PartEVT)) {
262 // For an FP value in an integer part, we need to truncate to the right
263 // width first.
264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
266 }
267
268 // Handle types that have the same size.
269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
271
272 // Handle types with different sizes.
273 if (PartEVT.isInteger() && ValueVT.isInteger()) {
274 if (ValueVT.bitsLT(PartEVT)) {
275 // For a truncate, see if we have any information to
276 // indicate whether the truncated bits will always be
277 // zero or sign-extension.
278 if (AssertOp)
279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280 DAG.getValueType(ValueVT));
281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
282 }
283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
284 }
285
286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287 // FP_ROUND's are always exact here.
288 if (ValueVT.bitsLT(Val.getValueType())) {
289
290 SDValue NoChange =
292
293 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
294 llvm::Attribute::StrictFP)) {
295 return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
296 DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
297 NoChange);
298 }
299
300 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
301 }
302
303 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
304 }
305
306 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
307 // then truncating.
308 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
309 ValueVT.bitsLT(PartEVT)) {
310 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
311 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
312 }
313
314 report_fatal_error("Unknown mismatch in getCopyFromParts!");
315}
316
318 const Twine &ErrMsg) {
320 if (!I)
321 return Ctx.emitError(ErrMsg);
322
323 if (const CallInst *CI = dyn_cast<CallInst>(I))
324 if (CI->isInlineAsm()) {
325 return Ctx.diagnose(DiagnosticInfoInlineAsm(
326 *CI, ErrMsg + ", possible invalid constraint for vector type"));
327 }
328
329 return Ctx.emitError(I, ErrMsg);
330}
331
332/// getCopyFromPartsVector - Create a value that contains the specified legal
333/// parts combined into the value they represent. If the parts combine to a
334/// type larger than ValueVT then AssertOp can be used to specify whether the
335/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
336/// ValueVT (ISD::AssertSext).
338 const SDValue *Parts, unsigned NumParts,
339 MVT PartVT, EVT ValueVT, const Value *V,
340 SDValue InChain,
341 std::optional<CallingConv::ID> CallConv) {
342 assert(ValueVT.isVector() && "Not a vector value");
343 assert(NumParts > 0 && "No parts to assemble!");
344 const bool IsABIRegCopy = CallConv.has_value();
345
346 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347 SDValue Val = Parts[0];
348
349 // Handle a multi-element vector.
350 if (NumParts > 1) {
351 EVT IntermediateVT;
352 MVT RegisterVT;
353 unsigned NumIntermediates;
354 unsigned NumRegs;
355
356 if (IsABIRegCopy) {
358 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
359 NumIntermediates, RegisterVT);
360 } else {
361 NumRegs =
362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363 NumIntermediates, RegisterVT);
364 }
365
366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367 NumParts = NumRegs; // Silence a compiler warning.
368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369 assert(RegisterVT.getSizeInBits() ==
370 Parts[0].getSimpleValueType().getSizeInBits() &&
371 "Part type sizes don't match!");
372
373 // Assemble the parts into intermediate operands.
374 SmallVector<SDValue, 8> Ops(NumIntermediates);
375 if (NumIntermediates == NumParts) {
376 // If the register was not expanded, truncate or copy the value,
377 // as appropriate.
378 for (unsigned i = 0; i != NumParts; ++i)
379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
380 V, InChain, CallConv);
381 } else if (NumParts > 0) {
382 // If the intermediate type was expanded, build the intermediate
383 // operands from the parts.
384 assert(NumParts % NumIntermediates == 0 &&
385 "Must expand into a divisible number of parts!");
386 unsigned Factor = NumParts / NumIntermediates;
387 for (unsigned i = 0; i != NumIntermediates; ++i)
388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
389 IntermediateVT, V, InChain, CallConv);
390 }
391
392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393 // intermediate operands.
394 EVT BuiltVectorTy =
395 IntermediateVT.isVector()
397 *DAG.getContext(), IntermediateVT.getScalarType(),
398 IntermediateVT.getVectorElementCount() * NumParts)
400 IntermediateVT.getScalarType(),
401 NumIntermediates);
402 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
404 DL, BuiltVectorTy, Ops);
405 }
406
407 // There is now one part, held in Val. Correct it to match ValueVT.
408 EVT PartEVT = Val.getValueType();
409
410 if (PartEVT == ValueVT)
411 return Val;
412
413 if (PartEVT.isVector()) {
414 // Vector/Vector bitcast.
415 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
416 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
417
418 // If the parts vector has more elements than the value vector, then we
419 // have a vector widening case (e.g. <2 x float> -> <4 x float>).
420 // Extract the elements we want.
421 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
424 (PartEVT.getVectorElementCount().isScalable() ==
425 ValueVT.getVectorElementCount().isScalable()) &&
426 "Cannot narrow, it would be a lossy transformation");
427 PartEVT =
429 ValueVT.getVectorElementCount());
430 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
431 DAG.getVectorIdxConstant(0, DL));
432 if (PartEVT == ValueVT)
433 return Val;
434 if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436
437 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
438 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440 }
441
442 // Promoted vector extract
443 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
444 }
445
446 // Trivial bitcast if the types are the same size and the destination
447 // vector type is legal.
448 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
449 TLI.isTypeLegal(ValueVT))
450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
451
452 if (ValueVT.getVectorNumElements() != 1) {
453 // Certain ABIs require that vectors are passed as integers. For vectors
454 // are the same size, this is an obvious bitcast.
455 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
456 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
457 } else if (ValueVT.bitsLT(PartEVT)) {
458 const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
459 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
460 // Drop the extra bits.
461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
462 return DAG.getBitcast(ValueVT, Val);
463 }
464
466 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
467 return DAG.getUNDEF(ValueVT);
468 }
469
470 // Handle cases such as i8 -> <1 x i1>
471 EVT ValueSVT = ValueVT.getVectorElementType();
472 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
473 unsigned ValueSize = ValueSVT.getSizeInBits();
474 if (ValueSize == PartEVT.getSizeInBits()) {
475 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
476 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
477 // It's possible a scalar floating point type gets softened to integer and
478 // then promoted to a larger integer. If PartEVT is the larger integer
479 // we need to truncate it and then bitcast to the FP type.
480 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
481 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
482 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
483 Val = DAG.getBitcast(ValueSVT, Val);
484 } else {
485 Val = ValueVT.isFloatingPoint()
486 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
487 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
488 }
489 }
490
491 return DAG.getBuildVector(ValueVT, DL, Val);
492}
493
494static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
495 SDValue Val, SDValue *Parts, unsigned NumParts,
496 MVT PartVT, const Value *V,
497 std::optional<CallingConv::ID> CallConv);
498
499/// getCopyToParts - Create a series of nodes that contain the specified value
500/// split into legal parts. If the parts contain more bits than Val, then, for
501/// integers, ExtendKind can be used to specify how to generate the extra bits.
502static void
504 unsigned NumParts, MVT PartVT, const Value *V,
505 std::optional<CallingConv::ID> CallConv = std::nullopt,
506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
507 // Let the target split the parts if it wants to
508 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
509 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
510 CallConv))
511 return;
512 EVT ValueVT = Val.getValueType();
513
514 // Handle the vector case separately.
515 if (ValueVT.isVector())
516 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
517 CallConv);
518
519 unsigned OrigNumParts = NumParts;
521 "Copying to an illegal type!");
522
523 if (NumParts == 0)
524 return;
525
526 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
527 EVT PartEVT = PartVT;
528 if (PartEVT == ValueVT) {
529 assert(NumParts == 1 && "No-op copy with multiple parts!");
530 Parts[0] = Val;
531 return;
532 }
533
534 unsigned PartBits = PartVT.getSizeInBits();
535 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
536 // If the parts cover more bits than the value has, promote the value.
537 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
538 assert(NumParts == 1 && "Do not know what to promote to!");
539 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
540 } else {
541 if (ValueVT.isFloatingPoint()) {
542 // FP values need to be bitcast, then extended if they are being put
543 // into a larger container.
544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
545 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
546 }
547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
548 ValueVT.isInteger() &&
549 "Unknown mismatch!");
550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
551 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
552 if (PartVT == MVT::x86mmx)
553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554 }
555 } else if (PartBits == ValueVT.getSizeInBits()) {
556 // Different types of the same size.
557 assert(NumParts == 1 && PartEVT != ValueVT);
558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
560 // If the parts cover less bits than value has, truncate the value.
561 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
562 ValueVT.isInteger() &&
563 "Unknown mismatch!");
564 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
565 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
566 if (PartVT == MVT::x86mmx)
567 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
568 }
569
570 // The value may have changed - recompute ValueVT.
571 ValueVT = Val.getValueType();
572 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
573 "Failed to tile the value with PartVT!");
574
575 if (NumParts == 1) {
576 if (PartEVT != ValueVT) {
578 "scalar-to-vector conversion failed");
579 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
580 }
581
582 Parts[0] = Val;
583 return;
584 }
585
586 // Expand the value into multiple parts.
587 if (NumParts & (NumParts - 1)) {
588 // The number of parts is not a power of 2. Split off and copy the tail.
589 assert(PartVT.isInteger() && ValueVT.isInteger() &&
590 "Do not know what to expand to!");
591 unsigned RoundParts = llvm::bit_floor(NumParts);
592 unsigned RoundBits = RoundParts * PartBits;
593 unsigned OddParts = NumParts - RoundParts;
594 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
595 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
596
597 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
598 CallConv);
599
600 if (DAG.getDataLayout().isBigEndian())
601 // The odd parts were reversed by getCopyToParts - unreverse them.
602 std::reverse(Parts + RoundParts, Parts + NumParts);
603
604 NumParts = RoundParts;
605 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
606 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
607 }
608
609 // The number of parts is a power of 2. Repeatedly bisect the value using
610 // EXTRACT_ELEMENT.
611 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
613 ValueVT.getSizeInBits()),
614 Val);
615
616 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
617 for (unsigned i = 0; i < NumParts; i += StepSize) {
618 unsigned ThisBits = StepSize * PartBits / 2;
619 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
620 SDValue &Part0 = Parts[i];
621 SDValue &Part1 = Parts[i+StepSize/2];
622
623 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
625 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
627
628 if (ThisBits == PartBits && ThisVT != PartVT) {
629 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
630 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
631 }
632 }
633 }
634
635 if (DAG.getDataLayout().isBigEndian())
636 std::reverse(Parts, Parts + OrigNumParts);
637}
638
640 const SDLoc &DL, EVT PartVT) {
641 if (!PartVT.isVector())
642 return SDValue();
643
644 EVT ValueVT = Val.getValueType();
645 EVT PartEVT = PartVT.getVectorElementType();
646 EVT ValueEVT = ValueVT.getVectorElementType();
647 ElementCount PartNumElts = PartVT.getVectorElementCount();
648 ElementCount ValueNumElts = ValueVT.getVectorElementCount();
649
650 // We only support widening vectors with equivalent element types and
651 // fixed/scalable properties. If a target needs to widen a fixed-length type
652 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
653 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
654 PartNumElts.isScalable() != ValueNumElts.isScalable())
655 return SDValue();
656
657 // Have a try for bf16 because some targets share its ABI with fp16.
658 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
660 "Cannot widen to illegal type");
661 Val = DAG.getNode(ISD::BITCAST, DL,
662 ValueVT.changeVectorElementType(MVT::f16), Val);
663 } else if (PartEVT != ValueEVT) {
664 return SDValue();
665 }
666
667 // Widening a scalable vector to another scalable vector is done by inserting
668 // the vector into a larger undef one.
669 if (PartNumElts.isScalable())
670 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
671 Val, DAG.getVectorIdxConstant(0, DL));
672
673 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
674 // undef elements.
676 DAG.ExtractVectorElements(Val, Ops);
677 SDValue EltUndef = DAG.getUNDEF(PartEVT);
678 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
679
680 // FIXME: Use CONCAT for 2x -> 4x.
681 return DAG.getBuildVector(PartVT, DL, Ops);
682}
683
684/// getCopyToPartsVector - Create a series of nodes that contain the specified
685/// value split into legal parts.
686static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
687 SDValue Val, SDValue *Parts, unsigned NumParts,
688 MVT PartVT, const Value *V,
689 std::optional<CallingConv::ID> CallConv) {
690 EVT ValueVT = Val.getValueType();
691 assert(ValueVT.isVector() && "Not a vector");
692 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
693 const bool IsABIRegCopy = CallConv.has_value();
694
695 if (NumParts == 1) {
696 EVT PartEVT = PartVT;
697 if (PartEVT == ValueVT) {
698 // Nothing to do.
699 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
700 // Bitconvert vector->vector case.
701 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
702 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
703 Val = Widened;
704 } else if (PartVT.isVector() &&
706 ValueVT.getVectorElementType()) &&
707 PartEVT.getVectorElementCount() ==
708 ValueVT.getVectorElementCount()) {
709
710 // Promoted vector extract
711 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
712 } else if (PartEVT.isVector() &&
713 PartEVT.getVectorElementType() !=
714 ValueVT.getVectorElementType() &&
715 TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
717 // Combination of widening and promotion.
718 EVT WidenVT =
720 PartVT.getVectorElementCount());
721 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
722 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
723 } else {
724 // Don't extract an integer from a float vector. This can happen if the
725 // FP type gets softened to integer and then promoted. The promotion
726 // prevents it from being picked up by the earlier bitcast case.
727 if (ValueVT.getVectorElementCount().isScalar() &&
728 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
729 // If we reach this condition and PartVT is FP, this means that
730 // ValueVT is also FP and both have a different size, otherwise we
731 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
732 // would be invalid since that would mean the smaller FP type has to
733 // be extended to the larger one.
734 if (PartVT.isFloatingPoint()) {
735 Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
736 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
737 } else
738 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
739 DAG.getVectorIdxConstant(0, DL));
740 } else {
741 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
742 assert(PartVT.getFixedSizeInBits() > ValueSize &&
743 "lossy conversion of vector to scalar type");
744 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
745 Val = DAG.getBitcast(IntermediateType, Val);
746 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
747 }
748 }
749
750 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
751 Parts[0] = Val;
752 return;
753 }
754
755 // Handle a multi-element vector.
756 EVT IntermediateVT;
757 MVT RegisterVT;
758 unsigned NumIntermediates;
759 unsigned NumRegs;
760 if (IsABIRegCopy) {
762 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
763 RegisterVT);
764 } else {
765 NumRegs =
766 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
767 NumIntermediates, RegisterVT);
768 }
769
770 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
771 NumParts = NumRegs; // Silence a compiler warning.
772 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
773
774 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
775 "Mixing scalable and fixed vectors when copying in parts");
776
777 std::optional<ElementCount> DestEltCnt;
778
779 if (IntermediateVT.isVector())
780 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
781 else
782 DestEltCnt = ElementCount::getFixed(NumIntermediates);
783
784 EVT BuiltVectorTy = EVT::getVectorVT(
785 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
786
787 if (ValueVT == BuiltVectorTy) {
788 // Nothing to do.
789 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
790 // Bitconvert vector->vector case.
791 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
792 } else {
793 if (BuiltVectorTy.getVectorElementType().bitsGT(
794 ValueVT.getVectorElementType())) {
795 // Integer promotion.
796 ValueVT = EVT::getVectorVT(*DAG.getContext(),
797 BuiltVectorTy.getVectorElementType(),
798 ValueVT.getVectorElementCount());
799 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
800 }
801
802 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
803 Val = Widened;
804 }
805 }
806
807 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
808
809 // Split the vector into intermediate operands.
810 SmallVector<SDValue, 8> Ops(NumIntermediates);
811 for (unsigned i = 0; i != NumIntermediates; ++i) {
812 if (IntermediateVT.isVector()) {
813 // This does something sensible for scalable vectors - see the
814 // definition of EXTRACT_SUBVECTOR for further details.
815 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
816 Ops[i] =
817 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
818 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
819 } else {
820 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
821 DAG.getVectorIdxConstant(i, DL));
822 }
823 }
824
825 // Split the intermediate operands into legal parts.
826 if (NumParts == NumIntermediates) {
827 // If the register was not expanded, promote or copy the value,
828 // as appropriate.
829 for (unsigned i = 0; i != NumParts; ++i)
830 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
831 } else if (NumParts > 0) {
832 // If the intermediate type was expanded, split each the value into
833 // legal parts.
834 assert(NumIntermediates != 0 && "division by zero");
835 assert(NumParts % NumIntermediates == 0 &&
836 "Must expand into a divisible number of parts!");
837 unsigned Factor = NumParts / NumIntermediates;
838 for (unsigned i = 0; i != NumIntermediates; ++i)
839 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
840 CallConv);
841 }
842}
843
844static void failForInvalidBundles(const CallBase &I, StringRef Name,
845 ArrayRef<uint32_t> AllowedBundles) {
846 if (I.hasOperandBundlesOtherThan(AllowedBundles)) {
847 ListSeparator LS;
848 std::string Error;
850 for (unsigned i = 0, e = I.getNumOperandBundles(); i != e; ++i) {
851 OperandBundleUse U = I.getOperandBundleAt(i);
852 if (!is_contained(AllowedBundles, U.getTagID()))
853 OS << LS << U.getTagName();
854 }
856 Twine("cannot lower ", Name)
857 .concat(Twine(" with arbitrary operand bundles: ", Error)));
858 }
859}
860
862 EVT valuevt, std::optional<CallingConv::ID> CC)
863 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
864 RegCount(1, regs.size()), CallConv(CC) {}
865
867 const DataLayout &DL, Register Reg, Type *Ty,
868 std::optional<CallingConv::ID> CC) {
869 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
870
871 CallConv = CC;
872
873 for (EVT ValueVT : ValueVTs) {
874 unsigned NumRegs =
876 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
877 : TLI.getNumRegisters(Context, ValueVT);
878 MVT RegisterVT =
880 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
881 : TLI.getRegisterType(Context, ValueVT);
882 for (unsigned i = 0; i != NumRegs; ++i)
883 Regs.push_back(Reg + i);
884 RegVTs.push_back(RegisterVT);
885 RegCount.push_back(NumRegs);
886 Reg = Reg.id() + NumRegs;
887 }
888}
889
891 FunctionLoweringInfo &FuncInfo,
892 const SDLoc &dl, SDValue &Chain,
893 SDValue *Glue, const Value *V) const {
894 // A Value with type {} or [0 x %t] needs no registers.
895 if (ValueVTs.empty())
896 return SDValue();
897
898 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
899
900 // Assemble the legal parts into the final values.
901 SmallVector<SDValue, 4> Values(ValueVTs.size());
903 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
904 // Copy the legal parts from the registers.
905 EVT ValueVT = ValueVTs[Value];
906 unsigned NumRegs = RegCount[Value];
907 MVT RegisterVT = isABIMangled()
909 *DAG.getContext(), *CallConv, RegVTs[Value])
910 : RegVTs[Value];
911
912 Parts.resize(NumRegs);
913 for (unsigned i = 0; i != NumRegs; ++i) {
914 SDValue P;
915 if (!Glue) {
916 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
917 } else {
918 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
919 *Glue = P.getValue(2);
920 }
921
922 Chain = P.getValue(1);
923 Parts[i] = P;
924
925 // If the source register was virtual and if we know something about it,
926 // add an assert node.
927 if (!Regs[Part + i].isVirtual() || !RegisterVT.isInteger())
928 continue;
929
931 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
932 if (!LOI)
933 continue;
934
935 unsigned RegSize = RegisterVT.getScalarSizeInBits();
936 unsigned NumSignBits = LOI->NumSignBits;
937 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
938
939 if (NumZeroBits == RegSize) {
940 // The current value is a zero.
941 // Explicitly express that as it would be easier for
942 // optimizations to kick in.
943 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
944 continue;
945 }
946
947 // FIXME: We capture more information than the dag can represent. For
948 // now, just use the tightest assertzext/assertsext possible.
949 bool isSExt;
950 EVT FromVT(MVT::Other);
951 if (NumZeroBits) {
952 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
953 isSExt = false;
954 } else if (NumSignBits > 1) {
955 FromVT =
956 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
957 isSExt = true;
958 } else {
959 continue;
960 }
961 // Add an assertion node.
962 assert(FromVT != MVT::Other);
963 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
964 RegisterVT, P, DAG.getValueType(FromVT));
965 }
966
967 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
968 RegisterVT, ValueVT, V, Chain, CallConv);
969 Part += NumRegs;
970 Parts.clear();
971 }
972
973 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
974}
975
977 const SDLoc &dl, SDValue &Chain, SDValue *Glue,
978 const Value *V,
979 ISD::NodeType PreferredExtendType) const {
980 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
981 ISD::NodeType ExtendKind = PreferredExtendType;
982
983 // Get the list of the values's legal parts.
984 unsigned NumRegs = Regs.size();
985 SmallVector<SDValue, 8> Parts(NumRegs);
986 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
987 unsigned NumParts = RegCount[Value];
988
989 MVT RegisterVT = isABIMangled()
991 *DAG.getContext(), *CallConv, RegVTs[Value])
992 : RegVTs[Value];
993
994 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
995 ExtendKind = ISD::ZERO_EXTEND;
996
997 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
998 NumParts, RegisterVT, V, CallConv, ExtendKind);
999 Part += NumParts;
1000 }
1001
1002 // Copy the parts into the registers.
1003 SmallVector<SDValue, 8> Chains(NumRegs);
1004 for (unsigned i = 0; i != NumRegs; ++i) {
1005 SDValue Part;
1006 if (!Glue) {
1007 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
1008 } else {
1009 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
1010 *Glue = Part.getValue(1);
1011 }
1012
1013 Chains[i] = Part.getValue(0);
1014 }
1015
1016 if (NumRegs == 1 || Glue)
1017 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1018 // flagged to it. That is the CopyToReg nodes and the user are considered
1019 // a single scheduling unit. If we create a TokenFactor and return it as
1020 // chain, then the TokenFactor is both a predecessor (operand) of the
1021 // user as well as a successor (the TF operands are flagged to the user).
1022 // c1, f1 = CopyToReg
1023 // c2, f2 = CopyToReg
1024 // c3 = TokenFactor c1, c2
1025 // ...
1026 // = op c3, ..., f2
1027 Chain = Chains[NumRegs-1];
1028 else
1029 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1030}
1031
1033 unsigned MatchingIdx, const SDLoc &dl,
1034 SelectionDAG &DAG,
1035 std::vector<SDValue> &Ops) const {
1036 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1037
1038 InlineAsm::Flag Flag(Code, Regs.size());
1039 if (HasMatching)
1040 Flag.setMatchingOp(MatchingIdx);
1041 else if (!Regs.empty() && Regs.front().isVirtual()) {
1042 // Put the register class of the virtual registers in the flag word. That
1043 // way, later passes can recompute register class constraints for inline
1044 // assembly as well as normal instructions.
1045 // Don't do this for tied operands that can use the regclass information
1046 // from the def.
1048 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1049 Flag.setRegClass(RC->getID());
1050 }
1051
1052 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1053 Ops.push_back(Res);
1054
1055 if (Code == InlineAsm::Kind::Clobber) {
1056 // Clobbers should always have a 1:1 mapping with registers, and may
1057 // reference registers that have illegal (e.g. vector) types. Hence, we
1058 // shouldn't try to apply any sort of splitting logic to them.
1059 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1060 "No 1:1 mapping from clobbers to regs?");
1062 (void)SP;
1063 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1064 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1065 assert(
1066 (Regs[I] != SP ||
1068 "If we clobbered the stack pointer, MFI should know about it.");
1069 }
1070 return;
1071 }
1072
1073 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1074 MVT RegisterVT = RegVTs[Value];
1075 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1076 RegisterVT);
1077 for (unsigned i = 0; i != NumRegs; ++i) {
1078 assert(Reg < Regs.size() && "Mismatch in # registers expected");
1079 Register TheReg = Regs[Reg++];
1080 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1081 }
1082 }
1083}
1084
1088 unsigned I = 0;
1089 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1090 unsigned RegCount = std::get<0>(CountAndVT);
1091 MVT RegisterVT = std::get<1>(CountAndVT);
1092 TypeSize RegisterSize = RegisterVT.getSizeInBits();
1093 for (unsigned E = I + RegCount; I != E; ++I)
1094 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1095 }
1096 return OutVec;
1097}
1098
1100 AssumptionCache *ac,
1101 const TargetLibraryInfo *li) {
1102 BatchAA = aa;
1103 AC = ac;
1104 GFI = gfi;
1105 LibInfo = li;
1106 Context = DAG.getContext();
1107 LPadToCallSiteMap.clear();
1108 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1109 AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1110 *DAG.getMachineFunction().getFunction().getParent());
1111}
1112
1114 NodeMap.clear();
1115 UnusedArgNodeMap.clear();
1116 PendingLoads.clear();
1117 PendingExports.clear();
1118 PendingConstrainedFP.clear();
1119 PendingConstrainedFPStrict.clear();
1120 CurInst = nullptr;
1121 HasTailCall = false;
1122 SDNodeOrder = LowestSDNodeOrder;
1123 StatepointLowering.clear();
1124}
1125
1127 DanglingDebugInfoMap.clear();
1128}
1129
1130// Update DAG root to include dependencies on Pending chains.
1131SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1132 SDValue Root = DAG.getRoot();
1133
1134 if (Pending.empty())
1135 return Root;
1136
1137 // Add current root to PendingChains, unless we already indirectly
1138 // depend on it.
1139 if (Root.getOpcode() != ISD::EntryToken) {
1140 unsigned i = 0, e = Pending.size();
1141 for (; i != e; ++i) {
1142 assert(Pending[i].getNode()->getNumOperands() > 1);
1143 if (Pending[i].getNode()->getOperand(0) == Root)
1144 break; // Don't add the root if we already indirectly depend on it.
1145 }
1146
1147 if (i == e)
1148 Pending.push_back(Root);
1149 }
1150
1151 if (Pending.size() == 1)
1152 Root = Pending[0];
1153 else
1154 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1155
1156 DAG.setRoot(Root);
1157 Pending.clear();
1158 return Root;
1159}
1160
1164
1166 // If the new exception behavior differs from that of the pending
1167 // ones, chain up them and update the root.
1168 switch (EB) {
1171 // Floating-point exceptions produced by such operations are not intended
1172 // to be observed, so the sequence of these operations does not need to be
1173 // preserved.
1174 //
1175 // They however must not be mixed with the instructions that have strict
1176 // exception behavior. Placing an operation with 'ebIgnore' behavior between
1177 // 'ebStrict' operations could distort the observed exception behavior.
1178 if (!PendingConstrainedFPStrict.empty()) {
1179 assert(PendingConstrainedFP.empty());
1180 updateRoot(PendingConstrainedFPStrict);
1181 }
1182 break;
1184 // Floating-point exception produced by these operations may be observed, so
1185 // they must be correctly chained. If trapping on FP exceptions is
1186 // disabled, the exceptions can be observed only by functions that read
1187 // exception flags, like 'llvm.get_fpenv' or 'fetestexcept'. It means that
1188 // the order of operations is not significant between barriers.
1189 //
1190 // If trapping is enabled, each operation becomes an implicit observation
1191 // point, so the operations must be sequenced according their original
1192 // source order.
1193 if (!PendingConstrainedFP.empty()) {
1194 assert(PendingConstrainedFPStrict.empty());
1195 updateRoot(PendingConstrainedFP);
1196 }
1197 // TODO: Add support for trapping-enabled scenarios.
1198 }
1199 return DAG.getRoot();
1200}
1201
1203 // Chain up all pending constrained intrinsics together with all
1204 // pending loads, by simply appending them to PendingLoads and
1205 // then calling getMemoryRoot().
1206 PendingLoads.reserve(PendingLoads.size() +
1207 PendingConstrainedFP.size() +
1208 PendingConstrainedFPStrict.size());
1209 PendingLoads.append(PendingConstrainedFP.begin(),
1210 PendingConstrainedFP.end());
1211 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1212 PendingConstrainedFPStrict.end());
1213 PendingConstrainedFP.clear();
1214 PendingConstrainedFPStrict.clear();
1215 return getMemoryRoot();
1216}
1217
1219 // We need to emit pending fpexcept.strict constrained intrinsics,
1220 // so append them to the PendingExports list.
1221 PendingExports.append(PendingConstrainedFPStrict.begin(),
1222 PendingConstrainedFPStrict.end());
1223 PendingConstrainedFPStrict.clear();
1224 return updateRoot(PendingExports);
1225}
1226
1228 DILocalVariable *Variable,
1230 DebugLoc DL) {
1231 assert(Variable && "Missing variable");
1232
1233 // Check if address has undef value.
1234 if (!Address || isa<UndefValue>(Address) ||
1235 (Address->use_empty() && !isa<Argument>(Address))) {
1236 LLVM_DEBUG(
1237 dbgs()
1238 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1239 return;
1240 }
1241
1242 bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1243
1244 SDValue &N = NodeMap[Address];
1245 if (!N.getNode() && isa<Argument>(Address))
1246 // Check unused arguments map.
1247 N = UnusedArgNodeMap[Address];
1248 SDDbgValue *SDV;
1249 if (N.getNode()) {
1250 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1251 Address = BCI->getOperand(0);
1252 // Parameters are handled specially.
1253 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1254 if (IsParameter && FINode) {
1255 // Byval parameter. We have a frame index at this point.
1256 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1257 /*IsIndirect*/ true, DL, SDNodeOrder);
1258 } else if (isa<Argument>(Address)) {
1259 // Address is an argument, so try to emit its dbg value using
1260 // virtual register info from the FuncInfo.ValueMap.
1261 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1262 FuncArgumentDbgValueKind::Declare, N);
1263 return;
1264 } else {
1265 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1266 true, DL, SDNodeOrder);
1267 }
1268 DAG.AddDbgValue(SDV, IsParameter);
1269 } else {
1270 // If Address is an argument then try to emit its dbg value using
1271 // virtual register info from the FuncInfo.ValueMap.
1272 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1273 FuncArgumentDbgValueKind::Declare, N)) {
1274 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1275 << " (could not emit func-arg dbg_value)\n");
1276 }
1277 }
1278}
1279
1281 // Add SDDbgValue nodes for any var locs here. Do so before updating
1282 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1283 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1284 // Add SDDbgValue nodes for any var locs here. Do so before updating
1285 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1286 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1287 It != End; ++It) {
1288 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1289 dropDanglingDebugInfo(Var, It->Expr);
1290 if (It->Values.isKillLocation(It->Expr)) {
1291 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1292 continue;
1293 }
1294 SmallVector<Value *> Values(It->Values.location_ops());
1295 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1296 It->Values.hasArgList())) {
1297 SmallVector<Value *, 4> Vals(It->Values.location_ops());
1299 FnVarLocs->getDILocalVariable(It->VariableID),
1300 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1301 }
1302 }
1303 }
1304
1305 // We must skip DbgVariableRecords if they've already been processed above as
1306 // we have just emitted the debug values resulting from assignment tracking
1307 // analysis, making any existing DbgVariableRecords redundant (and probably
1308 // less correct). We still need to process DbgLabelRecords. This does sink
1309 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1310 // be important as it does so deterministcally and ordering between
1311 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1312 // printing).
1313 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1314 // Is there is any debug-info attached to this instruction, in the form of
1315 // DbgRecord non-instruction debug-info records.
1316 for (DbgRecord &DR : I.getDbgRecordRange()) {
1317 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1318 assert(DLR->getLabel() && "Missing label");
1319 SDDbgLabel *SDV =
1320 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1321 DAG.AddDbgLabel(SDV);
1322 continue;
1323 }
1324
1325 if (SkipDbgVariableRecords)
1326 continue;
1328 DILocalVariable *Variable = DVR.getVariable();
1331
1333 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1334 continue;
1335 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1336 << "\n");
1338 DVR.getDebugLoc());
1339 continue;
1340 }
1341
1342 // A DbgVariableRecord with no locations is a kill location.
1344 if (Values.empty()) {
1346 SDNodeOrder);
1347 continue;
1348 }
1349
1350 // A DbgVariableRecord with an undef or absent location is also a kill
1351 // location.
1352 if (llvm::any_of(Values,
1353 [](Value *V) { return !V || isa<UndefValue>(V); })) {
1355 SDNodeOrder);
1356 continue;
1357 }
1358
1359 bool IsVariadic = DVR.hasArgList();
1360 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1361 SDNodeOrder, IsVariadic)) {
1362 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1363 DVR.getDebugLoc(), SDNodeOrder);
1364 }
1365 }
1366}
1367
1369 visitDbgInfo(I);
1370
1371 // Set up outgoing PHI node register values before emitting the terminator.
1372 if (I.isTerminator()) {
1373 HandlePHINodesInSuccessorBlocks(I.getParent());
1374 }
1375
1376 ++SDNodeOrder;
1377 CurInst = &I;
1378
1379 // Set inserted listener only if required.
1380 bool NodeInserted = false;
1381 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1382 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1383 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1384 if (PCSectionsMD || MMRA) {
1385 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1386 DAG, [&](SDNode *) { NodeInserted = true; });
1387 }
1388
1389 visit(I.getOpcode(), I);
1390
1391 if (!I.isTerminator() && !HasTailCall &&
1392 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1394
1395 // Handle metadata.
1396 if (PCSectionsMD || MMRA) {
1397 auto It = NodeMap.find(&I);
1398 if (It != NodeMap.end()) {
1399 if (PCSectionsMD)
1400 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1401 if (MMRA)
1402 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1403 } else if (NodeInserted) {
1404 // This should not happen; if it does, don't let it go unnoticed so we can
1405 // fix it. Relevant visit*() function is probably missing a setValue().
1406 errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1407 << I.getModule()->getName() << "]\n";
1408 LLVM_DEBUG(I.dump());
1409 assert(false);
1410 }
1411 }
1412
1413 CurInst = nullptr;
1414}
1415
1416void SelectionDAGBuilder::visitPHI(const PHINode &) {
1417 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1418}
1419
1420void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1421 // Note: this doesn't use InstVisitor, because it has to work with
1422 // ConstantExpr's in addition to instructions.
1423 switch (Opcode) {
1424 default: llvm_unreachable("Unknown instruction type encountered!");
1425 // Build the switch statement using the Instruction.def file.
1426#define HANDLE_INST(NUM, OPCODE, CLASS) \
1427 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1428#include "llvm/IR/Instruction.def"
1429 }
1430}
1431
1433 DILocalVariable *Variable,
1434 DebugLoc DL, unsigned Order,
1437 // For variadic dbg_values we will now insert poison.
1438 // FIXME: We can potentially recover these!
1440 for (const Value *V : Values) {
1441 auto *Poison = PoisonValue::get(V->getType());
1443 }
1444 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1445 /*IsIndirect=*/false, DL, Order,
1446 /*IsVariadic=*/true);
1447 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1448 return true;
1449}
1450
1452 DILocalVariable *Var,
1453 DIExpression *Expr,
1454 bool IsVariadic, DebugLoc DL,
1455 unsigned Order) {
1456 if (IsVariadic) {
1457 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1458 return;
1459 }
1460 // TODO: Dangling debug info will eventually either be resolved or produce
1461 // a poison DBG_VALUE. However in the resolution case, a gap may appear
1462 // between the original dbg.value location and its resolved DBG_VALUE,
1463 // which we should ideally fill with an extra poison DBG_VALUE.
1464 assert(Values.size() == 1);
1465 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1466}
1467
1469 const DIExpression *Expr) {
1470 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1471 DIVariable *DanglingVariable = DDI.getVariable();
1472 DIExpression *DanglingExpr = DDI.getExpression();
1473 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1474 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1475 << printDDI(nullptr, DDI) << "\n");
1476 return true;
1477 }
1478 return false;
1479 };
1480
1481 for (auto &DDIMI : DanglingDebugInfoMap) {
1482 DanglingDebugInfoVector &DDIV = DDIMI.second;
1483
1484 // If debug info is to be dropped, run it through final checks to see
1485 // whether it can be salvaged.
1486 for (auto &DDI : DDIV)
1487 if (isMatchingDbgValue(DDI))
1488 salvageUnresolvedDbgValue(DDIMI.first, DDI);
1489
1490 erase_if(DDIV, isMatchingDbgValue);
1491 }
1492}
1493
1494// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1495// generate the debug data structures now that we've seen its definition.
1497 SDValue Val) {
1498 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1499 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1500 return;
1501
1502 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1503 for (auto &DDI : DDIV) {
1504 DebugLoc DL = DDI.getDebugLoc();
1505 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1506 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1507 DILocalVariable *Variable = DDI.getVariable();
1508 DIExpression *Expr = DDI.getExpression();
1509 assert(Variable->isValidLocationForIntrinsic(DL) &&
1510 "Expected inlined-at fields to agree");
1511 SDDbgValue *SDV;
1512 if (Val.getNode()) {
1513 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1514 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1515 // we couldn't resolve it directly when examining the DbgValue intrinsic
1516 // in the first place we should not be more successful here). Unless we
1517 // have some test case that prove this to be correct we should avoid
1518 // calling EmitFuncArgumentDbgValue here.
1519 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1520 FuncArgumentDbgValueKind::Value, Val)) {
1521 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1522 << printDDI(V, DDI) << "\n");
1523 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1524 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1525 // inserted after the definition of Val when emitting the instructions
1526 // after ISel. An alternative could be to teach
1527 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1528 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1529 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1530 << ValSDNodeOrder << "\n");
1531 SDV = getDbgValue(Val, Variable, Expr, DL,
1532 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1533 DAG.AddDbgValue(SDV, false);
1534 } else
1535 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1536 << printDDI(V, DDI)
1537 << " in EmitFuncArgumentDbgValue\n");
1538 } else {
1539 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1540 << "\n");
1541 auto Poison = PoisonValue::get(V->getType());
1542 auto SDV =
1543 DAG.getConstantDbgValue(Variable, Expr, Poison, DL, DbgSDNodeOrder);
1544 DAG.AddDbgValue(SDV, false);
1545 }
1546 }
1547 DDIV.clear();
1548}
1549
1551 DanglingDebugInfo &DDI) {
1552 // TODO: For the variadic implementation, instead of only checking the fail
1553 // state of `handleDebugValue`, we need know specifically which values were
1554 // invalid, so that we attempt to salvage only those values when processing
1555 // a DIArgList.
1556 const Value *OrigV = V;
1557 DILocalVariable *Var = DDI.getVariable();
1558 DIExpression *Expr = DDI.getExpression();
1559 DebugLoc DL = DDI.getDebugLoc();
1560 unsigned SDOrder = DDI.getSDNodeOrder();
1561
1562 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1563 // that DW_OP_stack_value is desired.
1564 bool StackValue = true;
1565
1566 // Can this Value can be encoded without any further work?
1567 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1568 return;
1569
1570 // Attempt to salvage back through as many instructions as possible. Bail if
1571 // a non-instruction is seen, such as a constant expression or global
1572 // variable. FIXME: Further work could recover those too.
1573 while (isa<Instruction>(V)) {
1574 const Instruction &VAsInst = *cast<const Instruction>(V);
1575 // Temporary "0", awaiting real implementation.
1577 SmallVector<Value *, 4> AdditionalValues;
1578 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1579 Expr->getNumLocationOperands(), Ops,
1580 AdditionalValues);
1581 // If we cannot salvage any further, and haven't yet found a suitable debug
1582 // expression, bail out.
1583 if (!V)
1584 break;
1585
1586 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1587 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1588 // here for variadic dbg_values, remove that condition.
1589 if (!AdditionalValues.empty())
1590 break;
1591
1592 // New value and expr now represent this debuginfo.
1593 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1594
1595 // Some kind of simplification occurred: check whether the operand of the
1596 // salvaged debug expression can be encoded in this DAG.
1597 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1598 LLVM_DEBUG(
1599 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"
1600 << *OrigV << "\nBy stripping back to:\n " << *V << "\n");
1601 return;
1602 }
1603 }
1604
1605 // This was the final opportunity to salvage this debug information, and it
1606 // couldn't be done. Place a poison DBG_VALUE at this location to terminate
1607 // any earlier variable location.
1608 assert(OrigV && "V shouldn't be null");
1609 auto *Poison = PoisonValue::get(OrigV->getType());
1610 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Poison, DL, SDNodeOrder);
1611 DAG.AddDbgValue(SDV, false);
1612 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n "
1613 << printDDI(OrigV, DDI) << "\n");
1614}
1615
1617 DIExpression *Expr,
1618 DebugLoc DbgLoc,
1619 unsigned Order) {
1623 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1624 /*IsVariadic*/ false);
1625}
1626
1628 DILocalVariable *Var,
1629 DIExpression *Expr, DebugLoc DbgLoc,
1630 unsigned Order, bool IsVariadic) {
1631 if (Values.empty())
1632 return true;
1633
1634 // Filter EntryValue locations out early.
1635 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1636 return true;
1637
1638 SmallVector<SDDbgOperand> LocationOps;
1639 SmallVector<SDNode *> Dependencies;
1640 for (const Value *V : Values) {
1641 // Constant value.
1644 LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1645 continue;
1646 }
1647
1648 // Look through IntToPtr constants.
1649 if (auto *CE = dyn_cast<ConstantExpr>(V))
1650 if (CE->getOpcode() == Instruction::IntToPtr) {
1651 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1652 continue;
1653 }
1654
1655 // If the Value is a frame index, we can create a FrameIndex debug value
1656 // without relying on the DAG at all.
1657 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1658 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1659 if (SI != FuncInfo.StaticAllocaMap.end()) {
1660 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1661 continue;
1662 }
1663 }
1664
1665 // Do not use getValue() in here; we don't want to generate code at
1666 // this point if it hasn't been done yet.
1667 SDValue N = NodeMap[V];
1668 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1669 N = UnusedArgNodeMap[V];
1670
1671 if (N.getNode()) {
1672 // Only emit func arg dbg value for non-variadic dbg.values for now.
1673 if (!IsVariadic &&
1674 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1675 FuncArgumentDbgValueKind::Value, N))
1676 return true;
1677 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1678 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1679 // describe stack slot locations.
1680 //
1681 // Consider "int x = 0; int *px = &x;". There are two kinds of
1682 // interesting debug values here after optimization:
1683 //
1684 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1685 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1686 //
1687 // Both describe the direct values of their associated variables.
1688 Dependencies.push_back(N.getNode());
1689 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1690 continue;
1691 }
1692 LocationOps.emplace_back(
1693 SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1694 continue;
1695 }
1696
1697 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1698 // Special rules apply for the first dbg.values of parameter variables in a
1699 // function. Identify them by the fact they reference Argument Values, that
1700 // they're parameters, and they are parameters of the current function. We
1701 // need to let them dangle until they get an SDNode.
1702 bool IsParamOfFunc =
1703 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1704 if (IsParamOfFunc)
1705 return false;
1706
1707 // The value is not used in this block yet (or it would have an SDNode).
1708 // We still want the value to appear for the user if possible -- if it has
1709 // an associated VReg, we can refer to that instead.
1710 auto VMI = FuncInfo.ValueMap.find(V);
1711 if (VMI != FuncInfo.ValueMap.end()) {
1712 Register Reg = VMI->second;
1713 // If this is a PHI node, it may be split up into several MI PHI nodes
1714 // (in FunctionLoweringInfo::set).
1715 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1716 V->getType(), std::nullopt);
1717 if (RFV.occupiesMultipleRegs()) {
1718 // FIXME: We could potentially support variadic dbg_values here.
1719 if (IsVariadic)
1720 return false;
1721 unsigned Offset = 0;
1722 unsigned BitsToDescribe = 0;
1723 if (auto VarSize = Var->getSizeInBits())
1724 BitsToDescribe = *VarSize;
1725 if (auto Fragment = Expr->getFragmentInfo())
1726 BitsToDescribe = Fragment->SizeInBits;
1727 for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1728 // Bail out if all bits are described already.
1729 if (Offset >= BitsToDescribe)
1730 break;
1731 // TODO: handle scalable vectors.
1732 unsigned RegisterSize = RegAndSize.second;
1733 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1734 ? BitsToDescribe - Offset
1735 : RegisterSize;
1736 auto FragmentExpr = DIExpression::createFragmentExpression(
1737 Expr, Offset, FragmentSize);
1738 if (!FragmentExpr)
1739 continue;
1740 SDDbgValue *SDV = DAG.getVRegDbgValue(
1741 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1742 DAG.AddDbgValue(SDV, false);
1743 Offset += RegisterSize;
1744 }
1745 return true;
1746 }
1747 // We can use simple vreg locations for variadic dbg_values as well.
1748 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1749 continue;
1750 }
1751 // We failed to create a SDDbgOperand for V.
1752 return false;
1753 }
1754
1755 // We have created a SDDbgOperand for each Value in Values.
1756 assert(!LocationOps.empty());
1757 SDDbgValue *SDV =
1758 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1759 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1760 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1761 return true;
1762}
1763
1765 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1766 for (auto &Pair : DanglingDebugInfoMap)
1767 for (auto &DDI : Pair.second)
1768 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1770}
1771
1772/// getCopyFromRegs - If there was virtual register allocated for the value V
1773/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1776 SDValue Result;
1777
1778 if (It != FuncInfo.ValueMap.end()) {
1779 Register InReg = It->second;
1780
1781 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1782 DAG.getDataLayout(), InReg, Ty,
1783 std::nullopt); // This is not an ABI copy.
1784 SDValue Chain = DAG.getEntryNode();
1785 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1786 V);
1787 resolveDanglingDebugInfo(V, Result);
1788 }
1789
1790 return Result;
1791}
1792
1793/// getValue - Return an SDValue for the given Value.
1795 // If we already have an SDValue for this value, use it. It's important
1796 // to do this first, so that we don't create a CopyFromReg if we already
1797 // have a regular SDValue.
1798 SDValue &N = NodeMap[V];
1799 if (N.getNode()) return N;
1800
1801 // If there's a virtual register allocated and initialized for this
1802 // value, use it.
1803 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1804 return copyFromReg;
1805
1806 // Otherwise create a new SDValue and remember it.
1807 SDValue Val = getValueImpl(V);
1808 NodeMap[V] = Val;
1810 return Val;
1811}
1812
1813/// getNonRegisterValue - Return an SDValue for the given Value, but
1814/// don't look in FuncInfo.ValueMap for a virtual register.
1816 // If we already have an SDValue for this value, use it.
1817 SDValue &N = NodeMap[V];
1818 if (N.getNode()) {
1819 if (isIntOrFPConstant(N)) {
1820 // Remove the debug location from the node as the node is about to be used
1821 // in a location which may differ from the original debug location. This
1822 // is relevant to Constant and ConstantFP nodes because they can appear
1823 // as constant expressions inside PHI nodes.
1824 N->setDebugLoc(DebugLoc());
1825 }
1826 return N;
1827 }
1828
1829 // Otherwise create a new SDValue and remember it.
1830 SDValue Val = getValueImpl(V);
1831 NodeMap[V] = Val;
1833 return Val;
1834}
1835
1836/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1837/// Create an SDValue for the given value.
1839 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1840
1841 if (const Constant *C = dyn_cast<Constant>(V)) {
1842 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1843
1844 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1845 SDLoc DL = getCurSDLoc();
1846
1847 // DAG.getConstant() may attempt to legalise the vector constant which can
1848 // significantly change the combines applied to the DAG. To reduce the
1849 // divergence when enabling ConstantInt based vectors we try to construct
1850 // the DAG in the same way as shufflevector based splats. TODO: The
1851 // divergence sometimes leads to better optimisations. Ideally we should
1852 // prevent DAG.getConstant() from legalising too early but there are some
1853 // degradations preventing this.
1854 if (VT.isScalableVector())
1855 return DAG.getNode(
1856 ISD::SPLAT_VECTOR, DL, VT,
1857 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1858 if (VT.isFixedLengthVector())
1859 return DAG.getSplatBuildVector(
1860 VT, DL,
1861 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1862 return DAG.getConstant(*CI, DL, VT);
1863 }
1864
1865 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1866 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1867
1868 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1869 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1870 getValue(CPA->getPointer()), getValue(CPA->getKey()),
1871 getValue(CPA->getAddrDiscriminator()),
1872 getValue(CPA->getDiscriminator()));
1873 }
1874
1876 return DAG.getConstant(0, getCurSDLoc(), VT);
1877
1878 if (match(C, m_VScale()))
1879 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1880
1881 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1882 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1883
1884 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1885 return isa<PoisonValue>(C) ? DAG.getPOISON(VT) : DAG.getUNDEF(VT);
1886
1887 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1888 visit(CE->getOpcode(), *CE);
1889 SDValue N1 = NodeMap[V];
1890 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1891 return N1;
1892 }
1893
1895 SmallVector<SDValue, 4> Constants;
1896 for (const Use &U : C->operands()) {
1897 SDNode *Val = getValue(U).getNode();
1898 // If the operand is an empty aggregate, there are no values.
1899 if (!Val) continue;
1900 // Add each leaf value from the operand to the Constants list
1901 // to form a flattened list of all the values.
1902 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1903 Constants.push_back(SDValue(Val, i));
1904 }
1905
1906 return DAG.getMergeValues(Constants, getCurSDLoc());
1907 }
1908
1909 if (const ConstantDataSequential *CDS =
1912 for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1913 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1914 // Add each leaf value from the operand to the Constants list
1915 // to form a flattened list of all the values.
1916 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1917 Ops.push_back(SDValue(Val, i));
1918 }
1919
1920 if (isa<ArrayType>(CDS->getType()))
1921 return DAG.getMergeValues(Ops, getCurSDLoc());
1922 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1923 }
1924
1925 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1927 "Unknown struct or array constant!");
1928
1929 SmallVector<EVT, 4> ValueVTs;
1930 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1931 unsigned NumElts = ValueVTs.size();
1932 if (NumElts == 0)
1933 return SDValue(); // empty struct
1934 SmallVector<SDValue, 4> Constants(NumElts);
1935 for (unsigned i = 0; i != NumElts; ++i) {
1936 EVT EltVT = ValueVTs[i];
1937 if (isa<UndefValue>(C))
1938 Constants[i] = DAG.getUNDEF(EltVT);
1939 else if (EltVT.isFloatingPoint())
1940 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1941 else
1942 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1943 }
1944
1945 return DAG.getMergeValues(Constants, getCurSDLoc());
1946 }
1947
1948 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1949 return DAG.getBlockAddress(BA, VT);
1950
1951 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1952 return getValue(Equiv->getGlobalValue());
1953
1954 if (const auto *NC = dyn_cast<NoCFIValue>(C))
1955 return getValue(NC->getGlobalValue());
1956
1957 if (VT == MVT::aarch64svcount) {
1958 assert(C->isNullValue() && "Can only zero this target type!");
1959 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1960 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1961 }
1962
1963 if (VT.isRISCVVectorTuple()) {
1964 assert(C->isNullValue() && "Can only zero this target type!");
1965 return DAG.getNode(
1966 ISD::BITCAST, getCurSDLoc(), VT,
1967 DAG.getNode(
1969 EVT::getVectorVT(*DAG.getContext(), MVT::i8,
1970 VT.getSizeInBits().getKnownMinValue() / 8, true),
1971 DAG.getConstant(0, getCurSDLoc(), MVT::getIntegerVT(8))));
1972 }
1973
1974 VectorType *VecTy = cast<VectorType>(V->getType());
1975
1976 // Now that we know the number and type of the elements, get that number of
1977 // elements into the Ops array based on what kind of constant it is.
1978 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1980 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1981 for (unsigned i = 0; i != NumElements; ++i)
1982 Ops.push_back(getValue(CV->getOperand(i)));
1983
1984 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1985 }
1986
1988 EVT EltVT =
1989 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1990
1991 SDValue Op;
1992 if (EltVT.isFloatingPoint())
1993 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1994 else
1995 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1996
1997 return DAG.getSplat(VT, getCurSDLoc(), Op);
1998 }
1999
2000 llvm_unreachable("Unknown vector constant");
2001 }
2002
2003 // If this is a static alloca, generate it as the frameindex instead of
2004 // computation.
2005 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
2007 FuncInfo.StaticAllocaMap.find(AI);
2008 if (SI != FuncInfo.StaticAllocaMap.end())
2009 return DAG.getFrameIndex(
2010 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
2011 }
2012
2013 // If this is an instruction which fast-isel has deferred, select it now.
2014 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2015 Register InReg = FuncInfo.InitializeRegForValue(Inst);
2016
2017 std::optional<CallingConv::ID> CallConv;
2018 auto *CB = dyn_cast<CallBase>(Inst);
2019 if (CB && !CB->isInlineAsm())
2020 CallConv = CB->getCallingConv();
2021
2022 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
2023 Inst->getType(), CallConv);
2024 SDValue Chain = DAG.getEntryNode();
2025 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
2026 }
2027
2028 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
2029 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
2030
2031 if (const auto *BB = dyn_cast<BasicBlock>(V))
2032 return DAG.getBasicBlock(FuncInfo.getMBB(BB));
2033
2034 llvm_unreachable("Can't get register for value!");
2035}
2036
2037void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
2039 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
2040 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
2041 bool IsSEH = isAsynchronousEHPersonality(Pers);
2042 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
2043 if (IsSEH) {
2044 // For SEH, EHCont Guard needs to know that this catchpad is a target.
2045 CatchPadMBB->setIsEHContTarget(true);
2047 } else
2048 CatchPadMBB->setIsEHScopeEntry();
2049 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
2050 if (IsMSVCCXX || IsCoreCLR)
2051 CatchPadMBB->setIsEHFuncletEntry();
2052}
2053
2054void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
2055 // Update machine-CFG edge.
2056 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
2057 FuncInfo.MBB->addSuccessor(TargetMBB);
2058
2059 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2060 bool IsSEH = isAsynchronousEHPersonality(Pers);
2061 if (IsSEH) {
2062 // If this is not a fall-through branch or optimizations are switched off,
2063 // emit the branch.
2064 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
2065 TM.getOptLevel() == CodeGenOptLevel::None)
2066 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2067 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
2068 return;
2069 }
2070
2071 // For non-SEH, EHCont Guard needs to know that this catchret is a target.
2072 TargetMBB->setIsEHContTarget(true);
2073 DAG.getMachineFunction().setHasEHContTarget(true);
2074
2075 // Figure out the funclet membership for the catchret's successor.
2076 // This will be used by the FuncletLayout pass to determine how to order the
2077 // BB's.
2078 // A 'catchret' returns to the outer scope's color.
2079 Value *ParentPad = I.getCatchSwitchParentPad();
2080 const BasicBlock *SuccessorColor;
2081 if (isa<ConstantTokenNone>(ParentPad))
2082 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2083 else
2084 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2085 assert(SuccessorColor && "No parent funclet for catchret!");
2086 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2087 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2088
2089 // Create the terminator node.
2090 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2091 getControlRoot(), DAG.getBasicBlock(TargetMBB),
2092 DAG.getBasicBlock(SuccessorColorMBB));
2093 DAG.setRoot(Ret);
2094}
2095
2096void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2097 // Don't emit any special code for the cleanuppad instruction. It just marks
2098 // the start of an EH scope/funclet.
2099 FuncInfo.MBB->setIsEHScopeEntry();
2100 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2101 if (Pers != EHPersonality::Wasm_CXX) {
2102 FuncInfo.MBB->setIsEHFuncletEntry();
2103 FuncInfo.MBB->setIsCleanupFuncletEntry();
2104 }
2105}
2106
2107/// When an invoke or a cleanupret unwinds to the next EH pad, there are
2108/// many places it could ultimately go. In the IR, we have a single unwind
2109/// destination, but in the machine CFG, we enumerate all the possible blocks.
2110/// This function skips over imaginary basic blocks that hold catchswitch
2111/// instructions, and finds all the "real" machine
2112/// basic block destinations. As those destinations may not be successors of
2113/// EHPadBB, here we also calculate the edge probability to those destinations.
2114/// The passed-in Prob is the edge probability to EHPadBB.
2116 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2117 BranchProbability Prob,
2118 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2119 &UnwindDests) {
2120 EHPersonality Personality =
2122 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2123 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2124 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2125 bool IsSEH = isAsynchronousEHPersonality(Personality);
2126
2127 while (EHPadBB) {
2129 BasicBlock *NewEHPadBB = nullptr;
2130 if (isa<LandingPadInst>(Pad)) {
2131 // Stop on landingpads. They are not funclets.
2132 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2133 break;
2134 } else if (isa<CleanupPadInst>(Pad)) {
2135 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2136 // personalities except Wasm. And in Wasm this becomes a catch_all(_ref),
2137 // which always catches an exception.
2138 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2139 UnwindDests.back().first->setIsEHScopeEntry();
2140 // In Wasm, EH scopes are not funclets
2141 if (!IsWasmCXX)
2142 UnwindDests.back().first->setIsEHFuncletEntry();
2143 break;
2144 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2145 // Add the catchpad handlers to the possible destinations.
2146 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2147 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2148 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2149 if (IsMSVCCXX || IsCoreCLR)
2150 UnwindDests.back().first->setIsEHFuncletEntry();
2151 if (!IsSEH)
2152 UnwindDests.back().first->setIsEHScopeEntry();
2153 }
2154 NewEHPadBB = CatchSwitch->getUnwindDest();
2155 } else {
2156 continue;
2157 }
2158
2159 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2160 if (BPI && NewEHPadBB)
2161 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2162 EHPadBB = NewEHPadBB;
2163 }
2164}
2165
2166void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2167 // Update successor info.
2169 auto UnwindDest = I.getUnwindDest();
2170 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2171 BranchProbability UnwindDestProb =
2172 (BPI && UnwindDest)
2173 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2175 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2176 for (auto &UnwindDest : UnwindDests) {
2177 UnwindDest.first->setIsEHPad();
2178 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2179 }
2180 FuncInfo.MBB->normalizeSuccProbs();
2181
2182 // Create the terminator node.
2183 MachineBasicBlock *CleanupPadMBB =
2184 FuncInfo.getMBB(I.getCleanupPad()->getParent());
2185 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other,
2186 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB));
2187 DAG.setRoot(Ret);
2188}
2189
2190void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2191 report_fatal_error("visitCatchSwitch not yet implemented!");
2192}
2193
2194void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2195 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2196 auto &DL = DAG.getDataLayout();
2197 SDValue Chain = getControlRoot();
2200
2201 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2202 // lower
2203 //
2204 // %val = call <ty> @llvm.experimental.deoptimize()
2205 // ret <ty> %val
2206 //
2207 // differently.
2208 if (I.getParent()->getTerminatingDeoptimizeCall()) {
2210 return;
2211 }
2212
2213 if (!FuncInfo.CanLowerReturn) {
2214 Register DemoteReg = FuncInfo.DemoteRegister;
2215
2216 // Emit a store of the return value through the virtual register.
2217 // Leave Outs empty so that LowerReturn won't try to load return
2218 // registers the usual way.
2219 MVT PtrValueVT = TLI.getPointerTy(DL, DL.getAllocaAddrSpace());
2220 SDValue RetPtr =
2221 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVT);
2222 SDValue RetOp = getValue(I.getOperand(0));
2223
2224 SmallVector<EVT, 4> ValueVTs, MemVTs;
2225 SmallVector<uint64_t, 4> Offsets;
2226 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2227 &Offsets, 0);
2228 unsigned NumValues = ValueVTs.size();
2229
2230 SmallVector<SDValue, 4> Chains(NumValues);
2231 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2232 for (unsigned i = 0; i != NumValues; ++i) {
2233 // An aggregate return value cannot wrap around the address space, so
2234 // offsets to its parts don't wrap either.
2235 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2236 TypeSize::getFixed(Offsets[i]));
2237
2238 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2239 if (MemVTs[i] != ValueVTs[i])
2240 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2241 Chains[i] = DAG.getStore(
2242 Chain, getCurSDLoc(), Val,
2243 // FIXME: better loc info would be nice.
2244 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2245 commonAlignment(BaseAlign, Offsets[i]));
2246 }
2247
2248 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2249 MVT::Other, Chains);
2250 } else if (I.getNumOperands() != 0) {
2252 ComputeValueTypes(DL, I.getOperand(0)->getType(), Types);
2253 unsigned NumValues = Types.size();
2254 if (NumValues) {
2255 SDValue RetOp = getValue(I.getOperand(0));
2256
2257 const Function *F = I.getParent()->getParent();
2258
2259 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2260 I.getOperand(0)->getType(), F->getCallingConv(),
2261 /*IsVarArg*/ false, DL);
2262
2263 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2264 if (F->getAttributes().hasRetAttr(Attribute::SExt))
2265 ExtendKind = ISD::SIGN_EXTEND;
2266 else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2267 ExtendKind = ISD::ZERO_EXTEND;
2268
2269 LLVMContext &Context = F->getContext();
2270 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2271
2272 for (unsigned j = 0; j != NumValues; ++j) {
2273 EVT VT = TLI.getValueType(DL, Types[j]);
2274
2275 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2276 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2277
2278 CallingConv::ID CC = F->getCallingConv();
2279
2280 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2281 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2282 SmallVector<SDValue, 4> Parts(NumParts);
2284 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2285 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2286
2287 // 'inreg' on function refers to return value
2288 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2289 if (RetInReg)
2290 Flags.setInReg();
2291
2292 if (I.getOperand(0)->getType()->isPointerTy()) {
2293 Flags.setPointer();
2294 Flags.setPointerAddrSpace(
2295 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2296 }
2297
2298 if (NeedsRegBlock) {
2299 Flags.setInConsecutiveRegs();
2300 if (j == NumValues - 1)
2301 Flags.setInConsecutiveRegsLast();
2302 }
2303
2304 // Propagate extension type if any
2305 if (ExtendKind == ISD::SIGN_EXTEND)
2306 Flags.setSExt();
2307 else if (ExtendKind == ISD::ZERO_EXTEND)
2308 Flags.setZExt();
2309 else if (F->getAttributes().hasRetAttr(Attribute::NoExt))
2310 Flags.setNoExt();
2311
2312 for (unsigned i = 0; i < NumParts; ++i) {
2313 Outs.push_back(ISD::OutputArg(Flags,
2314 Parts[i].getValueType().getSimpleVT(),
2315 VT, Types[j], 0, 0));
2316 OutVals.push_back(Parts[i]);
2317 }
2318 }
2319 }
2320 }
2321
2322 // Push in swifterror virtual register as the last element of Outs. This makes
2323 // sure swifterror virtual register will be returned in the swifterror
2324 // physical register.
2325 const Function *F = I.getParent()->getParent();
2326 if (TLI.supportSwiftError() &&
2327 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2328 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2329 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2330 Flags.setSwiftError();
2331 Outs.push_back(ISD::OutputArg(Flags, /*vt=*/TLI.getPointerTy(DL),
2332 /*argvt=*/EVT(TLI.getPointerTy(DL)),
2333 PointerType::getUnqual(*DAG.getContext()),
2334 /*origidx=*/1, /*partOffs=*/0));
2335 // Create SDNode for the swifterror virtual register.
2336 OutVals.push_back(
2337 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2338 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2339 EVT(TLI.getPointerTy(DL))));
2340 }
2341
2342 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2343 CallingConv::ID CallConv =
2344 DAG.getMachineFunction().getFunction().getCallingConv();
2345 Chain = DAG.getTargetLoweringInfo().LowerReturn(
2346 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2347
2348 // Verify that the target's LowerReturn behaved as expected.
2349 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2350 "LowerReturn didn't return a valid chain!");
2351
2352 // Update the DAG with the new chain value resulting from return lowering.
2353 DAG.setRoot(Chain);
2354}
2355
2356/// CopyToExportRegsIfNeeded - If the given value has virtual registers
2357/// created for it, emit nodes to copy the value into the virtual
2358/// registers.
2360 // Skip empty types
2361 if (V->getType()->isEmptyTy())
2362 return;
2363
2365 if (VMI != FuncInfo.ValueMap.end()) {
2366 assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2367 "Unused value assigned virtual registers!");
2368 CopyValueToVirtualRegister(V, VMI->second);
2369 }
2370}
2371
2372/// ExportFromCurrentBlock - If this condition isn't known to be exported from
2373/// the current basic block, add it to ValueMap now so that we'll get a
2374/// CopyTo/FromReg.
2376 // No need to export constants.
2377 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2378
2379 // Already exported?
2380 if (FuncInfo.isExportedInst(V)) return;
2381
2382 Register Reg = FuncInfo.InitializeRegForValue(V);
2384}
2385
2387 const BasicBlock *FromBB) {
2388 // The operands of the setcc have to be in this block. We don't know
2389 // how to export them from some other block.
2390 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2391 // Can export from current BB.
2392 if (VI->getParent() == FromBB)
2393 return true;
2394
2395 // Is already exported, noop.
2396 return FuncInfo.isExportedInst(V);
2397 }
2398
2399 // If this is an argument, we can export it if the BB is the entry block or
2400 // if it is already exported.
2401 if (isa<Argument>(V)) {
2402 if (FromBB->isEntryBlock())
2403 return true;
2404
2405 // Otherwise, can only export this if it is already exported.
2406 return FuncInfo.isExportedInst(V);
2407 }
2408
2409 // Otherwise, constants can always be exported.
2410 return true;
2411}
2412
2413/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2415SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2416 const MachineBasicBlock *Dst) const {
2418 const BasicBlock *SrcBB = Src->getBasicBlock();
2419 const BasicBlock *DstBB = Dst->getBasicBlock();
2420 if (!BPI) {
2421 // If BPI is not available, set the default probability as 1 / N, where N is
2422 // the number of successors.
2423 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2424 return BranchProbability(1, SuccSize);
2425 }
2426 return BPI->getEdgeProbability(SrcBB, DstBB);
2427}
2428
2429void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2430 MachineBasicBlock *Dst,
2431 BranchProbability Prob) {
2432 if (!FuncInfo.BPI)
2433 Src->addSuccessorWithoutProb(Dst);
2434 else {
2435 if (Prob.isUnknown())
2436 Prob = getEdgeProbability(Src, Dst);
2437 Src->addSuccessor(Dst, Prob);
2438 }
2439}
2440
2441static bool InBlock(const Value *V, const BasicBlock *BB) {
2442 if (const Instruction *I = dyn_cast<Instruction>(V))
2443 return I->getParent() == BB;
2444 return true;
2445}
2446
2447/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2448/// This function emits a branch and is used at the leaves of an OR or an
2449/// AND operator tree.
2450void
2453 MachineBasicBlock *FBB,
2454 MachineBasicBlock *CurBB,
2455 MachineBasicBlock *SwitchBB,
2456 BranchProbability TProb,
2457 BranchProbability FProb,
2458 bool InvertCond) {
2459 const BasicBlock *BB = CurBB->getBasicBlock();
2460
2461 // If the leaf of the tree is a comparison, merge the condition into
2462 // the caseblock.
2463 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2464 // The operands of the cmp have to be in this block. We don't know
2465 // how to export them from some other block. If this is the first block
2466 // of the sequence, no exporting is needed.
2467 if (CurBB == SwitchBB ||
2468 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2469 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2470 ISD::CondCode Condition;
2471 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2472 ICmpInst::Predicate Pred =
2473 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2474 Condition = getICmpCondCode(Pred);
2475 } else {
2476 const FCmpInst *FC = cast<FCmpInst>(Cond);
2477 FCmpInst::Predicate Pred =
2478 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2479 Condition = getFCmpCondCode(Pred);
2480 if (TM.Options.NoNaNsFPMath)
2481 Condition = getFCmpCodeWithoutNaN(Condition);
2482 }
2483
2484 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2485 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2486 SL->SwitchCases.push_back(CB);
2487 return;
2488 }
2489 }
2490
2491 // Create a CaseBlock record representing this branch.
2492 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2493 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2494 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2495 SL->SwitchCases.push_back(CB);
2496}
2497
2498// Collect dependencies on V recursively. This is used for the cost analysis in
2499// `shouldKeepJumpConditionsTogether`.
2503 unsigned Depth = 0) {
2504 // Return false if we have an incomplete count.
2506 return false;
2507
2508 auto *I = dyn_cast<Instruction>(V);
2509 if (I == nullptr)
2510 return true;
2511
2512 if (Necessary != nullptr) {
2513 // This instruction is necessary for the other side of the condition so
2514 // don't count it.
2515 if (Necessary->contains(I))
2516 return true;
2517 }
2518
2519 // Already added this dep.
2520 if (!Deps->try_emplace(I, false).second)
2521 return true;
2522
2523 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2524 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2525 Depth + 1))
2526 return false;
2527 return true;
2528}
2529
2532 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2534 if (I.getNumSuccessors() != 2)
2535 return false;
2536
2537 if (!I.isConditional())
2538 return false;
2539
2540 if (Params.BaseCost < 0)
2541 return false;
2542
2543 // Baseline cost.
2544 InstructionCost CostThresh = Params.BaseCost;
2545
2546 BranchProbabilityInfo *BPI = nullptr;
2547 if (Params.LikelyBias || Params.UnlikelyBias)
2548 BPI = FuncInfo.BPI;
2549 if (BPI != nullptr) {
2550 // See if we are either likely to get an early out or compute both lhs/rhs
2551 // of the condition.
2552 BasicBlock *IfFalse = I.getSuccessor(0);
2553 BasicBlock *IfTrue = I.getSuccessor(1);
2554
2555 std::optional<bool> Likely;
2556 if (BPI->isEdgeHot(I.getParent(), IfTrue))
2557 Likely = true;
2558 else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2559 Likely = false;
2560
2561 if (Likely) {
2562 if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2563 // Its likely we will have to compute both lhs and rhs of condition
2564 CostThresh += Params.LikelyBias;
2565 else {
2566 if (Params.UnlikelyBias < 0)
2567 return false;
2568 // Its likely we will get an early out.
2569 CostThresh -= Params.UnlikelyBias;
2570 }
2571 }
2572 }
2573
2574 if (CostThresh <= 0)
2575 return false;
2576
2577 // Collect "all" instructions that lhs condition is dependent on.
2578 // Use map for stable iteration (to avoid non-determanism of iteration of
2579 // SmallPtrSet). The `bool` value is just a dummy.
2581 collectInstructionDeps(&LhsDeps, Lhs);
2582 // Collect "all" instructions that rhs condition is dependent on AND are
2583 // dependencies of lhs. This gives us an estimate on which instructions we
2584 // stand to save by splitting the condition.
2585 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2586 return false;
2587 // Add the compare instruction itself unless its a dependency on the LHS.
2588 if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2589 if (!LhsDeps.contains(RhsI))
2590 RhsDeps.try_emplace(RhsI, false);
2591
2592 const auto &TLI = DAG.getTargetLoweringInfo();
2593 const auto &TTI =
2594 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2595
2596 InstructionCost CostOfIncluding = 0;
2597 // See if this instruction will need to computed independently of whether RHS
2598 // is.
2599 Value *BrCond = I.getCondition();
2600 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2601 for (const auto *U : Ins->users()) {
2602 // If user is independent of RHS calculation we don't need to count it.
2603 if (auto *UIns = dyn_cast<Instruction>(U))
2604 if (UIns != BrCond && !RhsDeps.contains(UIns))
2605 return false;
2606 }
2607 return true;
2608 };
2609
2610 // Prune instructions from RHS Deps that are dependencies of unrelated
2611 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2612 // arbitrary and just meant to cap the how much time we spend in the pruning
2613 // loop. Its highly unlikely to come into affect.
2614 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2615 // Stop after a certain point. No incorrectness from including too many
2616 // instructions.
2617 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2618 const Instruction *ToDrop = nullptr;
2619 for (const auto &InsPair : RhsDeps) {
2620 if (!ShouldCountInsn(InsPair.first)) {
2621 ToDrop = InsPair.first;
2622 break;
2623 }
2624 }
2625 if (ToDrop == nullptr)
2626 break;
2627 RhsDeps.erase(ToDrop);
2628 }
2629
2630 for (const auto &InsPair : RhsDeps) {
2631 // Finally accumulate latency that we can only attribute to computing the
2632 // RHS condition. Use latency because we are essentially trying to calculate
2633 // the cost of the dependency chain.
2634 // Possible TODO: We could try to estimate ILP and make this more precise.
2635 CostOfIncluding +=
2636 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2637
2638 if (CostOfIncluding > CostThresh)
2639 return false;
2640 }
2641 return true;
2642}
2643
2646 MachineBasicBlock *FBB,
2647 MachineBasicBlock *CurBB,
2648 MachineBasicBlock *SwitchBB,
2650 BranchProbability TProb,
2651 BranchProbability FProb,
2652 bool InvertCond) {
2653 // Skip over not part of the tree and remember to invert op and operands at
2654 // next level.
2655 Value *NotCond;
2656 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2657 InBlock(NotCond, CurBB->getBasicBlock())) {
2658 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2659 !InvertCond);
2660 return;
2661 }
2662
2664 const Value *BOpOp0, *BOpOp1;
2665 // Compute the effective opcode for Cond, taking into account whether it needs
2666 // to be inverted, e.g.
2667 // and (not (or A, B)), C
2668 // gets lowered as
2669 // and (and (not A, not B), C)
2671 if (BOp) {
2672 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2673 ? Instruction::And
2674 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2675 ? Instruction::Or
2677 if (InvertCond) {
2678 if (BOpc == Instruction::And)
2679 BOpc = Instruction::Or;
2680 else if (BOpc == Instruction::Or)
2681 BOpc = Instruction::And;
2682 }
2683 }
2684
2685 // If this node is not part of the or/and tree, emit it as a branch.
2686 // Note that all nodes in the tree should have same opcode.
2687 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2688 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2689 !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2690 !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2691 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2692 TProb, FProb, InvertCond);
2693 return;
2694 }
2695
2696 // Create TmpBB after CurBB.
2697 MachineFunction::iterator BBI(CurBB);
2698 MachineFunction &MF = DAG.getMachineFunction();
2700 CurBB->getParent()->insert(++BBI, TmpBB);
2701
2702 if (Opc == Instruction::Or) {
2703 // Codegen X | Y as:
2704 // BB1:
2705 // jmp_if_X TBB
2706 // jmp TmpBB
2707 // TmpBB:
2708 // jmp_if_Y TBB
2709 // jmp FBB
2710 //
2711
2712 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2713 // The requirement is that
2714 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2715 // = TrueProb for original BB.
2716 // Assuming the original probabilities are A and B, one choice is to set
2717 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2718 // A/(1+B) and 2B/(1+B). This choice assumes that
2719 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2720 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2721 // TmpBB, but the math is more complicated.
2722
2723 auto NewTrueProb = TProb / 2;
2724 auto NewFalseProb = TProb / 2 + FProb;
2725 // Emit the LHS condition.
2726 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2727 NewFalseProb, InvertCond);
2728
2729 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2730 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2732 // Emit the RHS condition into TmpBB.
2733 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2734 Probs[1], InvertCond);
2735 } else {
2736 assert(Opc == Instruction::And && "Unknown merge op!");
2737 // Codegen X & Y as:
2738 // BB1:
2739 // jmp_if_X TmpBB
2740 // jmp FBB
2741 // TmpBB:
2742 // jmp_if_Y TBB
2743 // jmp FBB
2744 //
2745 // This requires creation of TmpBB after CurBB.
2746
2747 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2748 // The requirement is that
2749 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2750 // = FalseProb for original BB.
2751 // Assuming the original probabilities are A and B, one choice is to set
2752 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2753 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2754 // TrueProb for BB1 * FalseProb for TmpBB.
2755
2756 auto NewTrueProb = TProb + FProb / 2;
2757 auto NewFalseProb = FProb / 2;
2758 // Emit the LHS condition.
2759 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2760 NewFalseProb, InvertCond);
2761
2762 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2763 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2765 // Emit the RHS condition into TmpBB.
2766 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2767 Probs[1], InvertCond);
2768 }
2769}
2770
2771/// If the set of cases should be emitted as a series of branches, return true.
2772/// If we should emit this as a bunch of and/or'd together conditions, return
2773/// false.
2774bool
2775SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2776 if (Cases.size() != 2) return true;
2777
2778 // If this is two comparisons of the same values or'd or and'd together, they
2779 // will get folded into a single comparison, so don't emit two blocks.
2780 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2781 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2782 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2783 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2784 return false;
2785 }
2786
2787 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2788 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2789 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2790 Cases[0].CC == Cases[1].CC &&
2791 isa<Constant>(Cases[0].CmpRHS) &&
2792 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2793 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2794 return false;
2795 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2796 return false;
2797 }
2798
2799 return true;
2800}
2801
2802void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2804
2805 // Update machine-CFG edges.
2806 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2807
2808 if (I.isUnconditional()) {
2809 // Update machine-CFG edges.
2810 BrMBB->addSuccessor(Succ0MBB);
2811
2812 // If this is not a fall-through branch or optimizations are switched off,
2813 // emit the branch.
2814 if (Succ0MBB != NextBlock(BrMBB) ||
2816 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2817 getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2818 setValue(&I, Br);
2819 DAG.setRoot(Br);
2820 }
2821
2822 return;
2823 }
2824
2825 // If this condition is one of the special cases we handle, do special stuff
2826 // now.
2827 const Value *CondVal = I.getCondition();
2828 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2829
2830 // If this is a series of conditions that are or'd or and'd together, emit
2831 // this as a sequence of branches instead of setcc's with and/or operations.
2832 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2833 // unpredictable branches, and vector extracts because those jumps are likely
2834 // expensive for any target), this should improve performance.
2835 // For example, instead of something like:
2836 // cmp A, B
2837 // C = seteq
2838 // cmp D, E
2839 // F = setle
2840 // or C, F
2841 // jnz foo
2842 // Emit:
2843 // cmp A, B
2844 // je foo
2845 // cmp D, E
2846 // jle foo
2847 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable);
2848 const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2849 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2850 BOp->hasOneUse() && !IsUnpredictable) {
2851 Value *Vec;
2852 const Value *BOp0, *BOp1;
2854 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2855 Opcode = Instruction::And;
2856 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2857 Opcode = Instruction::Or;
2858
2859 if (Opcode &&
2860 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2861 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2863 FuncInfo, I, Opcode, BOp0, BOp1,
2864 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2865 Opcode, BOp0, BOp1))) {
2866 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2867 getEdgeProbability(BrMBB, Succ0MBB),
2868 getEdgeProbability(BrMBB, Succ1MBB),
2869 /*InvertCond=*/false);
2870 // If the compares in later blocks need to use values not currently
2871 // exported from this block, export them now. This block should always
2872 // be the first entry.
2873 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2874
2875 // Allow some cases to be rejected.
2876 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2877 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2878 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2879 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2880 }
2881
2882 // Emit the branch for this block.
2883 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2884 SL->SwitchCases.erase(SL->SwitchCases.begin());
2885 return;
2886 }
2887
2888 // Okay, we decided not to do this, remove any inserted MBB's and clear
2889 // SwitchCases.
2890 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2891 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2892
2893 SL->SwitchCases.clear();
2894 }
2895 }
2896
2897 // Create a CaseBlock record representing this branch.
2898 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2899 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(),
2901 IsUnpredictable);
2902
2903 // Use visitSwitchCase to actually insert the fast branch sequence for this
2904 // cond branch.
2905 visitSwitchCase(CB, BrMBB);
2906}
2907
2908/// visitSwitchCase - Emits the necessary code to represent a single node in
2909/// the binary search tree resulting from lowering a switch instruction.
2911 MachineBasicBlock *SwitchBB) {
2912 SDValue Cond;
2913 SDValue CondLHS = getValue(CB.CmpLHS);
2914 SDLoc dl = CB.DL;
2915
2916 if (CB.CC == ISD::SETTRUE) {
2917 // Branch or fall through to TrueBB.
2918 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2919 SwitchBB->normalizeSuccProbs();
2920 if (CB.TrueBB != NextBlock(SwitchBB)) {
2921 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2922 DAG.getBasicBlock(CB.TrueBB)));
2923 }
2924 return;
2925 }
2926
2927 auto &TLI = DAG.getTargetLoweringInfo();
2928 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2929
2930 // Build the setcc now.
2931 if (!CB.CmpMHS) {
2932 // Fold "(X == true)" to X and "(X == false)" to !X to
2933 // handle common cases produced by branch lowering.
2934 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2935 CB.CC == ISD::SETEQ)
2936 Cond = CondLHS;
2937 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2938 CB.CC == ISD::SETEQ) {
2939 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2940 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2941 } else {
2942 SDValue CondRHS = getValue(CB.CmpRHS);
2943
2944 // If a pointer's DAG type is larger than its memory type then the DAG
2945 // values are zero-extended. This breaks signed comparisons so truncate
2946 // back to the underlying type before doing the compare.
2947 if (CondLHS.getValueType() != MemVT) {
2948 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2949 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2950 }
2951 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2952 }
2953 } else {
2954 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2955
2956 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2957 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2958
2959 SDValue CmpOp = getValue(CB.CmpMHS);
2960 EVT VT = CmpOp.getValueType();
2961
2962 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2963 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2964 ISD::SETLE);
2965 } else {
2966 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2967 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2968 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2969 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2970 }
2971 }
2972
2973 // Update successor info
2974 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2975 // TrueBB and FalseBB are always different unless the incoming IR is
2976 // degenerate. This only happens when running llc on weird IR.
2977 if (CB.TrueBB != CB.FalseBB)
2978 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2979 SwitchBB->normalizeSuccProbs();
2980
2981 // If the lhs block is the next block, invert the condition so that we can
2982 // fall through to the lhs instead of the rhs block.
2983 if (CB.TrueBB == NextBlock(SwitchBB)) {
2984 std::swap(CB.TrueBB, CB.FalseBB);
2985 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2986 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2987 }
2988
2989 SDNodeFlags Flags;
2991 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
2992 Cond, DAG.getBasicBlock(CB.TrueBB), Flags);
2993
2994 setValue(CurInst, BrCond);
2995
2996 // Insert the false branch. Do this even if it's a fall through branch,
2997 // this makes it easier to do DAG optimizations which require inverting
2998 // the branch condition.
2999 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3000 DAG.getBasicBlock(CB.FalseBB));
3001
3002 DAG.setRoot(BrCond);
3003}
3004
3005/// visitJumpTable - Emit JumpTable node in the current MBB
3007 // Emit the code for the jump table
3008 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3009 assert(JT.Reg && "Should lower JT Header first!");
3010 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
3011 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
3012 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
3013 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
3014 Index.getValue(1), Table, Index);
3015 DAG.setRoot(BrJumpTable);
3016}
3017
3018/// visitJumpTableHeader - This function emits necessary code to produce index
3019/// in the JumpTable from switch case.
3021 JumpTableHeader &JTH,
3022 MachineBasicBlock *SwitchBB) {
3023 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3024 const SDLoc &dl = *JT.SL;
3025
3026 // Subtract the lowest switch case value from the value being switched on.
3027 SDValue SwitchOp = getValue(JTH.SValue);
3028 EVT VT = SwitchOp.getValueType();
3029 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3030 DAG.getConstant(JTH.First, dl, VT));
3031
3032 // The SDNode we just created, which holds the value being switched on minus
3033 // the smallest case value, needs to be copied to a virtual register so it
3034 // can be used as an index into the jump table in a subsequent basic block.
3035 // This value may be smaller or larger than the target's pointer type, and
3036 // therefore require extension or truncating.
3037 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3038 SwitchOp =
3039 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3040
3041 Register JumpTableReg =
3042 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3043 SDValue CopyTo =
3044 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3045 JT.Reg = JumpTableReg;
3046
3047 if (!JTH.FallthroughUnreachable) {
3048 // Emit the range check for the jump table, and branch to the default block
3049 // for the switch statement if the value being switched on exceeds the
3050 // largest case in the switch.
3051 SDValue CMP = DAG.getSetCC(
3052 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3053 Sub.getValueType()),
3054 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3055
3056 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3057 MVT::Other, CopyTo, CMP,
3058 DAG.getBasicBlock(JT.Default));
3059
3060 // Avoid emitting unnecessary branches to the next block.
3061 if (JT.MBB != NextBlock(SwitchBB))
3062 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3063 DAG.getBasicBlock(JT.MBB));
3064
3065 DAG.setRoot(BrCond);
3066 } else {
3067 // Avoid emitting unnecessary branches to the next block.
3068 if (JT.MBB != NextBlock(SwitchBB))
3069 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3070 DAG.getBasicBlock(JT.MBB)));
3071 else
3072 DAG.setRoot(CopyTo);
3073 }
3074}
3075
3076/// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3077/// variable if there exists one.
3079 SDValue &Chain) {
3080 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3081 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3082 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3086 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3087 if (Global) {
3088 MachinePointerInfo MPInfo(Global);
3092 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
3093 DAG.setNodeMemRefs(Node, {MemRef});
3094 }
3095 if (PtrTy != PtrMemTy)
3096 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3097 return SDValue(Node, 0);
3098}
3099
3100/// Codegen a new tail for a stack protector check ParentMBB which has had its
3101/// tail spliced into a stack protector check success bb.
3102///
3103/// For a high level explanation of how this fits into the stack protector
3104/// generation see the comment on the declaration of class
3105/// StackProtectorDescriptor.
3107 MachineBasicBlock *ParentBB) {
3108
3109 // First create the loads to the guard/stack slot for the comparison.
3110 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3111 auto &DL = DAG.getDataLayout();
3112 EVT PtrTy = TLI.getFrameIndexTy(DL);
3113 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3114
3115 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3116 int FI = MFI.getStackProtectorIndex();
3117
3118 SDValue Guard;
3119 SDLoc dl = getCurSDLoc();
3120 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3121 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3122 Align Align = DL.getPrefTypeAlign(
3123 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3124
3125 // Generate code to load the content of the guard slot.
3126 SDValue GuardVal = DAG.getLoad(
3127 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3128 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3130
3131 if (TLI.useStackGuardXorFP())
3132 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3133
3134 // If we're using function-based instrumentation, call the guard check
3135 // function
3137 // Get the guard check function from the target and verify it exists since
3138 // we're using function-based instrumentation
3139 const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3140 assert(GuardCheckFn && "Guard check function is null");
3141
3142 // The target provides a guard check function to validate the guard value.
3143 // Generate a call to that function with the content of the guard slot as
3144 // argument.
3145 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3146 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3147
3149 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3150 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3151 Entry.IsInReg = true;
3152 Args.push_back(Entry);
3153
3156 .setChain(DAG.getEntryNode())
3157 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3158 getValue(GuardCheckFn), std::move(Args));
3159
3160 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3161 DAG.setRoot(Result.second);
3162 return;
3163 }
3164
3165 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3166 // Otherwise, emit a volatile load to retrieve the stack guard value.
3167 SDValue Chain = DAG.getEntryNode();
3168 if (TLI.useLoadStackGuardNode(M)) {
3169 Guard = getLoadStackGuard(DAG, dl, Chain);
3170 } else {
3171 if (const Value *IRGuard = TLI.getSDagStackGuard(M)) {
3172 SDValue GuardPtr = getValue(IRGuard);
3173 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3174 MachinePointerInfo(IRGuard, 0), Align,
3176 } else {
3177 LLVMContext &Ctx = *DAG.getContext();
3178 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
3179 Guard = DAG.getPOISON(PtrMemTy);
3180 }
3181 }
3182
3183 // Perform the comparison via a getsetcc.
3184 SDValue Cmp = DAG.getSetCC(
3185 dl, TLI.getSetCCResultType(DL, *DAG.getContext(), Guard.getValueType()),
3186 Guard, GuardVal, ISD::SETNE);
3187
3188 // If the guard/stackslot do not equal, branch to failure MBB.
3189 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3190 MVT::Other, GuardVal.getOperand(0),
3191 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3192 // Otherwise branch to success MBB.
3193 SDValue Br = DAG.getNode(ISD::BR, dl,
3194 MVT::Other, BrCond,
3195 DAG.getBasicBlock(SPD.getSuccessMBB()));
3196
3197 DAG.setRoot(Br);
3198}
3199
3200/// Codegen the failure basic block for a stack protector check.
3201///
3202/// A failure stack protector machine basic block consists simply of a call to
3203/// __stack_chk_fail().
3204///
3205/// For a high level explanation of how this fits into the stack protector
3206/// generation see the comment on the declaration of class
3207/// StackProtectorDescriptor.
3210
3211 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3212 MachineBasicBlock *ParentBB = SPD.getParentMBB();
3213 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3214 SDValue Chain;
3215
3216 // For -Oz builds with a guard check function, we use function-based
3217 // instrumentation. Otherwise, if we have a guard check function, we call it
3218 // in the failure block.
3219 auto *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3220 if (GuardCheckFn && !SPD.shouldEmitFunctionBasedCheckStackProtector()) {
3221 // First create the loads to the guard/stack slot for the comparison.
3222 auto &DL = DAG.getDataLayout();
3223 EVT PtrTy = TLI.getFrameIndexTy(DL);
3224 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3225
3226 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3227 int FI = MFI.getStackProtectorIndex();
3228
3229 SDLoc dl = getCurSDLoc();
3230 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3231 Align Align = DL.getPrefTypeAlign(
3232 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3233
3234 // Generate code to load the content of the guard slot.
3235 SDValue GuardVal = DAG.getLoad(
3236 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3237 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3239
3240 if (TLI.useStackGuardXorFP())
3241 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3242
3243 // The target provides a guard check function to validate the guard value.
3244 // Generate a call to that function with the content of the guard slot as
3245 // argument.
3246 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3247 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3248
3250 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3251 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3252 Entry.IsInReg = true;
3253 Args.push_back(Entry);
3254
3257 .setChain(DAG.getEntryNode())
3258 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3259 getValue(GuardCheckFn), std::move(Args));
3260
3261 Chain = TLI.LowerCallTo(CLI).second;
3262 } else {
3264 CallOptions.setDiscardResult(true);
3265 Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3266 {}, CallOptions, getCurSDLoc())
3267 .second;
3268 }
3269
3270 // Emit a trap instruction if we are required to do so.
3271 const TargetOptions &TargetOpts = DAG.getTarget().Options;
3272 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn)
3273 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3274
3275 DAG.setRoot(Chain);
3276}
3277
3278/// visitBitTestHeader - This function emits necessary code to produce value
3279/// suitable for "bit tests"
3281 MachineBasicBlock *SwitchBB) {
3282 SDLoc dl = getCurSDLoc();
3283
3284 // Subtract the minimum value.
3285 SDValue SwitchOp = getValue(B.SValue);
3286 EVT VT = SwitchOp.getValueType();
3287 SDValue RangeSub =
3288 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3289
3290 // Determine the type of the test operands.
3291 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3292 bool UsePtrType = false;
3293 if (!TLI.isTypeLegal(VT)) {
3294 UsePtrType = true;
3295 } else {
3296 for (const BitTestCase &Case : B.Cases)
3297 if (!isUIntN(VT.getSizeInBits(), Case.Mask)) {
3298 // Switch table case range are encoded into series of masks.
3299 // Just use pointer type, it's guaranteed to fit.
3300 UsePtrType = true;
3301 break;
3302 }
3303 }
3304 SDValue Sub = RangeSub;
3305 if (UsePtrType) {
3306 VT = TLI.getPointerTy(DAG.getDataLayout());
3307 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3308 }
3309
3310 B.RegVT = VT.getSimpleVT();
3311 B.Reg = FuncInfo.CreateReg(B.RegVT);
3312 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3313
3314 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3315
3316 if (!B.FallthroughUnreachable)
3317 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3318 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3319 SwitchBB->normalizeSuccProbs();
3320
3321 SDValue Root = CopyTo;
3322 if (!B.FallthroughUnreachable) {
3323 // Conditional branch to the default block.
3324 SDValue RangeCmp = DAG.getSetCC(dl,
3325 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3326 RangeSub.getValueType()),
3327 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3328 ISD::SETUGT);
3329
3330 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3331 DAG.getBasicBlock(B.Default));
3332 }
3333
3334 // Avoid emitting unnecessary branches to the next block.
3335 if (MBB != NextBlock(SwitchBB))
3336 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3337
3338 DAG.setRoot(Root);
3339}
3340
3341/// visitBitTestCase - this function produces one "bit test"
3343 MachineBasicBlock *NextMBB,
3344 BranchProbability BranchProbToNext,
3345 Register Reg, BitTestCase &B,
3346 MachineBasicBlock *SwitchBB) {
3347 SDLoc dl = getCurSDLoc();
3348 MVT VT = BB.RegVT;
3349 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3350 SDValue Cmp;
3351 unsigned PopCount = llvm::popcount(B.Mask);
3352 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3353 if (PopCount == 1) {
3354 // Testing for a single bit; just compare the shift count with what it
3355 // would need to be to shift a 1 bit in that position.
3356 Cmp = DAG.getSetCC(
3357 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3358 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3359 ISD::SETEQ);
3360 } else if (PopCount == BB.Range) {
3361 // There is only one zero bit in the range, test for it directly.
3362 Cmp = DAG.getSetCC(
3363 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3364 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3365 } else {
3366 // Make desired shift
3367 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3368 DAG.getConstant(1, dl, VT), ShiftOp);
3369
3370 // Emit bit tests and jumps
3371 SDValue AndOp = DAG.getNode(ISD::AND, dl,
3372 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3373 Cmp = DAG.getSetCC(
3374 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3375 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3376 }
3377
3378 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3379 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3380 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3381 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3382 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3383 // one as they are relative probabilities (and thus work more like weights),
3384 // and hence we need to normalize them to let the sum of them become one.
3385 SwitchBB->normalizeSuccProbs();
3386
3387 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3388 MVT::Other, getControlRoot(),
3389 Cmp, DAG.getBasicBlock(B.TargetBB));
3390
3391 // Avoid emitting unnecessary branches to the next block.
3392 if (NextMBB != NextBlock(SwitchBB))
3393 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3394 DAG.getBasicBlock(NextMBB));
3395
3396 DAG.setRoot(BrAnd);
3397}
3398
3399void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3400 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3401
3402 // Retrieve successors. Look through artificial IR level blocks like
3403 // catchswitch for successors.
3404 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3405 const BasicBlock *EHPadBB = I.getSuccessor(1);
3406 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3407
3408 // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3409 // have to do anything here to lower funclet bundles.
3410 failForInvalidBundles(I, "invokes",
3416
3417 const Value *Callee(I.getCalledOperand());
3418 const Function *Fn = dyn_cast<Function>(Callee);
3419 if (isa<InlineAsm>(Callee))
3420 visitInlineAsm(I, EHPadBB);
3421 else if (Fn && Fn->isIntrinsic()) {
3422 switch (Fn->getIntrinsicID()) {
3423 default:
3424 llvm_unreachable("Cannot invoke this intrinsic");
3425 case Intrinsic::donothing:
3426 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3427 case Intrinsic::seh_try_begin:
3428 case Intrinsic::seh_scope_begin:
3429 case Intrinsic::seh_try_end:
3430 case Intrinsic::seh_scope_end:
3431 if (EHPadMBB)
3432 // a block referenced by EH table
3433 // so dtor-funclet not removed by opts
3434 EHPadMBB->setMachineBlockAddressTaken();
3435 break;
3436 case Intrinsic::experimental_patchpoint_void:
3437 case Intrinsic::experimental_patchpoint:
3438 visitPatchpoint(I, EHPadBB);
3439 break;
3440 case Intrinsic::experimental_gc_statepoint:
3442 break;
3443 // wasm_throw, wasm_rethrow: This is usually done in visitTargetIntrinsic,
3444 // but these intrinsics are special because they can be invoked, so we
3445 // manually lower it to a DAG node here.
3446 case Intrinsic::wasm_throw: {
3448 std::array<SDValue, 4> Ops = {
3449 getControlRoot(), // inchain for the terminator node
3450 DAG.getTargetConstant(Intrinsic::wasm_throw, getCurSDLoc(),
3452 getValue(I.getArgOperand(0)), // tag
3453 getValue(I.getArgOperand(1)) // thrown value
3454 };
3455 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3456 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3457 break;
3458 }
3459 case Intrinsic::wasm_rethrow: {
3460 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3461 std::array<SDValue, 2> Ops = {
3462 getControlRoot(), // inchain for the terminator node
3463 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3464 TLI.getPointerTy(DAG.getDataLayout()))};
3465 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3466 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3467 break;
3468 }
3469 }
3470 } else if (I.hasDeoptState()) {
3471 // Currently we do not lower any intrinsic calls with deopt operand bundles.
3472 // Eventually we will support lowering the @llvm.experimental.deoptimize
3473 // intrinsic, and right now there are no plans to support other intrinsics
3474 // with deopt state.
3475 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3476 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3478 } else {
3479 LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3480 }
3481
3482 // If the value of the invoke is used outside of its defining block, make it
3483 // available as a virtual register.
3484 // We already took care of the exported value for the statepoint instruction
3485 // during call to the LowerStatepoint.
3486 if (!isa<GCStatepointInst>(I)) {
3488 }
3489
3491 BranchProbabilityInfo *BPI = FuncInfo.BPI;
3492 BranchProbability EHPadBBProb =
3493 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3495 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3496
3497 // Update successor info.
3498 addSuccessorWithProb(InvokeMBB, Return);
3499 for (auto &UnwindDest : UnwindDests) {
3500 UnwindDest.first->setIsEHPad();
3501 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3502 }
3503 InvokeMBB->normalizeSuccProbs();
3504
3505 // Drop into normal successor.
3506 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3507 DAG.getBasicBlock(Return)));
3508}
3509
3510void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3511 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3512
3513 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3514 // have to do anything here to lower funclet bundles.
3515 failForInvalidBundles(I, "callbrs",
3517
3518 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3519 visitInlineAsm(I);
3521
3522 // Retrieve successors.
3523 SmallPtrSet<BasicBlock *, 8> Dests;
3524 Dests.insert(I.getDefaultDest());
3525 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3526
3527 // Update successor info.
3528 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3529 for (BasicBlock *Dest : I.getIndirectDests()) {
3530 MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3531 Target->setIsInlineAsmBrIndirectTarget();
3532 // If we introduce a type of asm goto statement that is permitted to use an
3533 // indirect call instruction to jump to its labels, then we should add a
3534 // call to Target->setMachineBlockAddressTaken() here, to mark the target
3535 // block as requiring a BTI.
3536
3537 Target->setLabelMustBeEmitted();
3538 // Don't add duplicate machine successors.
3539 if (Dests.insert(Dest).second)
3540 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3541 }
3542 CallBrMBB->normalizeSuccProbs();
3543
3544 // Drop into default successor.
3545 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3546 MVT::Other, getControlRoot(),
3547 DAG.getBasicBlock(Return)));
3548}
3549
3550void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3551 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3552}
3553
3554void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3555 assert(FuncInfo.MBB->isEHPad() &&
3556 "Call to landingpad not in landing pad!");
3557
3558 // If there aren't registers to copy the values into (e.g., during SjLj
3559 // exceptions), then don't bother to create these DAG nodes.
3560 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3561 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3562 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3563 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3564 return;
3565
3566 // If landingpad's return type is token type, we don't create DAG nodes
3567 // for its exception pointer and selector value. The extraction of exception
3568 // pointer or selector value from token type landingpads is not currently
3569 // supported.
3570 if (LP.getType()->isTokenTy())
3571 return;
3572
3573 SmallVector<EVT, 2> ValueVTs;
3574 SDLoc dl = getCurSDLoc();
3575 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3576 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3577
3578 // Get the two live-in registers as SDValues. The physregs have already been
3579 // copied into virtual registers.
3580 SDValue Ops[2];
3581 if (FuncInfo.ExceptionPointerVirtReg) {
3582 Ops[0] = DAG.getZExtOrTrunc(
3583 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3584 FuncInfo.ExceptionPointerVirtReg,
3585 TLI.getPointerTy(DAG.getDataLayout())),
3586 dl, ValueVTs[0]);
3587 } else {
3588 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3589 }
3590 Ops[1] = DAG.getZExtOrTrunc(
3591 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3592 FuncInfo.ExceptionSelectorVirtReg,
3593 TLI.getPointerTy(DAG.getDataLayout())),
3594 dl, ValueVTs[1]);
3595
3596 // Merge into one.
3597 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3598 DAG.getVTList(ValueVTs), Ops);
3599 setValue(&LP, Res);
3600}
3601
3604 // Update JTCases.
3605 for (JumpTableBlock &JTB : SL->JTCases)
3606 if (JTB.first.HeaderBB == First)
3607 JTB.first.HeaderBB = Last;
3608
3609 // Update BitTestCases.
3610 for (BitTestBlock &BTB : SL->BitTestCases)
3611 if (BTB.Parent == First)
3612 BTB.Parent = Last;
3613}
3614
3615void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3616 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3617
3618 // Update machine-CFG edges with unique successors.
3620 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3621 BasicBlock *BB = I.getSuccessor(i);
3622 bool Inserted = Done.insert(BB).second;
3623 if (!Inserted)
3624 continue;
3625
3626 MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3627 addSuccessorWithProb(IndirectBrMBB, Succ);
3628 }
3629 IndirectBrMBB->normalizeSuccProbs();
3630
3631 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3632 MVT::Other, getControlRoot(),
3633 getValue(I.getAddress())));
3634}
3635
3636void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3637 if (!I.shouldLowerToTrap(DAG.getTarget().Options.TrapUnreachable,
3638 DAG.getTarget().Options.NoTrapAfterNoreturn))
3639 return;
3640
3641 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3642}
3643
3644void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3645 SDNodeFlags Flags;
3646 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3647 Flags.copyFMF(*FPOp);
3648
3649 SDValue Op = getValue(I.getOperand(0));
3650 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3651 Op, Flags);
3652 setValue(&I, UnNodeValue);
3653}
3654
3655void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3656 SDNodeFlags Flags;
3657 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3658 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3659 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3660 }
3661 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3662 Flags.setExact(ExactOp->isExact());
3663 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3664 Flags.setDisjoint(DisjointOp->isDisjoint());
3665 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3666 Flags.copyFMF(*FPOp);
3667
3668 SDValue Op1 = getValue(I.getOperand(0));
3669 SDValue Op2 = getValue(I.getOperand(1));
3670 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3671 Op1, Op2, Flags);
3672 setValue(&I, BinNodeValue);
3673}
3674
3675void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3676 SDValue Op1 = getValue(I.getOperand(0));
3677 SDValue Op2 = getValue(I.getOperand(1));
3678
3679 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3680 Op1.getValueType(), DAG.getDataLayout());
3681
3682 // Coerce the shift amount to the right type if we can. This exposes the
3683 // truncate or zext to optimization early.
3684 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3686 "Unexpected shift type");
3687 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3688 }
3689
3690 bool nuw = false;
3691 bool nsw = false;
3692 bool exact = false;
3693
3694 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3695
3696 if (const OverflowingBinaryOperator *OFBinOp =
3698 nuw = OFBinOp->hasNoUnsignedWrap();
3699 nsw = OFBinOp->hasNoSignedWrap();
3700 }
3701 if (const PossiblyExactOperator *ExactOp =
3703 exact = ExactOp->isExact();
3704 }
3705 SDNodeFlags Flags;
3706 Flags.setExact(exact);
3707 Flags.setNoSignedWrap(nsw);
3708 Flags.setNoUnsignedWrap(nuw);
3709 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3710 Flags);
3711 setValue(&I, Res);
3712}
3713
3714void SelectionDAGBuilder::visitSDiv(const User &I) {
3715 SDValue Op1 = getValue(I.getOperand(0));
3716 SDValue Op2 = getValue(I.getOperand(1));
3717
3718 SDNodeFlags Flags;
3719 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3720 cast<PossiblyExactOperator>(&I)->isExact());
3721 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3722 Op2, Flags));
3723}
3724
3725void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3726 ICmpInst::Predicate predicate = I.getPredicate();
3727 SDValue Op1 = getValue(I.getOperand(0));
3728 SDValue Op2 = getValue(I.getOperand(1));
3729 ISD::CondCode Opcode = getICmpCondCode(predicate);
3730
3731 auto &TLI = DAG.getTargetLoweringInfo();
3732 EVT MemVT =
3733 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3734
3735 // If a pointer's DAG type is larger than its memory type then the DAG values
3736 // are zero-extended. This breaks signed comparisons so truncate back to the
3737 // underlying type before doing the compare.
3738 if (Op1.getValueType() != MemVT) {
3739 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3740 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3741 }
3742
3743 SDNodeFlags Flags;
3744 Flags.setSameSign(I.hasSameSign());
3745 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3746
3747 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3748 I.getType());
3749 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3750}
3751
3752void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3753 FCmpInst::Predicate predicate = I.getPredicate();
3754 SDValue Op1 = getValue(I.getOperand(0));
3755 SDValue Op2 = getValue(I.getOperand(1));
3756
3757 ISD::CondCode Condition = getFCmpCondCode(predicate);
3758 auto *FPMO = cast<FPMathOperator>(&I);
3759 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3760 Condition = getFCmpCodeWithoutNaN(Condition);
3761
3762 SDNodeFlags Flags;
3763 Flags.copyFMF(*FPMO);
3764 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3765
3766 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3767 I.getType());
3768 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3769}
3770
3771// Check if the condition of the select has one use or two users that are both
3772// selects with the same condition.
3773static bool hasOnlySelectUsers(const Value *Cond) {
3774 return llvm::all_of(Cond->users(), [](const Value *V) {
3775 return isa<SelectInst>(V);
3776 });
3777}
3778
3779void SelectionDAGBuilder::visitSelect(const User &I) {
3780 SmallVector<EVT, 4> ValueVTs;
3781 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3782 ValueVTs);
3783 unsigned NumValues = ValueVTs.size();
3784 if (NumValues == 0) return;
3785
3786 SmallVector<SDValue, 4> Values(NumValues);
3787 SDValue Cond = getValue(I.getOperand(0));
3788 SDValue LHSVal = getValue(I.getOperand(1));
3789 SDValue RHSVal = getValue(I.getOperand(2));
3790 SmallVector<SDValue, 1> BaseOps(1, Cond);
3792 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3793
3794 bool IsUnaryAbs = false;
3795 bool Negate = false;
3796
3797 SDNodeFlags Flags;
3798 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3799 Flags.copyFMF(*FPOp);
3800
3801 Flags.setUnpredictable(
3802 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3803
3804 // Min/max matching is only viable if all output VTs are the same.
3805 if (all_equal(ValueVTs)) {
3806 EVT VT = ValueVTs[0];
3807 LLVMContext &Ctx = *DAG.getContext();
3808 auto &TLI = DAG.getTargetLoweringInfo();
3809
3810 // We care about the legality of the operation after it has been type
3811 // legalized.
3812 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3813 VT = TLI.getTypeToTransformTo(Ctx, VT);
3814
3815 // If the vselect is legal, assume we want to leave this as a vector setcc +
3816 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3817 // min/max is legal on the scalar type.
3818 bool UseScalarMinMax = VT.isVector() &&
3820
3821 // ValueTracking's select pattern matching does not account for -0.0,
3822 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3823 // -0.0 is less than +0.0.
3824 const Value *LHS, *RHS;
3825 auto SPR = matchSelectPattern(&I, LHS, RHS);
3827 switch (SPR.Flavor) {
3828 case SPF_UMAX: Opc = ISD::UMAX; break;
3829 case SPF_UMIN: Opc = ISD::UMIN; break;
3830 case SPF_SMAX: Opc = ISD::SMAX; break;
3831 case SPF_SMIN: Opc = ISD::SMIN; break;
3832 case SPF_FMINNUM:
3833 switch (SPR.NaNBehavior) {
3834 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3835 case SPNB_RETURNS_NAN: break;
3836 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3837 case SPNB_RETURNS_ANY:
3838 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3839 (UseScalarMinMax &&
3840 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3841 Opc = ISD::FMINNUM;
3842 break;
3843 }
3844 break;
3845 case SPF_FMAXNUM:
3846 switch (SPR.NaNBehavior) {
3847 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3848 case SPNB_RETURNS_NAN: break;
3849 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3850 case SPNB_RETURNS_ANY:
3851 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3852 (UseScalarMinMax &&
3853 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3854 Opc = ISD::FMAXNUM;
3855 break;
3856 }
3857 break;
3858 case SPF_NABS:
3859 Negate = true;
3860 [[fallthrough]];
3861 case SPF_ABS:
3862 IsUnaryAbs = true;
3863 Opc = ISD::ABS;
3864 break;
3865 default: break;
3866 }
3867
3868 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3869 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3870 (UseScalarMinMax &&
3872 // If the underlying comparison instruction is used by any other
3873 // instruction, the consumed instructions won't be destroyed, so it is
3874 // not profitable to convert to a min/max.
3876 OpCode = Opc;
3877 LHSVal = getValue(LHS);
3878 RHSVal = getValue(RHS);
3879 BaseOps.clear();
3880 }
3881
3882 if (IsUnaryAbs) {
3883 OpCode = Opc;
3884 LHSVal = getValue(LHS);
3885 BaseOps.clear();
3886 }
3887 }
3888
3889 if (IsUnaryAbs) {
3890 for (unsigned i = 0; i != NumValues; ++i) {
3891 SDLoc dl = getCurSDLoc();
3892 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3893 Values[i] =
3894 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3895 if (Negate)
3896 Values[i] = DAG.getNegative(Values[i], dl, VT);
3897 }
3898 } else {
3899 for (unsigned i = 0; i != NumValues; ++i) {
3900 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3901 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3902 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3903 Values[i] = DAG.getNode(
3904 OpCode, getCurSDLoc(),
3905 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3906 }
3907 }
3908
3910 DAG.getVTList(ValueVTs), Values));
3911}
3912
3913void SelectionDAGBuilder::visitTrunc(const User &I) {
3914 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3915 SDValue N = getValue(I.getOperand(0));
3916 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3917 I.getType());
3918 SDNodeFlags Flags;
3919 if (auto *Trunc = dyn_cast<TruncInst>(&I)) {
3920 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3921 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3922 }
3923
3924 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N, Flags));
3925}
3926
3927void SelectionDAGBuilder::visitZExt(const User &I) {
3928 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3929 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3930 SDValue N = getValue(I.getOperand(0));
3931 auto &TLI = DAG.getTargetLoweringInfo();
3932 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3933
3934 SDNodeFlags Flags;
3935 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3936 Flags.setNonNeg(PNI->hasNonNeg());
3937
3938 // Eagerly use nonneg information to canonicalize towards sign_extend if
3939 // that is the target's preference.
3940 // TODO: Let the target do this later.
3941 if (Flags.hasNonNeg() &&
3942 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3943 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3944 return;
3945 }
3946
3947 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3948}
3949
3950void SelectionDAGBuilder::visitSExt(const User &I) {
3951 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3952 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3953 SDValue N = getValue(I.getOperand(0));
3954 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3955 I.getType());
3956 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3957}
3958
3959void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3960 // FPTrunc is never a no-op cast, no need to check
3961 SDValue N = getValue(I.getOperand(0));
3962 SDLoc dl = getCurSDLoc();
3963 SDNodeFlags Flags;
3964 if (auto *TruncInst = dyn_cast<FPMathOperator>(&I))
3965 Flags.copyFMF(*TruncInst);
3966 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3967 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3968 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3969 DAG.getTargetConstant(
3970 0, dl, TLI.getPointerTy(DAG.getDataLayout())),
3971 Flags));
3972}
3973
3974void SelectionDAGBuilder::visitFPExt(const User &I) {
3975 // FPExt is never a no-op cast, no need to check
3976 SDValue N = getValue(I.getOperand(0));
3977 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3978 I.getType());
3979 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3980}
3981
3982void SelectionDAGBuilder::visitFPToUI(const User &I) {
3983 // FPToUI is never a no-op cast, no need to check
3984 SDValue N = getValue(I.getOperand(0));
3985 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3986 I.getType());
3987 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3988}
3989
3990void SelectionDAGBuilder::visitFPToSI(const User &I) {
3991 // FPToSI is never a no-op cast, no need to check
3992 SDValue N = getValue(I.getOperand(0));
3993 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3994 I.getType());
3995 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3996}
3997
3998void SelectionDAGBuilder::visitUIToFP(const User &I) {
3999 // UIToFP is never a no-op cast, no need to check
4000 SDValue N = getValue(I.getOperand(0));
4001 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4002 I.getType());
4003 SDNodeFlags Flags;
4004 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
4005 Flags.setNonNeg(PNI->hasNonNeg());
4006
4007 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
4008}
4009
4010void SelectionDAGBuilder::visitSIToFP(const User &I) {
4011 // SIToFP is never a no-op cast, no need to check
4012 SDValue N = getValue(I.getOperand(0));
4013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4014 I.getType());
4015 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
4016}
4017
4018void SelectionDAGBuilder::visitPtrToAddr(const User &I) {
4019 SDValue N = getValue(I.getOperand(0));
4020 // By definition the type of the ptrtoaddr must be equal to the address type.
4021 const auto &TLI = DAG.getTargetLoweringInfo();
4022 EVT AddrVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4023 // The address width must be smaller or equal to the pointer representation
4024 // width, so we lower ptrtoaddr as a truncate (possibly folded to a no-op).
4025 N = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), AddrVT, N);
4026 setValue(&I, N);
4027}
4028
4029void SelectionDAGBuilder::visitPtrToInt(const User &I) {
4030 // What to do depends on the size of the integer and the size of the pointer.
4031 // We can either truncate, zero extend, or no-op, accordingly.
4032 SDValue N = getValue(I.getOperand(0));
4033 auto &TLI = DAG.getTargetLoweringInfo();
4034 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4035 I.getType());
4036 EVT PtrMemVT =
4037 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
4038 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4039 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
4040 setValue(&I, N);
4041}
4042
4043void SelectionDAGBuilder::visitIntToPtr(const User &I) {
4044 // What to do depends on the size of the integer and the size of the pointer.
4045 // We can either truncate, zero extend, or no-op, accordingly.
4046 SDValue N = getValue(I.getOperand(0));
4047 auto &TLI = DAG.getTargetLoweringInfo();
4048 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4049 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4050 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4051 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
4052 setValue(&I, N);
4053}
4054
4055void SelectionDAGBuilder::visitBitCast(const User &I) {
4056 SDValue N = getValue(I.getOperand(0));
4057 SDLoc dl = getCurSDLoc();
4058 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4059 I.getType());
4060
4061 // BitCast assures us that source and destination are the same size so this is
4062 // either a BITCAST or a no-op.
4063 if (DestVT != N.getValueType())
4064 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
4065 DestVT, N)); // convert types.
4066 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
4067 // might fold any kind of constant expression to an integer constant and that
4068 // is not what we are looking for. Only recognize a bitcast of a genuine
4069 // constant integer as an opaque constant.
4070 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
4071 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
4072 /*isOpaque*/true));
4073 else
4074 setValue(&I, N); // noop cast.
4075}
4076
4077void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
4078 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4079 const Value *SV = I.getOperand(0);
4080 SDValue N = getValue(SV);
4081 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4082
4083 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
4084 unsigned DestAS = I.getType()->getPointerAddressSpace();
4085
4086 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4087 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
4088
4089 setValue(&I, N);
4090}
4091
4092void SelectionDAGBuilder::visitInsertElement(const User &I) {
4093 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4094 SDValue InVec = getValue(I.getOperand(0));
4095 SDValue InVal = getValue(I.getOperand(1));
4096 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
4097 TLI.getVectorIdxTy(DAG.getDataLayout()));
4099 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4100 InVec, InVal, InIdx));
4101}
4102
4103void SelectionDAGBuilder::visitExtractElement(const User &I) {
4104 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4105 SDValue InVec = getValue(I.getOperand(0));
4106 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
4107 TLI.getVectorIdxTy(DAG.getDataLayout()));
4109 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4110 InVec, InIdx));
4111}
4112
4113void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4114 SDValue Src1 = getValue(I.getOperand(0));
4115 SDValue Src2 = getValue(I.getOperand(1));
4116 ArrayRef<int> Mask;
4117 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4118 Mask = SVI->getShuffleMask();
4119 else
4120 Mask = cast<ConstantExpr>(I).getShuffleMask();
4121 SDLoc DL = getCurSDLoc();
4122 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4123 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4124 EVT SrcVT = Src1.getValueType();
4125
4126 if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
4127 VT.isScalableVector()) {
4128 // Canonical splat form of first element of first input vector.
4129 SDValue FirstElt =
4130 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4131 DAG.getVectorIdxConstant(0, DL));
4132 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4133 return;
4134 }
4135
4136 // For now, we only handle splats for scalable vectors.
4137 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4138 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4139 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4140
4141 unsigned SrcNumElts = SrcVT.getVectorNumElements();
4142 unsigned MaskNumElts = Mask.size();
4143
4144 if (SrcNumElts == MaskNumElts) {
4145 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4146 return;
4147 }
4148
4149 // Normalize the shuffle vector since mask and vector length don't match.
4150 if (SrcNumElts < MaskNumElts) {
4151 // Mask is longer than the source vectors. We can use concatenate vector to
4152 // make the mask and vectors lengths match.
4153
4154 if (MaskNumElts % SrcNumElts == 0) {
4155 // Mask length is a multiple of the source vector length.
4156 // Check if the shuffle is some kind of concatenation of the input
4157 // vectors.
4158 unsigned NumConcat = MaskNumElts / SrcNumElts;
4159 bool IsConcat = true;
4160 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4161 for (unsigned i = 0; i != MaskNumElts; ++i) {
4162 int Idx = Mask[i];
4163 if (Idx < 0)
4164 continue;
4165 // Ensure the indices in each SrcVT sized piece are sequential and that
4166 // the same source is used for the whole piece.
4167 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4168 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4169 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4170 IsConcat = false;
4171 break;
4172 }
4173 // Remember which source this index came from.
4174 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4175 }
4176
4177 // The shuffle is concatenating multiple vectors together. Just emit
4178 // a CONCAT_VECTORS operation.
4179 if (IsConcat) {
4180 SmallVector<SDValue, 8> ConcatOps;
4181 for (auto Src : ConcatSrcs) {
4182 if (Src < 0)
4183 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4184 else if (Src == 0)
4185 ConcatOps.push_back(Src1);
4186 else
4187 ConcatOps.push_back(Src2);
4188 }
4189 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4190 return;
4191 }
4192 }
4193
4194 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4195 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4196 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4197 PaddedMaskNumElts);
4198
4199 // Pad both vectors with undefs to make them the same length as the mask.
4200 SDValue UndefVal = DAG.getUNDEF(SrcVT);
4201
4202 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4203 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4204 MOps1[0] = Src1;
4205 MOps2[0] = Src2;
4206
4207 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4208 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4209
4210 // Readjust mask for new input vector length.
4211 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4212 for (unsigned i = 0; i != MaskNumElts; ++i) {
4213 int Idx = Mask[i];
4214 if (Idx >= (int)SrcNumElts)
4215 Idx -= SrcNumElts - PaddedMaskNumElts;
4216 MappedOps[i] = Idx;
4217 }
4218
4219 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4220
4221 // If the concatenated vector was padded, extract a subvector with the
4222 // correct number of elements.
4223 if (MaskNumElts != PaddedMaskNumElts)
4224 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4225 DAG.getVectorIdxConstant(0, DL));
4226
4227 setValue(&I, Result);
4228 return;
4229 }
4230
4231 assert(SrcNumElts > MaskNumElts);
4232
4233 // Analyze the access pattern of the vector to see if we can extract
4234 // two subvectors and do the shuffle.
4235 int StartIdx[2] = {-1, -1}; // StartIdx to extract from
4236 bool CanExtract = true;
4237 for (int Idx : Mask) {
4238 unsigned Input = 0;
4239 if (Idx < 0)
4240 continue;
4241
4242 if (Idx >= (int)SrcNumElts) {
4243 Input = 1;
4244 Idx -= SrcNumElts;
4245 }
4246
4247 // If all the indices come from the same MaskNumElts sized portion of
4248 // the sources we can use extract. Also make sure the extract wouldn't
4249 // extract past the end of the source.
4250 int NewStartIdx = alignDown(Idx, MaskNumElts);
4251 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4252 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4253 CanExtract = false;
4254 // Make sure we always update StartIdx as we use it to track if all
4255 // elements are undef.
4256 StartIdx[Input] = NewStartIdx;
4257 }
4258
4259 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4260 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4261 return;
4262 }
4263 if (CanExtract) {
4264 // Extract appropriate subvector and generate a vector shuffle
4265 for (unsigned Input = 0; Input < 2; ++Input) {
4266 SDValue &Src = Input == 0 ? Src1 : Src2;
4267 if (StartIdx[Input] < 0)
4268 Src = DAG.getUNDEF(VT);
4269 else {
4270 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4271 DAG.getVectorIdxConstant(StartIdx[Input], DL));
4272 }
4273 }
4274
4275 // Calculate new mask.
4276 SmallVector<int, 8> MappedOps(Mask);
4277 for (int &Idx : MappedOps) {
4278 if (Idx >= (int)SrcNumElts)
4279 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4280 else if (Idx >= 0)
4281 Idx -= StartIdx[0];
4282 }
4283
4284 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4285 return;
4286 }
4287
4288 // We can't use either concat vectors or extract subvectors so fall back to
4289 // replacing the shuffle with extract and build vector.
4290 // to insert and build vector.
4291 EVT EltVT = VT.getVectorElementType();
4293 for (int Idx : Mask) {
4294 SDValue Res;
4295
4296 if (Idx < 0) {
4297 Res = DAG.getUNDEF(EltVT);
4298 } else {
4299 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4300 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4301
4302 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4303 DAG.getVectorIdxConstant(Idx, DL));
4304 }
4305
4306 Ops.push_back(Res);
4307 }
4308
4309 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4310}
4311
4312void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4313 ArrayRef<unsigned> Indices = I.getIndices();
4314 const Value *Op0 = I.getOperand(0);
4315 const Value *Op1 = I.getOperand(1);
4316 Type *AggTy = I.getType();
4317 Type *ValTy = Op1->getType();
4318 bool IntoUndef = isa<UndefValue>(Op0);
4319 bool FromUndef = isa<UndefValue>(Op1);
4320
4321 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4322
4323 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4324 SmallVector<EVT, 4> AggValueVTs;
4325 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4326 SmallVector<EVT, 4> ValValueVTs;
4327 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4328
4329 unsigned NumAggValues = AggValueVTs.size();
4330 unsigned NumValValues = ValValueVTs.size();
4331 SmallVector<SDValue, 4> Values(NumAggValues);
4332
4333 // Ignore an insertvalue that produces an empty object
4334 if (!NumAggValues) {
4335 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4336 return;
4337 }
4338
4339 SDValue Agg = getValue(Op0);
4340 unsigned i = 0;
4341 // Copy the beginning value(s) from the original aggregate.
4342 for (; i != LinearIndex; ++i)
4343 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4344 SDValue(Agg.getNode(), Agg.getResNo() + i);
4345 // Copy values from the inserted value(s).
4346 if (NumValValues) {
4347 SDValue Val = getValue(Op1);
4348 for (; i != LinearIndex + NumValValues; ++i)
4349 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4350 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4351 }
4352 // Copy remaining value(s) from the original aggregate.
4353 for (; i != NumAggValues; ++i)
4354 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4355 SDValue(Agg.getNode(), Agg.getResNo() + i);
4356
4358 DAG.getVTList(AggValueVTs), Values));
4359}
4360
4361void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4362 ArrayRef<unsigned> Indices = I.getIndices();
4363 const Value *Op0 = I.getOperand(0);
4364 Type *AggTy = Op0->getType();
4365 Type *ValTy = I.getType();
4366 bool OutOfUndef = isa<UndefValue>(Op0);
4367
4368 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4369
4370 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4371 SmallVector<EVT, 4> ValValueVTs;
4372 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4373
4374 unsigned NumValValues = ValValueVTs.size();
4375
4376 // Ignore a extractvalue that produces an empty object
4377 if (!NumValValues) {
4378 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4379 return;
4380 }
4381
4382 SmallVector<SDValue, 4> Values(NumValValues);
4383
4384 SDValue Agg = getValue(Op0);
4385 // Copy out the selected value(s).
4386 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4387 Values[i - LinearIndex] =
4388 OutOfUndef ?
4389 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4390 SDValue(Agg.getNode(), Agg.getResNo() + i);
4391
4393 DAG.getVTList(ValValueVTs), Values));
4394}
4395
4396void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4397 Value *Op0 = I.getOperand(0);
4398 // Note that the pointer operand may be a vector of pointers. Take the scalar
4399 // element which holds a pointer.
4400 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4401 SDValue N = getValue(Op0);
4402 SDLoc dl = getCurSDLoc();
4403 auto &TLI = DAG.getTargetLoweringInfo();
4404 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4405
4406 // For a vector GEP, keep the prefix scalar as long as possible, then
4407 // convert any scalars encountered after the first vector operand to vectors.
4408 bool IsVectorGEP = I.getType()->isVectorTy();
4409 ElementCount VectorElementCount =
4410 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4412
4414 GTI != E; ++GTI) {
4415 const Value *Idx = GTI.getOperand();
4416 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4417 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4418 if (Field) {
4419 // N = N + Offset
4420 uint64_t Offset =
4421 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4422
4423 // In an inbounds GEP with an offset that is nonnegative even when
4424 // interpreted as signed, assume there is no unsigned overflow.
4425 SDNodeFlags Flags;
4426 if (NW.hasNoUnsignedWrap() ||
4427 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4429 Flags.setInBounds(NW.isInBounds());
4430
4431 N = DAG.getMemBasePlusOffset(
4432 N, DAG.getConstant(Offset, dl, N.getValueType()), dl, Flags);
4433 }
4434 } else {
4435 // IdxSize is the width of the arithmetic according to IR semantics.
4436 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4437 // (and fix up the result later).
4438 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4439 MVT IdxTy = MVT::getIntegerVT(IdxSize);
4440 TypeSize ElementSize =
4441 GTI.getSequentialElementStride(DAG.getDataLayout());
4442 // We intentionally mask away the high bits here; ElementSize may not
4443 // fit in IdxTy.
4444 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(),
4445 /*isSigned=*/false, /*implicitTrunc=*/true);
4446 bool ElementScalable = ElementSize.isScalable();
4447
4448 // If this is a scalar constant or a splat vector of constants,
4449 // handle it quickly.
4450 const auto *C = dyn_cast<Constant>(Idx);
4451 if (C && isa<VectorType>(C->getType()))
4452 C = C->getSplatValue();
4453
4454 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4455 if (CI && CI->isZero())
4456 continue;
4457 if (CI && !ElementScalable) {
4458 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4459 LLVMContext &Context = *DAG.getContext();
4460 SDValue OffsVal;
4461 if (N.getValueType().isVector())
4462 OffsVal = DAG.getConstant(
4463 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4464 else
4465 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4466
4467 // In an inbounds GEP with an offset that is nonnegative even when
4468 // interpreted as signed, assume there is no unsigned overflow.
4469 SDNodeFlags Flags;
4470 if (NW.hasNoUnsignedWrap() ||
4471 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4472 Flags.setNoUnsignedWrap(true);
4473 Flags.setInBounds(NW.isInBounds());
4474
4475 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4476
4477 N = DAG.getMemBasePlusOffset(N, OffsVal, dl, Flags);
4478 continue;
4479 }
4480
4481 // N = N + Idx * ElementMul;
4482 SDValue IdxN = getValue(Idx);
4483
4484 if (IdxN.getValueType().isVector() != N.getValueType().isVector()) {
4485 if (N.getValueType().isVector()) {
4486 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4487 VectorElementCount);
4488 IdxN = DAG.getSplat(VT, dl, IdxN);
4489 } else {
4490 EVT VT =
4491 EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4492 N = DAG.getSplat(VT, dl, N);
4493 }
4494 }
4495
4496 // If the index is smaller or larger than intptr_t, truncate or extend
4497 // it.
4498 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4499
4500 SDNodeFlags ScaleFlags;
4501 // The multiplication of an index by the type size does not wrap the
4502 // pointer index type in a signed sense (mul nsw).
4504
4505 // The multiplication of an index by the type size does not wrap the
4506 // pointer index type in an unsigned sense (mul nuw).
4507 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4508
4509 if (ElementScalable) {
4510 EVT VScaleTy = N.getValueType().getScalarType();
4511 SDValue VScale = DAG.getNode(
4512 ISD::VSCALE, dl, VScaleTy,
4513 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4514 if (N.getValueType().isVector())
4515 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4516 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale,
4517 ScaleFlags);
4518 } else {
4519 // If this is a multiply by a power of two, turn it into a shl
4520 // immediately. This is a very common case.
4521 if (ElementMul != 1) {
4522 if (ElementMul.isPowerOf2()) {
4523 unsigned Amt = ElementMul.logBase2();
4524 IdxN = DAG.getNode(
4525 ISD::SHL, dl, N.getValueType(), IdxN,
4526 DAG.getShiftAmountConstant(Amt, N.getValueType(), dl),
4527 ScaleFlags);
4528 } else {
4529 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4530 IdxN.getValueType());
4531 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale,
4532 ScaleFlags);
4533 }
4534 }
4535 }
4536
4537 // The successive addition of the current address, truncated to the
4538 // pointer index type and interpreted as an unsigned number, and each
4539 // offset, also interpreted as an unsigned number, does not wrap the
4540 // pointer index type (add nuw).
4541 SDNodeFlags AddFlags;
4542 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4543 AddFlags.setInBounds(NW.isInBounds());
4544
4545 N = DAG.getMemBasePlusOffset(N, IdxN, dl, AddFlags);
4546 }
4547 }
4548
4549 if (IsVectorGEP && !N.getValueType().isVector()) {
4550 EVT VT = EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4551 N = DAG.getSplat(VT, dl, N);
4552 }
4553
4554 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4555 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4556 if (IsVectorGEP) {
4557 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4558 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4559 }
4560
4561 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4562 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4563
4564 setValue(&I, N);
4565}
4566
4567void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4568 // If this is a fixed sized alloca in the entry block of the function,
4569 // allocate it statically on the stack.
4570 if (FuncInfo.StaticAllocaMap.count(&I))
4571 return; // getValue will auto-populate this.
4572
4573 SDLoc dl = getCurSDLoc();
4574 Type *Ty = I.getAllocatedType();
4575 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4576 auto &DL = DAG.getDataLayout();
4577 TypeSize TySize = DL.getTypeAllocSize(Ty);
4578 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4579
4580 SDValue AllocSize = getValue(I.getArraySize());
4581
4582 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4583 if (AllocSize.getValueType() != IntPtr)
4584 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4585
4586 if (TySize.isScalable())
4587 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4588 DAG.getVScale(dl, IntPtr,
4589 APInt(IntPtr.getScalarSizeInBits(),
4590 TySize.getKnownMinValue())));
4591 else {
4592 SDValue TySizeValue =
4593 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4594 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4595 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4596 }
4597
4598 // Handle alignment. If the requested alignment is less than or equal to
4599 // the stack alignment, ignore it. If the size is greater than or equal to
4600 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4601 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4602 if (*Alignment <= StackAlign)
4603 Alignment = std::nullopt;
4604
4605 const uint64_t StackAlignMask = StackAlign.value() - 1U;
4606 // Round the size of the allocation up to the stack alignment size
4607 // by add SA-1 to the size. This doesn't overflow because we're computing
4608 // an address inside an alloca.
4609 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4610 DAG.getConstant(StackAlignMask, dl, IntPtr),
4612
4613 // Mask out the low bits for alignment purposes.
4614 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4615 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4616
4617 SDValue Ops[] = {
4618 getRoot(), AllocSize,
4619 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4620 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4621 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4622 setValue(&I, DSA);
4623 DAG.setRoot(DSA.getValue(1));
4624
4625 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4626}
4627
4628static const MDNode *getRangeMetadata(const Instruction &I) {
4629 return I.getMetadata(LLVMContext::MD_range);
4630}
4631
4632static std::optional<ConstantRange> getRange(const Instruction &I) {
4633 if (const auto *CB = dyn_cast<CallBase>(&I))
4634 if (std::optional<ConstantRange> CR = CB->getRange())
4635 return CR;
4636 if (const MDNode *Range = getRangeMetadata(I))
4638 return std::nullopt;
4639}
4640
4641void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4642 if (I.isAtomic())
4643 return visitAtomicLoad(I);
4644
4645 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4646 const Value *SV = I.getOperand(0);
4647 if (TLI.supportSwiftError()) {
4648 // Swifterror values can come from either a function parameter with
4649 // swifterror attribute or an alloca with swifterror attribute.
4650 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4651 if (Arg->hasSwiftErrorAttr())
4652 return visitLoadFromSwiftError(I);
4653 }
4654
4655 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4656 if (Alloca->isSwiftError())
4657 return visitLoadFromSwiftError(I);
4658 }
4659 }
4660
4661 SDValue Ptr = getValue(SV);
4662
4663 Type *Ty = I.getType();
4664 SmallVector<EVT, 4> ValueVTs, MemVTs;
4666 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4667 unsigned NumValues = ValueVTs.size();
4668 if (NumValues == 0)
4669 return;
4670
4671 Align Alignment = I.getAlign();
4672 AAMDNodes AAInfo = I.getAAMetadata();
4673 const MDNode *Ranges = getRangeMetadata(I);
4674 bool isVolatile = I.isVolatile();
4675 MachineMemOperand::Flags MMOFlags =
4676 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4677
4678 SDValue Root;
4679 bool ConstantMemory = false;
4680 if (isVolatile)
4681 // Serialize volatile loads with other side effects.
4682 Root = getRoot();
4683 else if (NumValues > MaxParallelChains)
4684 Root = getMemoryRoot();
4685 else if (BatchAA &&
4686 BatchAA->pointsToConstantMemory(MemoryLocation(
4687 SV,
4688 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4689 AAInfo))) {
4690 // Do not serialize (non-volatile) loads of constant memory with anything.
4691 Root = DAG.getEntryNode();
4692 ConstantMemory = true;
4694 } else {
4695 // Do not serialize non-volatile loads against each other.
4696 Root = DAG.getRoot();
4697 }
4698
4699 SDLoc dl = getCurSDLoc();
4700
4701 if (isVolatile)
4702 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4703
4704 SmallVector<SDValue, 4> Values(NumValues);
4705 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4706
4707 unsigned ChainI = 0;
4708 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4709 // Serializing loads here may result in excessive register pressure, and
4710 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4711 // could recover a bit by hoisting nodes upward in the chain by recognizing
4712 // they are side-effect free or do not alias. The optimizer should really
4713 // avoid this case by converting large object/array copies to llvm.memcpy
4714 // (MaxParallelChains should always remain as failsafe).
4715 if (ChainI == MaxParallelChains) {
4716 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4717 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4718 ArrayRef(Chains.data(), ChainI));
4719 Root = Chain;
4720 ChainI = 0;
4721 }
4722
4723 // TODO: MachinePointerInfo only supports a fixed length offset.
4724 MachinePointerInfo PtrInfo =
4725 !Offsets[i].isScalable() || Offsets[i].isZero()
4726 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4727 : MachinePointerInfo();
4728
4729 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4730 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4731 MMOFlags, AAInfo, Ranges);
4732 Chains[ChainI] = L.getValue(1);
4733
4734 if (MemVTs[i] != ValueVTs[i])
4735 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4736
4737 Values[i] = L;
4738 }
4739
4740 if (!ConstantMemory) {
4741 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4742 ArrayRef(Chains.data(), ChainI));
4743 if (isVolatile)
4744 DAG.setRoot(Chain);
4745 else
4746 PendingLoads.push_back(Chain);
4747 }
4748
4749 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4750 DAG.getVTList(ValueVTs), Values));
4751}
4752
4753void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4754 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4755 "call visitStoreToSwiftError when backend supports swifterror");
4756
4757 SmallVector<EVT, 4> ValueVTs;
4758 SmallVector<uint64_t, 4> Offsets;
4759 const Value *SrcV = I.getOperand(0);
4760 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4761 SrcV->getType(), ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4762 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4763 "expect a single EVT for swifterror");
4764
4765 SDValue Src = getValue(SrcV);
4766 // Create a virtual register, then update the virtual register.
4767 Register VReg =
4768 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4769 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4770 // Chain can be getRoot or getControlRoot.
4771 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4772 SDValue(Src.getNode(), Src.getResNo()));
4773 DAG.setRoot(CopyNode);
4774}
4775
4776void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4777 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4778 "call visitLoadFromSwiftError when backend supports swifterror");
4779
4780 assert(!I.isVolatile() &&
4781 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4782 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4783 "Support volatile, non temporal, invariant for load_from_swift_error");
4784
4785 const Value *SV = I.getOperand(0);
4786 Type *Ty = I.getType();
4787 assert(
4788 (!BatchAA ||
4789 !BatchAA->pointsToConstantMemory(MemoryLocation(
4790 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4791 I.getAAMetadata()))) &&
4792 "load_from_swift_error should not be constant memory");
4793
4794 SmallVector<EVT, 4> ValueVTs;
4795 SmallVector<uint64_t, 4> Offsets;
4796 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4797 ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4798 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4799 "expect a single EVT for swifterror");
4800
4801 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4802 SDValue L = DAG.getCopyFromReg(
4803 getRoot(), getCurSDLoc(),
4804 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4805
4806 setValue(&I, L);
4807}
4808
4809void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4810 if (I.isAtomic())
4811 return visitAtomicStore(I);
4812
4813 const Value *SrcV = I.getOperand(0);
4814 const Value *PtrV = I.getOperand(1);
4815
4816 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4817 if (TLI.supportSwiftError()) {
4818 // Swifterror values can come from either a function parameter with
4819 // swifterror attribute or an alloca with swifterror attribute.
4820 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4821 if (Arg->hasSwiftErrorAttr())
4822 return visitStoreToSwiftError(I);
4823 }
4824
4825 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4826 if (Alloca->isSwiftError())
4827 return visitStoreToSwiftError(I);
4828 }
4829 }
4830
4831 SmallVector<EVT, 4> ValueVTs, MemVTs;
4833 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4834 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4835 unsigned NumValues = ValueVTs.size();
4836 if (NumValues == 0)
4837 return;
4838
4839 // Get the lowered operands. Note that we do this after
4840 // checking if NumResults is zero, because with zero results
4841 // the operands won't have values in the map.
4842 SDValue Src = getValue(SrcV);
4843 SDValue Ptr = getValue(PtrV);
4844
4845 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4846 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4847 SDLoc dl = getCurSDLoc();
4848 Align Alignment = I.getAlign();
4849 AAMDNodes AAInfo = I.getAAMetadata();
4850
4851 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4852
4853 unsigned ChainI = 0;
4854 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4855 // See visitLoad comments.
4856 if (ChainI == MaxParallelChains) {
4857 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4858 ArrayRef(Chains.data(), ChainI));
4859 Root = Chain;
4860 ChainI = 0;
4861 }
4862
4863 // TODO: MachinePointerInfo only supports a fixed length offset.
4864 MachinePointerInfo PtrInfo =
4865 !Offsets[i].isScalable() || Offsets[i].isZero()
4866 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4867 : MachinePointerInfo();
4868
4869 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4870 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4871 if (MemVTs[i] != ValueVTs[i])
4872 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4873 SDValue St =
4874 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4875 Chains[ChainI] = St;
4876 }
4877
4878 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4879 ArrayRef(Chains.data(), ChainI));
4880 setValue(&I, StoreNode);
4881 DAG.setRoot(StoreNode);
4882}
4883
4884void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4885 bool IsCompressing) {
4886 SDLoc sdl = getCurSDLoc();
4887
4888 Value *Src0Operand = I.getArgOperand(0);
4889 Value *PtrOperand = I.getArgOperand(1);
4890 Value *MaskOperand = I.getArgOperand(2);
4891 Align Alignment = I.getParamAlign(1).valueOrOne();
4892
4893 SDValue Ptr = getValue(PtrOperand);
4894 SDValue Src0 = getValue(Src0Operand);
4895 SDValue Mask = getValue(MaskOperand);
4896 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4897
4898 EVT VT = Src0.getValueType();
4899
4900 auto MMOFlags = MachineMemOperand::MOStore;
4901 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4903
4904 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4905 MachinePointerInfo(PtrOperand), MMOFlags,
4906 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4907
4908 const auto &TLI = DAG.getTargetLoweringInfo();
4909 const auto &TTI =
4910 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
4911 SDValue StoreNode =
4912 !IsCompressing && TTI.hasConditionalLoadStoreForType(
4913 I.getArgOperand(0)->getType(), /*IsStore=*/true)
4914 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4915 Mask)
4916 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4917 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4918 IsCompressing);
4919 DAG.setRoot(StoreNode);
4920 setValue(&I, StoreNode);
4921}
4922
4923// Get a uniform base for the Gather/Scatter intrinsic.
4924// The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4925// We try to represent it as a base pointer + vector of indices.
4926// Usually, the vector of pointers comes from a 'getelementptr' instruction.
4927// The first operand of the GEP may be a single pointer or a vector of pointers
4928// Example:
4929// %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4930// or
4931// %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4932// %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4933//
4934// When the first GEP operand is a single pointer - it is the uniform base we
4935// are looking for. If first operand of the GEP is a splat vector - we
4936// extract the splat value and use it as a uniform base.
4937// In all other cases the function returns 'false'.
4938static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4939 SDValue &Scale, SelectionDAGBuilder *SDB,
4940 const BasicBlock *CurBB, uint64_t ElemSize) {
4941 SelectionDAG& DAG = SDB->DAG;
4942 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4943 const DataLayout &DL = DAG.getDataLayout();
4944
4945 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4946
4947 // Handle splat constant pointer.
4948 if (auto *C = dyn_cast<Constant>(Ptr)) {
4949 C = C->getSplatValue();
4950 if (!C)
4951 return false;
4952
4953 Base = SDB->getValue(C);
4954
4955 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4956 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4957 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4958 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4959 return true;
4960 }
4961
4963 if (!GEP || GEP->getParent() != CurBB)
4964 return false;
4965
4966 if (GEP->getNumOperands() != 2)
4967 return false;
4968
4969 const Value *BasePtr = GEP->getPointerOperand();
4970 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4971
4972 // Make sure the base is scalar and the index is a vector.
4973 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4974 return false;
4975
4976 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4977 if (ScaleVal.isScalable())
4978 return false;
4979
4980 // Target may not support the required addressing mode.
4981 if (ScaleVal != 1 &&
4982 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4983 return false;
4984
4985 Base = SDB->getValue(BasePtr);
4986 Index = SDB->getValue(IndexVal);
4987
4988 Scale =
4989 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4990 return true;
4991}
4992
4993void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4994 SDLoc sdl = getCurSDLoc();
4995
4996 // llvm.masked.scatter.*(Src0, Ptrs, Mask)
4997 const Value *Ptr = I.getArgOperand(1);
4998 SDValue Src0 = getValue(I.getArgOperand(0));
4999 SDValue Mask = getValue(I.getArgOperand(2));
5000 EVT VT = Src0.getValueType();
5001 Align Alignment = I.getParamAlign(1).valueOrOne();
5002 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5003
5004 SDValue Base;
5005 SDValue Index;
5006 SDValue Scale;
5007 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5008 I.getParent(), VT.getScalarStoreSize());
5009
5010 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5011 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5012 MachinePointerInfo(AS), MachineMemOperand::MOStore,
5013 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
5014 if (!UniformBase) {
5015 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5016 Index = getValue(Ptr);
5017 Scale =
5018 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5019 }
5020
5021 EVT IdxVT = Index.getValueType();
5022 EVT EltTy = IdxVT.getVectorElementType();
5023 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5024 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5025 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5026 }
5027
5028 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
5029 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
5030 Ops, MMO, ISD::SIGNED_SCALED, false);
5031 DAG.setRoot(Scatter);
5032 setValue(&I, Scatter);
5033}
5034
5035void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
5036 SDLoc sdl = getCurSDLoc();
5037
5038 Value *PtrOperand = I.getArgOperand(0);
5039 Value *MaskOperand = I.getArgOperand(1);
5040 Value *Src0Operand = I.getArgOperand(2);
5041 Align Alignment = I.getParamAlign(0).valueOrOne();
5042
5043 SDValue Ptr = getValue(PtrOperand);
5044 SDValue Src0 = getValue(Src0Operand);
5045 SDValue Mask = getValue(MaskOperand);
5046 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
5047
5048 EVT VT = Src0.getValueType();
5049 AAMDNodes AAInfo = I.getAAMetadata();
5050 const MDNode *Ranges = getRangeMetadata(I);
5051
5052 // Do not serialize masked loads of constant memory with anything.
5053 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
5054 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
5055
5056 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
5057
5058 auto MMOFlags = MachineMemOperand::MOLoad;
5059 if (I.hasMetadata(LLVMContext::MD_nontemporal))
5061
5062 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5063 MachinePointerInfo(PtrOperand), MMOFlags,
5064 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
5065
5066 const auto &TLI = DAG.getTargetLoweringInfo();
5067 const auto &TTI =
5068 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
5069 // The Load/Res may point to different values and both of them are output
5070 // variables.
5071 SDValue Load;
5072 SDValue Res;
5073 if (!IsExpanding && TTI.hasConditionalLoadStoreForType(Src0Operand->getType(),
5074 /*IsStore=*/false))
5075 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
5076 else
5077 Res = Load =
5078 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
5079 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
5080 if (AddToChain)
5081 PendingLoads.push_back(Load.getValue(1));
5082 setValue(&I, Res);
5083}
5084
5085void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5086 SDLoc sdl = getCurSDLoc();
5087
5088 // @llvm.masked.gather.*(Ptrs, Mask, Src0)
5089 const Value *Ptr = I.getArgOperand(0);
5090 SDValue Src0 = getValue(I.getArgOperand(2));
5091 SDValue Mask = getValue(I.getArgOperand(1));
5092
5093 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5094 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5095 Align Alignment = I.getParamAlign(0).valueOrOne();
5096
5097 const MDNode *Ranges = getRangeMetadata(I);
5098
5099 SDValue Root = DAG.getRoot();
5100 SDValue Base;
5101 SDValue Index;
5102 SDValue Scale;
5103 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5104 I.getParent(), VT.getScalarStoreSize());
5105 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5106 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5107 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5108 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5109 Ranges);
5110
5111 if (!UniformBase) {
5112 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5113 Index = getValue(Ptr);
5114 Scale =
5115 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5116 }
5117
5118 EVT IdxVT = Index.getValueType();
5119 EVT EltTy = IdxVT.getVectorElementType();
5120 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5121 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
5122 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5123 }
5124
5125 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5126 SDValue Gather =
5127 DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, Ops, MMO,
5129
5130 PendingLoads.push_back(Gather.getValue(1));
5131 setValue(&I, Gather);
5132}
5133
5134void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5135 SDLoc dl = getCurSDLoc();
5136 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5137 AtomicOrdering FailureOrdering = I.getFailureOrdering();
5138 SyncScope::ID SSID = I.getSyncScopeID();
5139
5140 SDValue InChain = getRoot();
5141
5142 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5143 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5144
5145 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5146 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5147
5148 MachineFunction &MF = DAG.getMachineFunction();
5149 MachineMemOperand *MMO = MF.getMachineMemOperand(
5150 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5151 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
5152 FailureOrdering);
5153
5154 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5155 dl, MemVT, VTs, InChain,
5156 getValue(I.getPointerOperand()),
5157 getValue(I.getCompareOperand()),
5158 getValue(I.getNewValOperand()), MMO);
5159
5160 SDValue OutChain = L.getValue(2);
5161
5162 setValue(&I, L);
5163 DAG.setRoot(OutChain);
5164}
5165
5166void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5167 SDLoc dl = getCurSDLoc();
5169 switch (I.getOperation()) {
5170 default: llvm_unreachable("Unknown atomicrmw operation");
5171 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5172 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
5173 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
5174 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
5175 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5176 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
5177 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
5178 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
5179 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
5180 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5181 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5182 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5183 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5184 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5185 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5187 NT = ISD::ATOMIC_LOAD_FMAXIMUM;
5188 break;
5190 NT = ISD::ATOMIC_LOAD_FMINIMUM;
5191 break;
5193 NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5194 break;
5196 NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5197 break;
5199 NT = ISD::ATOMIC_LOAD_USUB_COND;
5200 break;
5202 NT = ISD::ATOMIC_LOAD_USUB_SAT;
5203 break;
5204 }
5205 AtomicOrdering Ordering = I.getOrdering();
5206 SyncScope::ID SSID = I.getSyncScopeID();
5207
5208 SDValue InChain = getRoot();
5209
5210 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5211 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5212 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5213
5214 MachineFunction &MF = DAG.getMachineFunction();
5215 MachineMemOperand *MMO = MF.getMachineMemOperand(
5216 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5217 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
5218
5219 SDValue L =
5220 DAG.getAtomic(NT, dl, MemVT, InChain,
5221 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5222 MMO);
5223
5224 SDValue OutChain = L.getValue(1);
5225
5226 setValue(&I, L);
5227 DAG.setRoot(OutChain);
5228}
5229
5230void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5231 SDLoc dl = getCurSDLoc();
5232 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5233 SDValue Ops[3];
5234 Ops[0] = getRoot();
5235 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5236 TLI.getFenceOperandTy(DAG.getDataLayout()));
5237 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5238 TLI.getFenceOperandTy(DAG.getDataLayout()));
5239 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5240 setValue(&I, N);
5241 DAG.setRoot(N);
5242}
5243
5244void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5245 SDLoc dl = getCurSDLoc();
5246 AtomicOrdering Order = I.getOrdering();
5247 SyncScope::ID SSID = I.getSyncScopeID();
5248
5249 SDValue InChain = getRoot();
5250
5251 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5252 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5253 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5254
5255 if (!TLI.supportsUnalignedAtomics() &&
5256 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5257 report_fatal_error("Cannot generate unaligned atomic load");
5258
5259 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5260
5261 const MDNode *Ranges = getRangeMetadata(I);
5262 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5263 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5264 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5265
5266 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5267
5268 SDValue Ptr = getValue(I.getPointerOperand());
5269 SDValue L =
5270 DAG.getAtomicLoad(ISD::NON_EXTLOAD, dl, MemVT, MemVT, InChain, Ptr, MMO);
5271
5272 SDValue OutChain = L.getValue(1);
5273 if (MemVT != VT)
5274 L = DAG.getPtrExtOrTrunc(L, dl, VT);
5275
5276 setValue(&I, L);
5277 DAG.setRoot(OutChain);
5278}
5279
5280void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5281 SDLoc dl = getCurSDLoc();
5282
5283 AtomicOrdering Ordering = I.getOrdering();
5284 SyncScope::ID SSID = I.getSyncScopeID();
5285
5286 SDValue InChain = getRoot();
5287
5288 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5289 EVT MemVT =
5290 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5291
5292 if (!TLI.supportsUnalignedAtomics() &&
5293 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5294 report_fatal_error("Cannot generate unaligned atomic store");
5295
5296 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5297
5298 MachineFunction &MF = DAG.getMachineFunction();
5299 MachineMemOperand *MMO = MF.getMachineMemOperand(
5300 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5301 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
5302
5303 SDValue Val = getValue(I.getValueOperand());
5304 if (Val.getValueType() != MemVT)
5305 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5306 SDValue Ptr = getValue(I.getPointerOperand());
5307
5308 SDValue OutChain =
5309 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5310
5311 setValue(&I, OutChain);
5312 DAG.setRoot(OutChain);
5313}
5314
5315/// Check if this intrinsic call depends on the chain (1st return value)
5316/// and if it only *loads* memory.
5317/// Ignore the callsite's attributes. A specific call site may be marked with
5318/// readnone, but the lowering code will expect the chain based on the
5319/// definition.
5320std::pair<bool, bool>
5321SelectionDAGBuilder::getTargetIntrinsicCallProperties(const CallBase &I) {
5322 const Function *F = I.getCalledFunction();
5323 bool HasChain = !F->doesNotAccessMemory();
5324 bool OnlyLoad =
5325 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5326
5327 return {HasChain, OnlyLoad};
5328}
5329
5330SmallVector<SDValue, 8> SelectionDAGBuilder::getTargetIntrinsicOperands(
5331 const CallBase &I, bool HasChain, bool OnlyLoad,
5332 TargetLowering::IntrinsicInfo *TgtMemIntrinsicInfo) {
5333 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5334
5335 // Build the operand list.
5337 if (HasChain) { // If this intrinsic has side-effects, chainify it.
5338 if (OnlyLoad) {
5339 // We don't need to serialize loads against other loads.
5340 Ops.push_back(DAG.getRoot());
5341 } else {
5342 Ops.push_back(getRoot());
5343 }
5344 }
5345
5346 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5347 if (!TgtMemIntrinsicInfo || TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_VOID ||
5348 TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_W_CHAIN)
5349 Ops.push_back(DAG.getTargetConstant(I.getIntrinsicID(), getCurSDLoc(),
5350 TLI.getPointerTy(DAG.getDataLayout())));
5351
5352 // Add all operands of the call to the operand list.
5353 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5354 const Value *Arg = I.getArgOperand(i);
5355 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5356 Ops.push_back(getValue(Arg));
5357 continue;
5358 }
5359
5360 // Use TargetConstant instead of a regular constant for immarg.
5361 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5362 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5363 assert(CI->getBitWidth() <= 64 &&
5364 "large intrinsic immediates not handled");
5365 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5366 } else {
5367 Ops.push_back(
5368 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5369 }
5370 }
5371
5372 if (std::optional<OperandBundleUse> Bundle =
5373 I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5374 Value *Token = Bundle->Inputs[0].get();
5375 SDValue ConvControlToken = getValue(Token);
5376 assert(Ops.back().getValueType() != MVT::Glue &&
5377 "Did not expect another glue node here.");
5378 ConvControlToken =
5379 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5380 Ops.push_back(ConvControlToken);
5381 }
5382
5383 return Ops;
5384}
5385
5386SDVTList SelectionDAGBuilder::getTargetIntrinsicVTList(const CallBase &I,
5387 bool HasChain) {
5388 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5389
5390 SmallVector<EVT, 4> ValueVTs;
5391 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5392
5393 if (HasChain)
5394 ValueVTs.push_back(MVT::Other);
5395
5396 return DAG.getVTList(ValueVTs);
5397}
5398
5399/// Get an INTRINSIC node for a target intrinsic which does not touch memory.
5400SDValue SelectionDAGBuilder::getTargetNonMemIntrinsicNode(
5401 const Type &IntrinsicVT, bool HasChain, ArrayRef<SDValue> Ops,
5402 const SDVTList &VTs) {
5403 if (!HasChain)
5404 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5405 if (!IntrinsicVT.isVoidTy())
5406 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5407 return DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5408}
5409
5410/// Set root, convert return type if necessary and check alignment.
5411SDValue SelectionDAGBuilder::handleTargetIntrinsicRet(const CallBase &I,
5412 bool HasChain,
5413 bool OnlyLoad,
5414 SDValue Result) {
5415 if (HasChain) {
5416 SDValue Chain = Result.getValue(Result.getNode()->getNumValues() - 1);
5417 if (OnlyLoad)
5418 PendingLoads.push_back(Chain);
5419 else
5420 DAG.setRoot(Chain);
5421 }
5422
5423 if (I.getType()->isVoidTy())
5424 return Result;
5425
5426 if (MaybeAlign Alignment = I.getRetAlign(); InsertAssertAlign && Alignment) {
5427 // Insert `assertalign` node if there's an alignment.
5428 Result = DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5429 } else if (!isa<VectorType>(I.getType())) {
5430 Result = lowerRangeToAssertZExt(DAG, I, Result);
5431 }
5432
5433 return Result;
5434}
5435
5436/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5437/// node.
5438void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5439 unsigned Intrinsic) {
5440 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
5441
5442 // Info is set by getTgtMemIntrinsic
5443 TargetLowering::IntrinsicInfo Info;
5444 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5445 bool IsTgtMemIntrinsic =
5446 TLI.getTgtMemIntrinsic(Info, I, DAG.getMachineFunction(), Intrinsic);
5447
5448 SmallVector<SDValue, 8> Ops = getTargetIntrinsicOperands(
5449 I, HasChain, OnlyLoad, IsTgtMemIntrinsic ? &Info : nullptr);
5450 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
5451
5452 // Propagate fast-math-flags from IR to node(s).
5453 SDNodeFlags Flags;
5454 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5455 Flags.copyFMF(*FPMO);
5456 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5457
5458 // Create the node.
5460
5461 // In some cases, custom collection of operands from CallInst I may be needed.
5463 if (IsTgtMemIntrinsic) {
5464 // This is target intrinsic that touches memory
5465 //
5466 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5467 // didn't yield anything useful.
5468 MachinePointerInfo MPI;
5469 if (Info.ptrVal)
5470 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5471 else if (Info.fallbackAddressSpace)
5472 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5473 EVT MemVT = Info.memVT;
5474 LocationSize Size = LocationSize::precise(Info.size);
5475 if (Size.hasValue() && !Size.getValue())
5477 Align Alignment = Info.align.value_or(DAG.getEVTAlign(MemVT));
5478 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5479 MPI, Info.flags, Size, Alignment, I.getAAMetadata(), /*Ranges=*/nullptr,
5480 Info.ssid, Info.order, Info.failureOrder);
5481 Result =
5482 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, MemVT, MMO);
5483 } else {
5484 Result = getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
5485 }
5486
5487 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
5488
5489 setValue(&I, Result);
5490}
5491
5492/// GetSignificand - Get the significand and build it into a floating-point
5493/// number with exponent of 1:
5494///
5495/// Op = (Op & 0x007fffff) | 0x3f800000;
5496///
5497/// where Op is the hexadecimal representation of floating point value.
5499 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5500 DAG.getConstant(0x007fffff, dl, MVT::i32));
5501 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5502 DAG.getConstant(0x3f800000, dl, MVT::i32));
5503 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5504}
5505
5506/// GetExponent - Get the exponent:
5507///
5508/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5509///
5510/// where Op is the hexadecimal representation of floating point value.
5512 const TargetLowering &TLI, const SDLoc &dl) {
5513 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5514 DAG.getConstant(0x7f800000, dl, MVT::i32));
5515 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
5516 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5517 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5518 DAG.getConstant(127, dl, MVT::i32));
5519 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5520}
5521
5522/// getF32Constant - Get 32-bit floating point constant.
5524 const SDLoc &dl) {
5525 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5526 MVT::f32);
5527}
5528
5530 SelectionDAG &DAG) {
5531 // TODO: What fast-math-flags should be set on the floating-point nodes?
5532
5533 // IntegerPartOfX = ((int32_t)(t0);
5534 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5535
5536 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
5537 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5538 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5539
5540 // IntegerPartOfX <<= 23;
5541 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5542 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5543
5544 SDValue TwoToFractionalPartOfX;
5545 if (LimitFloatPrecision <= 6) {
5546 // For floating-point precision of 6:
5547 //
5548 // TwoToFractionalPartOfX =
5549 // 0.997535578f +
5550 // (0.735607626f + 0.252464424f * x) * x;
5551 //
5552 // error 0.0144103317, which is 6 bits
5553 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5554 getF32Constant(DAG, 0x3e814304, dl));
5555 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5556 getF32Constant(DAG, 0x3f3c50c8, dl));
5557 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5558 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5559 getF32Constant(DAG, 0x3f7f5e7e, dl));
5560 } else if (LimitFloatPrecision <= 12) {
5561 // For floating-point precision of 12:
5562 //
5563 // TwoToFractionalPartOfX =
5564 // 0.999892986f +
5565 // (0.696457318f +
5566 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
5567 //
5568 // error 0.000107046256, which is 13 to 14 bits
5569 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5570 getF32Constant(DAG, 0x3da235e3, dl));
5571 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5572 getF32Constant(DAG, 0x3e65b8f3, dl));
5573 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5574 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5575 getF32Constant(DAG, 0x3f324b07, dl));
5576 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5577 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5578 getF32Constant(DAG, 0x3f7ff8fd, dl));
5579 } else { // LimitFloatPrecision <= 18
5580 // For floating-point precision of 18:
5581 //
5582 // TwoToFractionalPartOfX =
5583 // 0.999999982f +
5584 // (0.693148872f +
5585 // (0.240227044f +
5586 // (0.554906021e-1f +
5587 // (0.961591928e-2f +
5588 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5589 // error 2.47208000*10^(-7), which is better than 18 bits
5590 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5591 getF32Constant(DAG, 0x3924b03e, dl));
5592 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5593 getF32Constant(DAG, 0x3ab24b87, dl));
5594 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5595 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5596 getF32Constant(DAG, 0x3c1d8c17, dl));
5597 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5598 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5599 getF32Constant(DAG, 0x3d634a1d, dl));
5600 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5601 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5602 getF32Constant(DAG, 0x3e75fe14, dl));
5603 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5604 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5605 getF32Constant(DAG, 0x3f317234, dl));
5606 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5607 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5608 getF32Constant(DAG, 0x3f800000, dl));
5609 }
5610
5611 // Add the exponent into the result in integer domain.
5612 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5613 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5614 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5615}
5616
5617/// expandExp - Lower an exp intrinsic. Handles the special sequences for
5618/// limited-precision mode.
5620 const TargetLowering &TLI, SDNodeFlags Flags) {
5621 if (Op.getValueType() == MVT::f32 &&
5623
5624 // Put the exponent in the right bit position for later addition to the
5625 // final result:
5626 //
5627 // t0 = Op * log2(e)
5628
5629 // TODO: What fast-math-flags should be set here?
5630 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5631 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5632 return getLimitedPrecisionExp2(t0, dl, DAG);
5633 }
5634
5635 // No special expansion.
5636 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5637}
5638
5639/// expandLog - Lower a log intrinsic. Handles the special sequences for
5640/// limited-precision mode.
5642 const TargetLowering &TLI, SDNodeFlags Flags) {
5643 // TODO: What fast-math-flags should be set on the floating-point nodes?
5644
5645 if (Op.getValueType() == MVT::f32 &&
5647 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5648
5649 // Scale the exponent by log(2).
5650 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5651 SDValue LogOfExponent =
5652 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5653 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5654
5655 // Get the significand and build it into a floating-point number with
5656 // exponent of 1.
5657 SDValue X = GetSignificand(DAG, Op1, dl);
5658
5659 SDValue LogOfMantissa;
5660 if (LimitFloatPrecision <= 6) {
5661 // For floating-point precision of 6:
5662 //
5663 // LogofMantissa =
5664 // -1.1609546f +
5665 // (1.4034025f - 0.23903021f * x) * x;
5666 //
5667 // error 0.0034276066, which is better than 8 bits
5668 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5669 getF32Constant(DAG, 0xbe74c456, dl));
5670 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5671 getF32Constant(DAG, 0x3fb3a2b1, dl));
5672 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5673 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5674 getF32Constant(DAG, 0x3f949a29, dl));
5675 } else if (LimitFloatPrecision <= 12) {
5676 // For floating-point precision of 12:
5677 //
5678 // LogOfMantissa =
5679 // -1.7417939f +
5680 // (2.8212026f +
5681 // (-1.4699568f +
5682 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5683 //
5684 // error 0.000061011436, which is 14 bits
5685 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5686 getF32Constant(DAG, 0xbd67b6d6, dl));
5687 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5688 getF32Constant(DAG, 0x3ee4f4b8, dl));
5689 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5690 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5691 getF32Constant(DAG, 0x3fbc278b, dl));
5692 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5693 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5694 getF32Constant(DAG, 0x40348e95, dl));
5695 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5696 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5697 getF32Constant(DAG, 0x3fdef31a, dl));
5698 } else { // LimitFloatPrecision <= 18
5699 // For floating-point precision of 18:
5700 //
5701 // LogOfMantissa =
5702 // -2.1072184f +
5703 // (4.2372794f +
5704 // (-3.7029485f +
5705 // (2.2781945f +
5706 // (-0.87823314f +
5707 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5708 //
5709 // error 0.0000023660568, which is better than 18 bits
5710 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5711 getF32Constant(DAG, 0xbc91e5ac, dl));
5712 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5713 getF32Constant(DAG, 0x3e4350aa, dl));
5714 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5715 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5716 getF32Constant(DAG, 0x3f60d3e3, dl));
5717 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5718 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5719 getF32Constant(DAG, 0x4011cdf0, dl));
5720 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5721 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5722 getF32Constant(DAG, 0x406cfd1c, dl));
5723 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5724 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5725 getF32Constant(DAG, 0x408797cb, dl));
5726 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5727 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5728 getF32Constant(DAG, 0x4006dcab, dl));
5729 }
5730
5731 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5732 }
5733
5734 // No special expansion.
5735 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5736}
5737
5738/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5739/// limited-precision mode.
5741 const TargetLowering &TLI, SDNodeFlags Flags) {
5742 // TODO: What fast-math-flags should be set on the floating-point nodes?
5743
5744 if (Op.getValueType() == MVT::f32 &&
5746 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5747
5748 // Get the exponent.
5749 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5750
5751 // Get the significand and build it into a floating-point number with
5752 // exponent of 1.
5753 SDValue X = GetSignificand(DAG, Op1, dl);
5754
5755 // Different possible minimax approximations of significand in
5756 // floating-point for various degrees of accuracy over [1,2].
5757 SDValue Log2ofMantissa;
5758 if (LimitFloatPrecision <= 6) {
5759 // For floating-point precision of 6:
5760 //
5761 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5762 //
5763 // error 0.0049451742, which is more than 7 bits
5764 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5765 getF32Constant(DAG, 0xbeb08fe0, dl));
5766 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5767 getF32Constant(DAG, 0x40019463, dl));
5768 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5769 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5770 getF32Constant(DAG, 0x3fd6633d, dl));
5771 } else if (LimitFloatPrecision <= 12) {
5772 // For floating-point precision of 12:
5773 //
5774 // Log2ofMantissa =
5775 // -2.51285454f +
5776 // (4.07009056f +
5777 // (-2.12067489f +
5778 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5779 //
5780 // error 0.0000876136000, which is better than 13 bits
5781 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5782 getF32Constant(DAG, 0xbda7262e, dl));
5783 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5784 getF32Constant(DAG, 0x3f25280b, dl));
5785 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5786 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5787 getF32Constant(DAG, 0x4007b923, dl));
5788 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5789 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5790 getF32Constant(DAG, 0x40823e2f, dl));
5791 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5792 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5793 getF32Constant(DAG, 0x4020d29c, dl));
5794 } else { // LimitFloatPrecision <= 18
5795 // For floating-point precision of 18:
5796 //
5797 // Log2ofMantissa =
5798 // -3.0400495f +
5799 // (6.1129976f +
5800 // (-5.3420409f +
5801 // (3.2865683f +
5802 // (-1.2669343f +
5803 // (0.27515199f -
5804 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5805 //
5806 // error 0.0000018516, which is better than 18 bits
5807 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5808 getF32Constant(DAG, 0xbcd2769e, dl));
5809 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5810 getF32Constant(DAG, 0x3e8ce0b9, dl));
5811 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5812 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5813 getF32Constant(DAG, 0x3fa22ae7, dl));
5814 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5815 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5816 getF32Constant(DAG, 0x40525723, dl));
5817 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5818 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5819 getF32Constant(DAG, 0x40aaf200, dl));
5820 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5821 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5822 getF32Constant(DAG, 0x40c39dad, dl));
5823 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5824 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5825 getF32Constant(DAG, 0x4042902c, dl));
5826 }
5827
5828 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5829 }
5830
5831 // No special expansion.
5832 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5833}
5834
5835/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5836/// limited-precision mode.
5838 const TargetLowering &TLI, SDNodeFlags Flags) {
5839 // TODO: What fast-math-flags should be set on the floating-point nodes?
5840
5841 if (Op.getValueType() == MVT::f32 &&
5843 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5844
5845 // Scale the exponent by log10(2) [0.30102999f].
5846 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5847 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5848 getF32Constant(DAG, 0x3e9a209a, dl));
5849
5850 // Get the significand and build it into a floating-point number with
5851 // exponent of 1.
5852 SDValue X = GetSignificand(DAG, Op1, dl);
5853
5854 SDValue Log10ofMantissa;
5855 if (LimitFloatPrecision <= 6) {
5856 // For floating-point precision of 6:
5857 //
5858 // Log10ofMantissa =
5859 // -0.50419619f +
5860 // (0.60948995f - 0.10380950f * x) * x;
5861 //
5862 // error 0.0014886165, which is 6 bits
5863 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5864 getF32Constant(DAG, 0xbdd49a13, dl));
5865 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5866 getF32Constant(DAG, 0x3f1c0789, dl));
5867 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5868 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5869 getF32Constant(DAG, 0x3f011300, dl));
5870 } else if (LimitFloatPrecision <= 12) {
5871 // For floating-point precision of 12:
5872 //
5873 // Log10ofMantissa =
5874 // -0.64831180f +
5875 // (0.91751397f +
5876 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5877 //
5878 // error 0.00019228036, which is better than 12 bits
5879 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5880 getF32Constant(DAG, 0x3d431f31, dl));
5881 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5882 getF32Constant(DAG, 0x3ea21fb2, dl));
5883 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5884 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5885 getF32Constant(DAG, 0x3f6ae232, dl));
5886 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5887 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5888 getF32Constant(DAG, 0x3f25f7c3, dl));
5889 } else { // LimitFloatPrecision <= 18
5890 // For floating-point precision of 18:
5891 //
5892 // Log10ofMantissa =
5893 // -0.84299375f +
5894 // (1.5327582f +
5895 // (-1.0688956f +
5896 // (0.49102474f +
5897 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5898 //
5899 // error 0.0000037995730, which is better than 18 bits
5900 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5901 getF32Constant(DAG, 0x3c5d51ce, dl));
5902 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5903 getF32Constant(DAG, 0x3e00685a, dl));
5904 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5905 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5906 getF32Constant(DAG, 0x3efb6798, dl));
5907 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5908 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5909 getF32Constant(DAG, 0x3f88d192, dl));
5910 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5911 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5912 getF32Constant(DAG, 0x3fc4316c, dl));
5913 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5914 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5915 getF32Constant(DAG, 0x3f57ce70, dl));
5916 }
5917
5918 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5919 }
5920
5921 // No special expansion.
5922 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5923}
5924
5925/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5926/// limited-precision mode.
5928 const TargetLowering &TLI, SDNodeFlags Flags) {
5929 if (Op.getValueType() == MVT::f32 &&
5931 return getLimitedPrecisionExp2(Op, dl, DAG);
5932
5933 // No special expansion.
5934 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5935}
5936
5937/// visitPow - Lower a pow intrinsic. Handles the special sequences for
5938/// limited-precision mode with x == 10.0f.
5940 SelectionDAG &DAG, const TargetLowering &TLI,
5941 SDNodeFlags Flags) {
5942 bool IsExp10 = false;
5943 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5946 APFloat Ten(10.0f);
5947 IsExp10 = LHSC->isExactlyValue(Ten);
5948 }
5949 }
5950
5951 // TODO: What fast-math-flags should be set on the FMUL node?
5952 if (IsExp10) {
5953 // Put the exponent in the right bit position for later addition to the
5954 // final result:
5955 //
5956 // #define LOG2OF10 3.3219281f
5957 // t0 = Op * LOG2OF10;
5958 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5959 getF32Constant(DAG, 0x40549a78, dl));
5960 return getLimitedPrecisionExp2(t0, dl, DAG);
5961 }
5962
5963 // No special expansion.
5964 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5965}
5966
5967/// ExpandPowI - Expand a llvm.powi intrinsic.
5969 SelectionDAG &DAG) {
5970 // If RHS is a constant, we can expand this out to a multiplication tree if
5971 // it's beneficial on the target, otherwise we end up lowering to a call to
5972 // __powidf2 (for example).
5974 unsigned Val = RHSC->getSExtValue();
5975
5976 // powi(x, 0) -> 1.0
5977 if (Val == 0)
5978 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5979
5981 Val, DAG.shouldOptForSize())) {
5982 // Get the exponent as a positive value.
5983 if ((int)Val < 0)
5984 Val = -Val;
5985 // We use the simple binary decomposition method to generate the multiply
5986 // sequence. There are more optimal ways to do this (for example,
5987 // powi(x,15) generates one more multiply than it should), but this has
5988 // the benefit of being both really simple and much better than a libcall.
5989 SDValue Res; // Logically starts equal to 1.0
5990 SDValue CurSquare = LHS;
5991 // TODO: Intrinsics should have fast-math-flags that propagate to these
5992 // nodes.
5993 while (Val) {
5994 if (Val & 1) {
5995 if (Res.getNode())
5996 Res =
5997 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5998 else
5999 Res = CurSquare; // 1.0*CurSquare.
6000 }
6001
6002 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
6003 CurSquare, CurSquare);
6004 Val >>= 1;
6005 }
6006
6007 // If the original was negative, invert the result, producing 1/(x*x*x).
6008 if (RHSC->getSExtValue() < 0)
6009 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
6010 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
6011 return Res;
6012 }
6013 }
6014
6015 // Otherwise, expand to a libcall.
6016 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
6017}
6018
6019static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
6020 SDValue LHS, SDValue RHS, SDValue Scale,
6021 SelectionDAG &DAG, const TargetLowering &TLI) {
6022 EVT VT = LHS.getValueType();
6023 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
6024 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
6025 LLVMContext &Ctx = *DAG.getContext();
6026
6027 // If the type is legal but the operation isn't, this node might survive all
6028 // the way to operation legalization. If we end up there and we do not have
6029 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
6030 // node.
6031
6032 // Coax the legalizer into expanding the node during type legalization instead
6033 // by bumping the size by one bit. This will force it to Promote, enabling the
6034 // early expansion and avoiding the need to expand later.
6035
6036 // We don't have to do this if Scale is 0; that can always be expanded, unless
6037 // it's a saturating signed operation. Those can experience true integer
6038 // division overflow, a case which we must avoid.
6039
6040 // FIXME: We wouldn't have to do this (or any of the early
6041 // expansion/promotion) if it was possible to expand a libcall of an
6042 // illegal type during operation legalization. But it's not, so things
6043 // get a bit hacky.
6044 unsigned ScaleInt = Scale->getAsZExtVal();
6045 if ((ScaleInt > 0 || (Saturating && Signed)) &&
6046 (TLI.isTypeLegal(VT) ||
6047 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
6049 Opcode, VT, ScaleInt);
6050 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
6051 EVT PromVT;
6052 if (VT.isScalarInteger())
6053 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
6054 else if (VT.isVector()) {
6055 PromVT = VT.getVectorElementType();
6056 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
6057 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
6058 } else
6059 llvm_unreachable("Wrong VT for DIVFIX?");
6060 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
6061 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
6062 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
6063 // For saturating operations, we need to shift up the LHS to get the
6064 // proper saturation width, and then shift down again afterwards.
6065 if (Saturating)
6066 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
6067 DAG.getConstant(1, DL, ShiftTy));
6068 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
6069 if (Saturating)
6070 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
6071 DAG.getConstant(1, DL, ShiftTy));
6072 return DAG.getZExtOrTrunc(Res, DL, VT);
6073 }
6074 }
6075
6076 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
6077}
6078
6079// getUnderlyingArgRegs - Find underlying registers used for a truncated,
6080// bitcasted, or split argument. Returns a list of <Register, size in bits>
6081static void
6082getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs,
6083 const SDValue &N) {
6084 switch (N.getOpcode()) {
6085 case ISD::CopyFromReg: {
6086 SDValue Op = N.getOperand(1);
6087 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
6088 Op.getValueType().getSizeInBits());
6089 return;
6090 }
6091 case ISD::BITCAST:
6092 case ISD::AssertZext:
6093 case ISD::AssertSext:
6094 case ISD::TRUNCATE:
6095 getUnderlyingArgRegs(Regs, N.getOperand(0));
6096 return;
6097 case ISD::BUILD_PAIR:
6098 case ISD::BUILD_VECTOR:
6100 for (SDValue Op : N->op_values())
6101 getUnderlyingArgRegs(Regs, Op);
6102 return;
6103 default:
6104 return;
6105 }
6106}
6107
6108/// If the DbgValueInst is a dbg_value of a function argument, create the
6109/// corresponding DBG_VALUE machine instruction for it now. At the end of
6110/// instruction selection, they will be inserted to the entry BB.
6111/// We don't currently support this for variadic dbg_values, as they shouldn't
6112/// appear for function arguments or in the prologue.
6113bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6114 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
6115 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
6116 const Argument *Arg = dyn_cast<Argument>(V);
6117 if (!Arg)
6118 return false;
6119
6120 MachineFunction &MF = DAG.getMachineFunction();
6121 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6122
6123 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
6124 // we've been asked to pursue.
6125 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
6126 bool Indirect) {
6127 if (Reg.isVirtual() && MF.useDebugInstrRef()) {
6128 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
6129 // pointing at the VReg, which will be patched up later.
6130 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
6132 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
6133 /* isKill */ false, /* isDead */ false,
6134 /* isUndef */ false, /* isEarlyClobber */ false,
6135 /* SubReg */ 0, /* isDebug */ true)});
6136
6137 auto *NewDIExpr = FragExpr;
6138 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6139 // the DIExpression.
6140 if (Indirect)
6141 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6143 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6144 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6145 } else {
6146 // Create a completely standard DBG_VALUE.
6147 auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6148 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6149 }
6150 };
6151
6152 if (Kind == FuncArgumentDbgValueKind::Value) {
6153 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6154 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6155 // the entry block.
6156 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6157 if (!IsInEntryBlock)
6158 return false;
6159
6160 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6161 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6162 // variable that also is a param.
6163 //
6164 // Although, if we are at the top of the entry block already, we can still
6165 // emit using ArgDbgValue. This might catch some situations when the
6166 // dbg.value refers to an argument that isn't used in the entry block, so
6167 // any CopyToReg node would be optimized out and the only way to express
6168 // this DBG_VALUE is by using the physical reg (or FI) as done in this
6169 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
6170 // we should only emit as ArgDbgValue if the Variable is an argument to the
6171 // current function, and the dbg.value intrinsic is found in the entry
6172 // block.
6173 bool VariableIsFunctionInputArg = Variable->isParameter() &&
6174 !DL->getInlinedAt();
6175 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6176 if (!IsInPrologue && !VariableIsFunctionInputArg)
6177 return false;
6178
6179 // Here we assume that a function argument on IR level only can be used to
6180 // describe one input parameter on source level. If we for example have
6181 // source code like this
6182 //
6183 // struct A { long x, y; };
6184 // void foo(struct A a, long b) {
6185 // ...
6186 // b = a.x;
6187 // ...
6188 // }
6189 //
6190 // and IR like this
6191 //
6192 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
6193 // entry:
6194 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6195 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6196 // call void @llvm.dbg.value(metadata i32 %b, "b",
6197 // ...
6198 // call void @llvm.dbg.value(metadata i32 %a1, "b"
6199 // ...
6200 //
6201 // then the last dbg.value is describing a parameter "b" using a value that
6202 // is an argument. But since we already has used %a1 to describe a parameter
6203 // we should not handle that last dbg.value here (that would result in an
6204 // incorrect hoisting of the DBG_VALUE to the function entry).
6205 // Notice that we allow one dbg.value per IR level argument, to accommodate
6206 // for the situation with fragments above.
6207 // If there is no node for the value being handled, we return true to skip
6208 // the normal generation of debug info, as it would kill existing debug
6209 // info for the parameter in case of duplicates.
6210 if (VariableIsFunctionInputArg) {
6211 unsigned ArgNo = Arg->getArgNo();
6212 if (ArgNo >= FuncInfo.DescribedArgs.size())
6213 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6214 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6215 return !NodeMap[V].getNode();
6216 FuncInfo.DescribedArgs.set(ArgNo);
6217 }
6218 }
6219
6220 bool IsIndirect = false;
6221 std::optional<MachineOperand> Op;
6222 // Some arguments' frame index is recorded during argument lowering.
6223 int FI = FuncInfo.getArgumentFrameIndex(Arg);
6224 if (FI != std::numeric_limits<int>::max())
6226
6228 if (!Op && N.getNode()) {
6229 getUnderlyingArgRegs(ArgRegsAndSizes, N);
6230 Register Reg;
6231 if (ArgRegsAndSizes.size() == 1)
6232 Reg = ArgRegsAndSizes.front().first;
6233
6234 if (Reg && Reg.isVirtual()) {
6235 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6236 Register PR = RegInfo.getLiveInPhysReg(Reg);
6237 if (PR)
6238 Reg = PR;
6239 }
6240 if (Reg) {
6242 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6243 }
6244 }
6245
6246 if (!Op && N.getNode()) {
6247 // Check if frame index is available.
6248 SDValue LCandidate = peekThroughBitcasts(N);
6249 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6250 if (FrameIndexSDNode *FINode =
6251 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6252 Op = MachineOperand::CreateFI(FINode->getIndex());
6253 }
6254
6255 if (!Op) {
6256 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6257 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>>
6258 SplitRegs) {
6259 unsigned Offset = 0;
6260 for (const auto &RegAndSize : SplitRegs) {
6261 // If the expression is already a fragment, the current register
6262 // offset+size might extend beyond the fragment. In this case, only
6263 // the register bits that are inside the fragment are relevant.
6264 int RegFragmentSizeInBits = RegAndSize.second;
6265 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6266 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6267 // The register is entirely outside the expression fragment,
6268 // so is irrelevant for debug info.
6269 if (Offset >= ExprFragmentSizeInBits)
6270 break;
6271 // The register is partially outside the expression fragment, only
6272 // the low bits within the fragment are relevant for debug info.
6273 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6274 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6275 }
6276 }
6277
6278 auto FragmentExpr = DIExpression::createFragmentExpression(
6279 Expr, Offset, RegFragmentSizeInBits);
6280 Offset += RegAndSize.second;
6281 // If a valid fragment expression cannot be created, the variable's
6282 // correct value cannot be determined and so it is set as poison.
6283 if (!FragmentExpr) {
6284 SDDbgValue *SDV = DAG.getConstantDbgValue(
6285 Variable, Expr, PoisonValue::get(V->getType()), DL, SDNodeOrder);
6286 DAG.AddDbgValue(SDV, false);
6287 continue;
6288 }
6289 MachineInstr *NewMI =
6290 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6291 Kind != FuncArgumentDbgValueKind::Value);
6292 FuncInfo.ArgDbgValues.push_back(NewMI);
6293 }
6294 };
6295
6296 // Check if ValueMap has reg number.
6298 VMI = FuncInfo.ValueMap.find(V);
6299 if (VMI != FuncInfo.ValueMap.end()) {
6300 const auto &TLI = DAG.getTargetLoweringInfo();
6301 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6302 V->getType(), std::nullopt);
6303 if (RFV.occupiesMultipleRegs()) {
6304 splitMultiRegDbgValue(RFV.getRegsAndSizes());
6305 return true;
6306 }
6307
6308 Op = MachineOperand::CreateReg(VMI->second, false);
6309 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6310 } else if (ArgRegsAndSizes.size() > 1) {
6311 // This was split due to the calling convention, and no virtual register
6312 // mapping exists for the value.
6313 splitMultiRegDbgValue(ArgRegsAndSizes);
6314 return true;
6315 }
6316 }
6317
6318 if (!Op)
6319 return false;
6320
6321 assert(Variable->isValidLocationForIntrinsic(DL) &&
6322 "Expected inlined-at fields to agree");
6323 MachineInstr *NewMI = nullptr;
6324
6325 if (Op->isReg())
6326 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6327 else
6328 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6329 Variable, Expr);
6330
6331 // Otherwise, use ArgDbgValues.
6332 FuncInfo.ArgDbgValues.push_back(NewMI);
6333 return true;
6334}
6335
6336/// Return the appropriate SDDbgValue based on N.
6337SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6338 DILocalVariable *Variable,
6339 DIExpression *Expr,
6340 const DebugLoc &dl,
6341 unsigned DbgSDNodeOrder) {
6342 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6343 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6344 // stack slot locations.
6345 //
6346 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6347 // debug values here after optimization:
6348 //
6349 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
6350 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6351 //
6352 // Both describe the direct values of their associated variables.
6353 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6354 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6355 }
6356 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6357 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6358}
6359
6360static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6361 switch (Intrinsic) {
6362 case Intrinsic::smul_fix:
6363 return ISD::SMULFIX;
6364 case Intrinsic::umul_fix:
6365 return ISD::UMULFIX;
6366 case Intrinsic::smul_fix_sat:
6367 return ISD::SMULFIXSAT;
6368 case Intrinsic::umul_fix_sat:
6369 return ISD::UMULFIXSAT;
6370 case Intrinsic::sdiv_fix:
6371 return ISD::SDIVFIX;
6372 case Intrinsic::udiv_fix:
6373 return ISD::UDIVFIX;
6374 case Intrinsic::sdiv_fix_sat:
6375 return ISD::SDIVFIXSAT;
6376 case Intrinsic::udiv_fix_sat:
6377 return ISD::UDIVFIXSAT;
6378 default:
6379 llvm_unreachable("Unhandled fixed point intrinsic");
6380 }
6381}
6382
6383/// Given a @llvm.call.preallocated.setup, return the corresponding
6384/// preallocated call.
6385static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6386 assert(cast<CallBase>(PreallocatedSetup)
6388 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6389 "expected call_preallocated_setup Value");
6390 for (const auto *U : PreallocatedSetup->users()) {
6391 auto *UseCall = cast<CallBase>(U);
6392 const Function *Fn = UseCall->getCalledFunction();
6393 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6394 return UseCall;
6395 }
6396 }
6397 llvm_unreachable("expected corresponding call to preallocated setup/arg");
6398}
6399
6400/// If DI is a debug value with an EntryValue expression, lower it using the
6401/// corresponding physical register of the associated Argument value
6402/// (guaranteed to exist by the verifier).
6403bool SelectionDAGBuilder::visitEntryValueDbgValue(
6404 ArrayRef<const Value *> Values, DILocalVariable *Variable,
6405 DIExpression *Expr, DebugLoc DbgLoc) {
6406 if (!Expr->isEntryValue() || !hasSingleElement(Values))
6407 return false;
6408
6409 // These properties are guaranteed by the verifier.
6410 const Argument *Arg = cast<Argument>(Values[0]);
6411 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6412
6413 auto ArgIt = FuncInfo.ValueMap.find(Arg);
6414 if (ArgIt == FuncInfo.ValueMap.end()) {
6415 LLVM_DEBUG(
6416 dbgs() << "Dropping dbg.value: expression is entry_value but "
6417 "couldn't find an associated register for the Argument\n");
6418 return true;
6419 }
6420 Register ArgVReg = ArgIt->getSecond();
6421
6422 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6423 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6424 SDDbgValue *SDV = DAG.getVRegDbgValue(
6425 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6426 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6427 return true;
6428 }
6429 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6430 "couldn't find a physical register\n");
6431 return true;
6432}
6433
6434/// Lower the call to the specified intrinsic function.
6435void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6436 unsigned Intrinsic) {
6437 SDLoc sdl = getCurSDLoc();
6438 switch (Intrinsic) {
6439 case Intrinsic::experimental_convergence_anchor:
6440 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6441 break;
6442 case Intrinsic::experimental_convergence_entry:
6443 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6444 break;
6445 case Intrinsic::experimental_convergence_loop: {
6446 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6447 auto *Token = Bundle->Inputs[0].get();
6448 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6449 getValue(Token)));
6450 break;
6451 }
6452 }
6453}
6454
6455void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6456 unsigned IntrinsicID) {
6457 // For now, we're only lowering an 'add' histogram.
6458 // We can add others later, e.g. saturating adds, min/max.
6459 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6460 "Tried to lower unsupported histogram type");
6461 SDLoc sdl = getCurSDLoc();
6462 Value *Ptr = I.getOperand(0);
6463 SDValue Inc = getValue(I.getOperand(1));
6464 SDValue Mask = getValue(I.getOperand(2));
6465
6466 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6467 DataLayout TargetDL = DAG.getDataLayout();
6468 EVT VT = Inc.getValueType();
6469 Align Alignment = DAG.getEVTAlign(VT);
6470
6471 const MDNode *Ranges = getRangeMetadata(I);
6472
6473 SDValue Root = DAG.getRoot();
6474 SDValue Base;
6475 SDValue Index;
6476 SDValue Scale;
6477 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
6478 I.getParent(), VT.getScalarStoreSize());
6479
6480 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6481
6482 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6483 MachinePointerInfo(AS),
6485 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6486
6487 if (!UniformBase) {
6488 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6489 Index = getValue(Ptr);
6490 Scale =
6491 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6492 }
6493
6494 EVT IdxVT = Index.getValueType();
6495 EVT EltTy = IdxVT.getVectorElementType();
6496 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6497 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
6498 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6499 }
6500
6501 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6502
6503 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6504 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6505 Ops, MMO, ISD::SIGNED_SCALED);
6506
6507 setValue(&I, Histogram);
6508 DAG.setRoot(Histogram);
6509}
6510
6511void SelectionDAGBuilder::visitVectorExtractLastActive(const CallInst &I,
6512 unsigned Intrinsic) {
6513 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6514 "Tried lowering invalid vector extract last");
6515 SDLoc sdl = getCurSDLoc();
6516 const DataLayout &Layout = DAG.getDataLayout();
6517 SDValue Data = getValue(I.getOperand(0));
6518 SDValue Mask = getValue(I.getOperand(1));
6519
6520 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6521 EVT ResVT = TLI.getValueType(Layout, I.getType());
6522
6523 EVT ExtVT = TLI.getVectorIdxTy(Layout);
6524 SDValue Idx = DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask);
6525 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, ResVT, Data, Idx);
6526
6527 Value *Default = I.getOperand(2);
6529 SDValue PassThru = getValue(Default);
6530 EVT BoolVT = Mask.getValueType().getScalarType();
6531 SDValue AnyActive = DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask);
6532 Result = DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6533 }
6534
6535 setValue(&I, Result);
6536}
6537
6538/// Lower the call to the specified intrinsic function.
6539void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6540 unsigned Intrinsic) {
6541 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6542 SDLoc sdl = getCurSDLoc();
6543 DebugLoc dl = getCurDebugLoc();
6544 SDValue Res;
6545
6546 SDNodeFlags Flags;
6547 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6548 Flags.copyFMF(*FPOp);
6549
6550 switch (Intrinsic) {
6551 default:
6552 // By default, turn this into a target intrinsic node.
6553 visitTargetIntrinsic(I, Intrinsic);
6554 return;
6555 case Intrinsic::vscale: {
6556 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6557 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6558 return;
6559 }
6560 case Intrinsic::vastart: visitVAStart(I); return;
6561 case Intrinsic::vaend: visitVAEnd(I); return;
6562 case Intrinsic::vacopy: visitVACopy(I); return;
6563 case Intrinsic::returnaddress:
6564 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6565 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6566 getValue(I.getArgOperand(0))));
6567 return;
6568 case Intrinsic::addressofreturnaddress:
6569 setValue(&I,
6570 DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6571 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6572 return;
6573 case Intrinsic::sponentry:
6574 setValue(&I,
6575 DAG.getNode(ISD::SPONENTRY, sdl,
6576 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6577 return;
6578 case Intrinsic::frameaddress:
6579 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6580 TLI.getFrameIndexTy(DAG.getDataLayout()),
6581 getValue(I.getArgOperand(0))));
6582 return;
6583 case Intrinsic::read_volatile_register:
6584 case Intrinsic::read_register: {
6585 Value *Reg = I.getArgOperand(0);
6586 SDValue Chain = getRoot();
6588 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6589 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6590 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6591 DAG.getVTList(VT, MVT::Other), Chain, RegName);
6592 setValue(&I, Res);
6593 DAG.setRoot(Res.getValue(1));
6594 return;
6595 }
6596 case Intrinsic::write_register: {
6597 Value *Reg = I.getArgOperand(0);
6598 Value *RegValue = I.getArgOperand(1);
6599 SDValue Chain = getRoot();
6601 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6602 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6603 RegName, getValue(RegValue)));
6604 return;
6605 }
6606 case Intrinsic::memcpy:
6607 case Intrinsic::memcpy_inline: {
6608 const auto &MCI = cast<MemCpyInst>(I);
6609 SDValue Dst = getValue(I.getArgOperand(0));
6610 SDValue Src = getValue(I.getArgOperand(1));
6611 SDValue Size = getValue(I.getArgOperand(2));
6612 assert((!MCI.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6613 "memcpy_inline needs constant size");
6614 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6615 Align DstAlign = MCI.getDestAlign().valueOrOne();
6616 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6617 Align Alignment = std::min(DstAlign, SrcAlign);
6618 bool isVol = MCI.isVolatile();
6619 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6620 // node.
6621 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6622 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol,
6623 MCI.isForceInlined(), &I, std::nullopt,
6624 MachinePointerInfo(I.getArgOperand(0)),
6625 MachinePointerInfo(I.getArgOperand(1)),
6626 I.getAAMetadata(), BatchAA);
6627 updateDAGForMaybeTailCall(MC);
6628 return;
6629 }
6630 case Intrinsic::memset:
6631 case Intrinsic::memset_inline: {
6632 const auto &MSII = cast<MemSetInst>(I);
6633 SDValue Dst = getValue(I.getArgOperand(0));
6634 SDValue Value = getValue(I.getArgOperand(1));
6635 SDValue Size = getValue(I.getArgOperand(2));
6636 assert((!MSII.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6637 "memset_inline needs constant size");
6638 // @llvm.memset defines 0 and 1 to both mean no alignment.
6639 Align DstAlign = MSII.getDestAlign().valueOrOne();
6640 bool isVol = MSII.isVolatile();
6641 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6642 SDValue MC = DAG.getMemset(
6643 Root, sdl, Dst, Value, Size, DstAlign, isVol, MSII.isForceInlined(),
6644 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6645 updateDAGForMaybeTailCall(MC);
6646 return;
6647 }
6648 case Intrinsic::memmove: {
6649 const auto &MMI = cast<MemMoveInst>(I);
6650 SDValue Op1 = getValue(I.getArgOperand(0));
6651 SDValue Op2 = getValue(I.getArgOperand(1));
6652 SDValue Op3 = getValue(I.getArgOperand(2));
6653 // @llvm.memmove defines 0 and 1 to both mean no alignment.
6654 Align DstAlign = MMI.getDestAlign().valueOrOne();
6655 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6656 Align Alignment = std::min(DstAlign, SrcAlign);
6657 bool isVol = MMI.isVolatile();
6658 // FIXME: Support passing different dest/src alignments to the memmove DAG
6659 // node.
6660 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6661 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6662 /* OverrideTailCall */ std::nullopt,
6663 MachinePointerInfo(I.getArgOperand(0)),
6664 MachinePointerInfo(I.getArgOperand(1)),
6665 I.getAAMetadata(), BatchAA);
6666 updateDAGForMaybeTailCall(MM);
6667 return;
6668 }
6669 case Intrinsic::memcpy_element_unordered_atomic: {
6670 auto &MI = cast<AnyMemCpyInst>(I);
6671 SDValue Dst = getValue(MI.getRawDest());
6672 SDValue Src = getValue(MI.getRawSource());
6673 SDValue Length = getValue(MI.getLength());
6674
6675 Type *LengthTy = MI.getLength()->getType();
6676 unsigned ElemSz = MI.getElementSizeInBytes();
6677 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6678 SDValue MC =
6679 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6680 isTC, MachinePointerInfo(MI.getRawDest()),
6681 MachinePointerInfo(MI.getRawSource()));
6682 updateDAGForMaybeTailCall(MC);
6683 return;
6684 }
6685 case Intrinsic::memmove_element_unordered_atomic: {
6686 auto &MI = cast<AnyMemMoveInst>(I);
6687 SDValue Dst = getValue(MI.getRawDest());
6688 SDValue Src = getValue(MI.getRawSource());
6689 SDValue Length = getValue(MI.getLength());
6690
6691 Type *LengthTy = MI.getLength()->getType();
6692 unsigned ElemSz = MI.getElementSizeInBytes();
6693 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6694 SDValue MC =
6695 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6696 isTC, MachinePointerInfo(MI.getRawDest()),
6697 MachinePointerInfo(MI.getRawSource()));
6698 updateDAGForMaybeTailCall(MC);
6699 return;
6700 }
6701 case Intrinsic::memset_element_unordered_atomic: {
6702 auto &MI = cast<AnyMemSetInst>(I);
6703 SDValue Dst = getValue(MI.getRawDest());
6704 SDValue Val = getValue(MI.getValue());
6705 SDValue Length = getValue(MI.getLength());
6706
6707 Type *LengthTy = MI.getLength()->getType();
6708 unsigned ElemSz = MI.getElementSizeInBytes();
6709 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6710 SDValue MC =
6711 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6712 isTC, MachinePointerInfo(MI.getRawDest()));
6713 updateDAGForMaybeTailCall(MC);
6714 return;
6715 }
6716 case Intrinsic::call_preallocated_setup: {
6717 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6718 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6719 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6720 getRoot(), SrcValue);
6721 setValue(&I, Res);
6722 DAG.setRoot(Res);
6723 return;
6724 }
6725 case Intrinsic::call_preallocated_arg: {
6726 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6727 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6728 SDValue Ops[3];
6729 Ops[0] = getRoot();
6730 Ops[1] = SrcValue;
6731 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6732 MVT::i32); // arg index
6733 SDValue Res = DAG.getNode(
6734 ISD::PREALLOCATED_ARG, sdl,
6735 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6736 setValue(&I, Res);
6737 DAG.setRoot(Res.getValue(1));
6738 return;
6739 }
6740
6741 case Intrinsic::eh_typeid_for: {
6742 // Find the type id for the given typeinfo.
6743 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6744 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6745 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6746 setValue(&I, Res);
6747 return;
6748 }
6749
6750 case Intrinsic::eh_return_i32:
6751 case Intrinsic::eh_return_i64:
6752 DAG.getMachineFunction().setCallsEHReturn(true);
6753 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6754 MVT::Other,
6756 getValue(I.getArgOperand(0)),
6757 getValue(I.getArgOperand(1))));
6758 return;
6759 case Intrinsic::eh_unwind_init:
6760 DAG.getMachineFunction().setCallsUnwindInit(true);
6761 return;
6762 case Intrinsic::eh_dwarf_cfa:
6763 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6764 TLI.getPointerTy(DAG.getDataLayout()),
6765 getValue(I.getArgOperand(0))));
6766 return;
6767 case Intrinsic::eh_sjlj_callsite: {
6768 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6769 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6770
6771 FuncInfo.setCurrentCallSite(CI->getZExtValue());
6772 return;
6773 }
6774 case Intrinsic::eh_sjlj_functioncontext: {
6775 // Get and store the index of the function context.
6776 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6777 AllocaInst *FnCtx =
6778 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6779 int FI = FuncInfo.StaticAllocaMap[FnCtx];
6781 return;
6782 }
6783 case Intrinsic::eh_sjlj_setjmp: {
6784 SDValue Ops[2];
6785 Ops[0] = getRoot();
6786 Ops[1] = getValue(I.getArgOperand(0));
6787 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6788 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6789 setValue(&I, Op.getValue(0));
6790 DAG.setRoot(Op.getValue(1));
6791 return;
6792 }
6793 case Intrinsic::eh_sjlj_longjmp:
6794 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6795 getRoot(), getValue(I.getArgOperand(0))));
6796 return;
6797 case Intrinsic::eh_sjlj_setup_dispatch:
6798 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6799 getRoot()));
6800 return;
6801 case Intrinsic::masked_gather:
6802 visitMaskedGather(I);
6803 return;
6804 case Intrinsic::masked_load:
6805 visitMaskedLoad(I);
6806 return;
6807 case Intrinsic::masked_scatter:
6808 visitMaskedScatter(I);
6809 return;
6810 case Intrinsic::masked_store:
6811 visitMaskedStore(I);
6812 return;
6813 case Intrinsic::masked_expandload:
6814 visitMaskedLoad(I, true /* IsExpanding */);
6815 return;
6816 case Intrinsic::masked_compressstore:
6817 visitMaskedStore(I, true /* IsCompressing */);
6818 return;
6819 case Intrinsic::powi:
6820 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6821 getValue(I.getArgOperand(1)), DAG));
6822 return;
6823 case Intrinsic::log:
6824 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6825 return;
6826 case Intrinsic::log2:
6827 setValue(&I,
6828 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6829 return;
6830 case Intrinsic::log10:
6831 setValue(&I,
6832 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6833 return;
6834 case Intrinsic::exp:
6835 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6836 return;
6837 case Intrinsic::exp2:
6838 setValue(&I,
6839 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6840 return;
6841 case Intrinsic::pow:
6842 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6843 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6844 return;
6845 case Intrinsic::sqrt:
6846 case Intrinsic::fabs:
6847 case Intrinsic::sin:
6848 case Intrinsic::cos:
6849 case Intrinsic::tan:
6850 case Intrinsic::asin:
6851 case Intrinsic::acos:
6852 case Intrinsic::atan:
6853 case Intrinsic::sinh:
6854 case Intrinsic::cosh:
6855 case Intrinsic::tanh:
6856 case Intrinsic::exp10:
6857 case Intrinsic::floor:
6858 case Intrinsic::ceil:
6859 case Intrinsic::trunc:
6860 case Intrinsic::rint:
6861 case Intrinsic::nearbyint:
6862 case Intrinsic::round:
6863 case Intrinsic::roundeven:
6864 case Intrinsic::canonicalize: {
6865 unsigned Opcode;
6866 // clang-format off
6867 switch (Intrinsic) {
6868 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6869 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6870 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6871 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6872 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6873 case Intrinsic::tan: Opcode = ISD::FTAN; break;
6874 case Intrinsic::asin: Opcode = ISD::FASIN; break;
6875 case Intrinsic::acos: Opcode = ISD::FACOS; break;
6876 case Intrinsic::atan: Opcode = ISD::FATAN; break;
6877 case Intrinsic::sinh: Opcode = ISD::FSINH; break;
6878 case Intrinsic::cosh: Opcode = ISD::FCOSH; break;
6879 case Intrinsic::tanh: Opcode = ISD::FTANH; break;
6880 case Intrinsic::exp10: Opcode = ISD::FEXP10; break;
6881 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6882 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6883 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6884 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6885 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6886 case Intrinsic::round: Opcode = ISD::FROUND; break;
6887 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6888 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6889 }
6890 // clang-format on
6891
6892 setValue(&I, DAG.getNode(Opcode, sdl,
6893 getValue(I.getArgOperand(0)).getValueType(),
6894 getValue(I.getArgOperand(0)), Flags));
6895 return;
6896 }
6897 case Intrinsic::atan2:
6898 setValue(&I, DAG.getNode(ISD::FATAN2, sdl,
6899 getValue(I.getArgOperand(0)).getValueType(),
6900 getValue(I.getArgOperand(0)),
6901 getValue(I.getArgOperand(1)), Flags));
6902 return;
6903 case Intrinsic::lround:
6904 case Intrinsic::llround:
6905 case Intrinsic::lrint:
6906 case Intrinsic::llrint: {
6907 unsigned Opcode;
6908 // clang-format off
6909 switch (Intrinsic) {
6910 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6911 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6912 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6913 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6914 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6915 }
6916 // clang-format on
6917
6918 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6919 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6920 getValue(I.getArgOperand(0))));
6921 return;
6922 }
6923 case Intrinsic::minnum:
6924 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6925 getValue(I.getArgOperand(0)).getValueType(),
6926 getValue(I.getArgOperand(0)),
6927 getValue(I.getArgOperand(1)), Flags));
6928 return;
6929 case Intrinsic::maxnum:
6930 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6931 getValue(I.getArgOperand(0)).getValueType(),
6932 getValue(I.getArgOperand(0)),
6933 getValue(I.getArgOperand(1)), Flags));
6934 return;
6935 case Intrinsic::minimum:
6936 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6937 getValue(I.getArgOperand(0)).getValueType(),
6938 getValue(I.getArgOperand(0)),
6939 getValue(I.getArgOperand(1)), Flags));
6940 return;
6941 case Intrinsic::maximum:
6942 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6943 getValue(I.getArgOperand(0)).getValueType(),
6944 getValue(I.getArgOperand(0)),
6945 getValue(I.getArgOperand(1)), Flags));
6946 return;
6947 case Intrinsic::minimumnum:
6948 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6949 getValue(I.getArgOperand(0)).getValueType(),
6950 getValue(I.getArgOperand(0)),
6951 getValue(I.getArgOperand(1)), Flags));
6952 return;
6953 case Intrinsic::maximumnum:
6954 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
6955 getValue(I.getArgOperand(0)).getValueType(),
6956 getValue(I.getArgOperand(0)),
6957 getValue(I.getArgOperand(1)), Flags));
6958 return;
6959 case Intrinsic::copysign:
6960 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6961 getValue(I.getArgOperand(0)).getValueType(),
6962 getValue(I.getArgOperand(0)),
6963 getValue(I.getArgOperand(1)), Flags));
6964 return;
6965 case Intrinsic::ldexp:
6966 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6967 getValue(I.getArgOperand(0)).getValueType(),
6968 getValue(I.getArgOperand(0)),
6969 getValue(I.getArgOperand(1)), Flags));
6970 return;
6971 case Intrinsic::modf:
6972 case Intrinsic::sincos:
6973 case Intrinsic::sincospi:
6974 case Intrinsic::frexp: {
6975 unsigned Opcode;
6976 switch (Intrinsic) {
6977 default:
6978 llvm_unreachable("unexpected intrinsic");
6979 case Intrinsic::sincos:
6980 Opcode = ISD::FSINCOS;
6981 break;
6982 case Intrinsic::sincospi:
6983 Opcode = ISD::FSINCOSPI;
6984 break;
6985 case Intrinsic::modf:
6986 Opcode = ISD::FMODF;
6987 break;
6988 case Intrinsic::frexp:
6989 Opcode = ISD::FFREXP;
6990 break;
6991 }
6992 SmallVector<EVT, 2> ValueVTs;
6993 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6994 SDVTList VTs = DAG.getVTList(ValueVTs);
6995 setValue(
6996 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags));
6997 return;
6998 }
6999 case Intrinsic::arithmetic_fence: {
7000 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
7001 getValue(I.getArgOperand(0)).getValueType(),
7002 getValue(I.getArgOperand(0)), Flags));
7003 return;
7004 }
7005 case Intrinsic::fma:
7006 setValue(&I, DAG.getNode(
7007 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
7008 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
7009 getValue(I.getArgOperand(2)), Flags));
7010 return;
7011#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
7012 case Intrinsic::INTRINSIC:
7013#include "llvm/IR/ConstrainedOps.def"
7014 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
7015 return;
7016#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7017#include "llvm/IR/VPIntrinsics.def"
7018 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
7019 return;
7020 case Intrinsic::fptrunc_round: {
7021 // Get the last argument, the metadata and convert it to an integer in the
7022 // call
7023 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
7024 std::optional<RoundingMode> RoundMode =
7025 convertStrToRoundingMode(cast<MDString>(MD)->getString());
7026
7027 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7028
7029 // Propagate fast-math-flags from IR to node(s).
7030 SDNodeFlags Flags;
7031 Flags.copyFMF(*cast<FPMathOperator>(&I));
7032 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
7033
7035 Result = DAG.getNode(
7036 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
7037 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32));
7038 setValue(&I, Result);
7039
7040 return;
7041 }
7042 case Intrinsic::fmuladd: {
7043 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7044 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7045 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7046 setValue(&I, DAG.getNode(ISD::FMA, sdl,
7047 getValue(I.getArgOperand(0)).getValueType(),
7048 getValue(I.getArgOperand(0)),
7049 getValue(I.getArgOperand(1)),
7050 getValue(I.getArgOperand(2)), Flags));
7051 } else if (TLI.isOperationLegalOrCustom(ISD::FMULADD, VT)) {
7052 // TODO: Support splitting the vector.
7053 setValue(&I, DAG.getNode(ISD::FMULADD, sdl,
7054 getValue(I.getArgOperand(0)).getValueType(),
7055 getValue(I.getArgOperand(0)),
7056 getValue(I.getArgOperand(1)),
7057 getValue(I.getArgOperand(2)), Flags));
7058 } else {
7059 // TODO: Intrinsic calls should have fast-math-flags.
7060 SDValue Mul = DAG.getNode(
7061 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
7062 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
7063 SDValue Add = DAG.getNode(ISD::FADD, sdl,
7064 getValue(I.getArgOperand(0)).getValueType(),
7065 Mul, getValue(I.getArgOperand(2)), Flags);
7066 setValue(&I, Add);
7067 }
7068 return;
7069 }
7070 case Intrinsic::convert_to_fp16:
7071 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
7072 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
7073 getValue(I.getArgOperand(0)),
7074 DAG.getTargetConstant(0, sdl,
7075 MVT::i32))));
7076 return;
7077 case Intrinsic::convert_from_fp16:
7078 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
7079 TLI.getValueType(DAG.getDataLayout(), I.getType()),
7080 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7081 getValue(I.getArgOperand(0)))));
7082 return;
7083 case Intrinsic::fptosi_sat: {
7084 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7085 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
7086 getValue(I.getArgOperand(0)),
7087 DAG.getValueType(VT.getScalarType())));
7088 return;
7089 }
7090 case Intrinsic::fptoui_sat: {
7091 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7092 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7093 getValue(I.getArgOperand(0)),
7094 DAG.getValueType(VT.getScalarType())));
7095 return;
7096 }
7097 case Intrinsic::set_rounding:
7098 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7099 {getRoot(), getValue(I.getArgOperand(0))});
7100 setValue(&I, Res);
7101 DAG.setRoot(Res.getValue(0));
7102 return;
7103 case Intrinsic::is_fpclass: {
7104 const DataLayout DLayout = DAG.getDataLayout();
7105 EVT DestVT = TLI.getValueType(DLayout, I.getType());
7106 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7107 FPClassTest Test = static_cast<FPClassTest>(
7108 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7109 MachineFunction &MF = DAG.getMachineFunction();
7110 const Function &F = MF.getFunction();
7111 SDValue Op = getValue(I.getArgOperand(0));
7112 SDNodeFlags Flags;
7113 Flags.setNoFPExcept(
7114 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7115 // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7116 // expansion can use illegal types. Making expansion early allows
7117 // legalizing these types prior to selection.
7118 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) &&
7119 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) {
7120 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7121 setValue(&I, Result);
7122 return;
7123 }
7124
7125 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7126 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7127 setValue(&I, V);
7128 return;
7129 }
7130 case Intrinsic::get_fpenv: {
7131 const DataLayout DLayout = DAG.getDataLayout();
7132 EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7133 Align TempAlign = DAG.getEVTAlign(EnvVT);
7134 SDValue Chain = getRoot();
7135 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7136 // and temporary storage in stack.
7137 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7138 Res = DAG.getNode(
7139 ISD::GET_FPENV, sdl,
7140 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7141 MVT::Other),
7142 Chain);
7143 } else {
7144 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7145 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7146 auto MPI =
7147 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7148 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7150 TempAlign);
7151 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7152 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7153 }
7154 setValue(&I, Res);
7155 DAG.setRoot(Res.getValue(1));
7156 return;
7157 }
7158 case Intrinsic::set_fpenv: {
7159 const DataLayout DLayout = DAG.getDataLayout();
7160 SDValue Env = getValue(I.getArgOperand(0));
7161 EVT EnvVT = Env.getValueType();
7162 Align TempAlign = DAG.getEVTAlign(EnvVT);
7163 SDValue Chain = getRoot();
7164 // If SET_FPENV is custom or legal, use it. Otherwise use loading
7165 // environment from memory.
7166 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7167 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7168 } else {
7169 // Allocate space in stack, copy environment bits into it and use this
7170 // memory in SET_FPENV_MEM.
7171 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7172 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7173 auto MPI =
7174 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7175 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7177 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7179 TempAlign);
7180 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7181 }
7182 DAG.setRoot(Chain);
7183 return;
7184 }
7185 case Intrinsic::reset_fpenv:
7186 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7187 return;
7188 case Intrinsic::get_fpmode:
7189 Res = DAG.getNode(
7190 ISD::GET_FPMODE, sdl,
7191 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7192 MVT::Other),
7193 DAG.getRoot());
7194 setValue(&I, Res);
7195 DAG.setRoot(Res.getValue(1));
7196 return;
7197 case Intrinsic::set_fpmode:
7198 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7199 getValue(I.getArgOperand(0)));
7200 DAG.setRoot(Res);
7201 return;
7202 case Intrinsic::reset_fpmode: {
7203 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7204 DAG.setRoot(Res);
7205 return;
7206 }
7207 case Intrinsic::pcmarker: {
7208 SDValue Tmp = getValue(I.getArgOperand(0));
7209 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7210 return;
7211 }
7212 case Intrinsic::readcyclecounter: {
7213 SDValue Op = getRoot();
7214 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7215 DAG.getVTList(MVT::i64, MVT::Other), Op);
7216 setValue(&I, Res);
7217 DAG.setRoot(Res.getValue(1));
7218 return;
7219 }
7220 case Intrinsic::readsteadycounter: {
7221 SDValue Op = getRoot();
7222 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7223 DAG.getVTList(MVT::i64, MVT::Other), Op);
7224 setValue(&I, Res);
7225 DAG.setRoot(Res.getValue(1));
7226 return;
7227 }
7228 case Intrinsic::bitreverse:
7229 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7230 getValue(I.getArgOperand(0)).getValueType(),
7231 getValue(I.getArgOperand(0))));
7232 return;
7233 case Intrinsic::bswap:
7234 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7235 getValue(I.getArgOperand(0)).getValueType(),
7236 getValue(I.getArgOperand(0))));
7237 return;
7238 case Intrinsic::cttz: {
7239 SDValue Arg = getValue(I.getArgOperand(0));
7240 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7241 EVT Ty = Arg.getValueType();
7242 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7243 sdl, Ty, Arg));
7244 return;
7245 }
7246 case Intrinsic::ctlz: {
7247 SDValue Arg = getValue(I.getArgOperand(0));
7248 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7249 EVT Ty = Arg.getValueType();
7250 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7251 sdl, Ty, Arg));
7252 return;
7253 }
7254 case Intrinsic::ctpop: {
7255 SDValue Arg = getValue(I.getArgOperand(0));
7256 EVT Ty = Arg.getValueType();
7257 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7258 return;
7259 }
7260 case Intrinsic::fshl:
7261 case Intrinsic::fshr: {
7262 bool IsFSHL = Intrinsic == Intrinsic::fshl;
7263 SDValue X = getValue(I.getArgOperand(0));
7264 SDValue Y = getValue(I.getArgOperand(1));
7265 SDValue Z = getValue(I.getArgOperand(2));
7266 EVT VT = X.getValueType();
7267
7268 if (X == Y) {
7269 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7270 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7271 } else {
7272 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7273 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7274 }
7275 return;
7276 }
7277 case Intrinsic::sadd_sat: {
7278 SDValue Op1 = getValue(I.getArgOperand(0));
7279 SDValue Op2 = getValue(I.getArgOperand(1));
7280 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7281 return;
7282 }
7283 case Intrinsic::uadd_sat: {
7284 SDValue Op1 = getValue(I.getArgOperand(0));
7285 SDValue Op2 = getValue(I.getArgOperand(1));
7286 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7287 return;
7288 }
7289 case Intrinsic::ssub_sat: {
7290 SDValue Op1 = getValue(I.getArgOperand(0));
7291 SDValue Op2 = getValue(I.getArgOperand(1));
7292 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7293 return;
7294 }
7295 case Intrinsic::usub_sat: {
7296 SDValue Op1 = getValue(I.getArgOperand(0));
7297 SDValue Op2 = getValue(I.getArgOperand(1));
7298 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7299 return;
7300 }
7301 case Intrinsic::sshl_sat: {
7302 SDValue Op1 = getValue(I.getArgOperand(0));
7303 SDValue Op2 = getValue(I.getArgOperand(1));
7304 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7305 return;
7306 }
7307 case Intrinsic::ushl_sat: {
7308 SDValue Op1 = getValue(I.getArgOperand(0));
7309 SDValue Op2 = getValue(I.getArgOperand(1));
7310 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7311 return;
7312 }
7313 case Intrinsic::smul_fix:
7314 case Intrinsic::umul_fix:
7315 case Intrinsic::smul_fix_sat:
7316 case Intrinsic::umul_fix_sat: {
7317 SDValue Op1 = getValue(I.getArgOperand(0));
7318 SDValue Op2 = getValue(I.getArgOperand(1));
7319 SDValue Op3 = getValue(I.getArgOperand(2));
7320 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7321 Op1.getValueType(), Op1, Op2, Op3));
7322 return;
7323 }
7324 case Intrinsic::sdiv_fix:
7325 case Intrinsic::udiv_fix:
7326 case Intrinsic::sdiv_fix_sat:
7327 case Intrinsic::udiv_fix_sat: {
7328 SDValue Op1 = getValue(I.getArgOperand(0));
7329 SDValue Op2 = getValue(I.getArgOperand(1));
7330 SDValue Op3 = getValue(I.getArgOperand(2));
7332 Op1, Op2, Op3, DAG, TLI));
7333 return;
7334 }
7335 case Intrinsic::smax: {
7336 SDValue Op1 = getValue(I.getArgOperand(0));
7337 SDValue Op2 = getValue(I.getArgOperand(1));
7338 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7339 return;
7340 }
7341 case Intrinsic::smin: {
7342 SDValue Op1 = getValue(I.getArgOperand(0));
7343 SDValue Op2 = getValue(I.getArgOperand(1));
7344 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7345 return;
7346 }
7347 case Intrinsic::umax: {
7348 SDValue Op1 = getValue(I.getArgOperand(0));
7349 SDValue Op2 = getValue(I.getArgOperand(1));
7350 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7351 return;
7352 }
7353 case Intrinsic::umin: {
7354 SDValue Op1 = getValue(I.getArgOperand(0));
7355 SDValue Op2 = getValue(I.getArgOperand(1));
7356 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7357 return;
7358 }
7359 case Intrinsic::abs: {
7360 // TODO: Preserve "int min is poison" arg in SDAG?
7361 SDValue Op1 = getValue(I.getArgOperand(0));
7362 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7363 return;
7364 }
7365 case Intrinsic::scmp: {
7366 SDValue Op1 = getValue(I.getArgOperand(0));
7367 SDValue Op2 = getValue(I.getArgOperand(1));
7368 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7369 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7370 break;
7371 }
7372 case Intrinsic::ucmp: {
7373 SDValue Op1 = getValue(I.getArgOperand(0));
7374 SDValue Op2 = getValue(I.getArgOperand(1));
7375 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7376 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7377 break;
7378 }
7379 case Intrinsic::stacksave: {
7380 SDValue Op = getRoot();
7381 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7382 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7383 setValue(&I, Res);
7384 DAG.setRoot(Res.getValue(1));
7385 return;
7386 }
7387 case Intrinsic::stackrestore:
7388 Res = getValue(I.getArgOperand(0));
7389 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7390 return;
7391 case Intrinsic::get_dynamic_area_offset: {
7392 SDValue Op = getRoot();
7393 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7394 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7395 Op);
7396 DAG.setRoot(Op);
7397 setValue(&I, Res);
7398 return;
7399 }
7400 case Intrinsic::stackguard: {
7401 MachineFunction &MF = DAG.getMachineFunction();
7402 const Module &M = *MF.getFunction().getParent();
7403 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7404 SDValue Chain = getRoot();
7405 if (TLI.useLoadStackGuardNode(M)) {
7406 Res = getLoadStackGuard(DAG, sdl, Chain);
7407 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7408 } else {
7409 const Value *Global = TLI.getSDagStackGuard(M);
7410 if (!Global) {
7411 LLVMContext &Ctx = *DAG.getContext();
7412 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
7413 setValue(&I, DAG.getPOISON(PtrTy));
7414 return;
7415 }
7416
7417 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7418 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7419 MachinePointerInfo(Global, 0), Align,
7421 }
7422 if (TLI.useStackGuardXorFP())
7423 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7424 DAG.setRoot(Chain);
7425 setValue(&I, Res);
7426 return;
7427 }
7428 case Intrinsic::stackprotector: {
7429 // Emit code into the DAG to store the stack guard onto the stack.
7430 MachineFunction &MF = DAG.getMachineFunction();
7431 MachineFrameInfo &MFI = MF.getFrameInfo();
7432 const Module &M = *MF.getFunction().getParent();
7433 SDValue Src, Chain = getRoot();
7434
7435 if (TLI.useLoadStackGuardNode(M))
7436 Src = getLoadStackGuard(DAG, sdl, Chain);
7437 else
7438 Src = getValue(I.getArgOperand(0)); // The guard's value.
7439
7440 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7441
7442 int FI = FuncInfo.StaticAllocaMap[Slot];
7443 MFI.setStackProtectorIndex(FI);
7444 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7445
7446 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7447
7448 // Store the stack protector onto the stack.
7449 Res = DAG.getStore(
7450 Chain, sdl, Src, FIN,
7451 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7452 MaybeAlign(), MachineMemOperand::MOVolatile);
7453 setValue(&I, Res);
7454 DAG.setRoot(Res);
7455 return;
7456 }
7457 case Intrinsic::objectsize:
7458 llvm_unreachable("llvm.objectsize.* should have been lowered already");
7459
7460 case Intrinsic::is_constant:
7461 llvm_unreachable("llvm.is.constant.* should have been lowered already");
7462
7463 case Intrinsic::annotation:
7464 case Intrinsic::ptr_annotation:
7465 case Intrinsic::launder_invariant_group:
7466 case Intrinsic::strip_invariant_group:
7467 // Drop the intrinsic, but forward the value
7468 setValue(&I, getValue(I.getOperand(0)));
7469 return;
7470
7471 case Intrinsic::type_test:
7472 case Intrinsic::public_type_test:
7473 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7474 return;
7475
7476 case Intrinsic::assume:
7477 case Intrinsic::experimental_noalias_scope_decl:
7478 case Intrinsic::var_annotation:
7479 case Intrinsic::sideeffect:
7480 // Discard annotate attributes, noalias scope declarations, assumptions, and
7481 // artificial side-effects.
7482 return;
7483
7484 case Intrinsic::codeview_annotation: {
7485 // Emit a label associated with this metadata.
7486 MachineFunction &MF = DAG.getMachineFunction();
7487 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7488 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7489 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7490 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7491 DAG.setRoot(Res);
7492 return;
7493 }
7494
7495 case Intrinsic::init_trampoline: {
7496 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7497
7498 SDValue Ops[6];
7499 Ops[0] = getRoot();
7500 Ops[1] = getValue(I.getArgOperand(0));
7501 Ops[2] = getValue(I.getArgOperand(1));
7502 Ops[3] = getValue(I.getArgOperand(2));
7503 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7504 Ops[5] = DAG.getSrcValue(F);
7505
7506 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7507
7508 DAG.setRoot(Res);
7509 return;
7510 }
7511 case Intrinsic::adjust_trampoline:
7512 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7513 TLI.getPointerTy(DAG.getDataLayout()),
7514 getValue(I.getArgOperand(0))));
7515 return;
7516 case Intrinsic::gcroot: {
7517 assert(DAG.getMachineFunction().getFunction().hasGC() &&
7518 "only valid in functions with gc specified, enforced by Verifier");
7519 assert(GFI && "implied by previous");
7520 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7521 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7522
7523 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7524 GFI->addStackRoot(FI->getIndex(), TypeMap);
7525 return;
7526 }
7527 case Intrinsic::gcread:
7528 case Intrinsic::gcwrite:
7529 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7530 case Intrinsic::get_rounding:
7531 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7532 setValue(&I, Res);
7533 DAG.setRoot(Res.getValue(1));
7534 return;
7535
7536 case Intrinsic::expect:
7537 case Intrinsic::expect_with_probability:
7538 // Just replace __builtin_expect(exp, c) and
7539 // __builtin_expect_with_probability(exp, c, p) with EXP.
7540 setValue(&I, getValue(I.getArgOperand(0)));
7541 return;
7542
7543 case Intrinsic::ubsantrap:
7544 case Intrinsic::debugtrap:
7545 case Intrinsic::trap: {
7546 StringRef TrapFuncName =
7547 I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7548 if (TrapFuncName.empty()) {
7549 switch (Intrinsic) {
7550 case Intrinsic::trap:
7551 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7552 break;
7553 case Intrinsic::debugtrap:
7554 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7555 break;
7556 case Intrinsic::ubsantrap:
7557 DAG.setRoot(DAG.getNode(
7558 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7559 DAG.getTargetConstant(
7560 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7561 MVT::i32)));
7562 break;
7563 default: llvm_unreachable("unknown trap intrinsic");
7564 }
7565 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7566 I.hasFnAttr(Attribute::NoMerge));
7567 return;
7568 }
7570 if (Intrinsic == Intrinsic::ubsantrap) {
7571 Value *Arg = I.getArgOperand(0);
7572 Args.emplace_back(Arg, getValue(Arg));
7573 }
7574
7575 TargetLowering::CallLoweringInfo CLI(DAG);
7576 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7577 CallingConv::C, I.getType(),
7578 DAG.getExternalSymbol(TrapFuncName.data(),
7579 TLI.getPointerTy(DAG.getDataLayout())),
7580 std::move(Args));
7581 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7582 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7583 DAG.setRoot(Result.second);
7584 return;
7585 }
7586
7587 case Intrinsic::allow_runtime_check:
7588 case Intrinsic::allow_ubsan_check:
7589 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7590 return;
7591
7592 case Intrinsic::uadd_with_overflow:
7593 case Intrinsic::sadd_with_overflow:
7594 case Intrinsic::usub_with_overflow:
7595 case Intrinsic::ssub_with_overflow:
7596 case Intrinsic::umul_with_overflow:
7597 case Intrinsic::smul_with_overflow: {
7599 switch (Intrinsic) {
7600 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7601 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7602 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7603 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7604 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7605 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7606 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7607 }
7608 SDValue Op1 = getValue(I.getArgOperand(0));
7609 SDValue Op2 = getValue(I.getArgOperand(1));
7610
7611 EVT ResultVT = Op1.getValueType();
7612 EVT OverflowVT = MVT::i1;
7613 if (ResultVT.isVector())
7614 OverflowVT = EVT::getVectorVT(
7615 *Context, OverflowVT, ResultVT.getVectorElementCount());
7616
7617 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7618 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7619 return;
7620 }
7621 case Intrinsic::prefetch: {
7622 SDValue Ops[5];
7623 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7625 Ops[0] = DAG.getRoot();
7626 Ops[1] = getValue(I.getArgOperand(0));
7627 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7628 MVT::i32);
7629 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7630 MVT::i32);
7631 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7632 MVT::i32);
7633 SDValue Result = DAG.getMemIntrinsicNode(
7634 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7635 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7636 /* align */ std::nullopt, Flags);
7637
7638 // Chain the prefetch in parallel with any pending loads, to stay out of
7639 // the way of later optimizations.
7640 PendingLoads.push_back(Result);
7641 Result = getRoot();
7642 DAG.setRoot(Result);
7643 return;
7644 }
7645 case Intrinsic::lifetime_start:
7646 case Intrinsic::lifetime_end: {
7647 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7648 // Stack coloring is not enabled in O0, discard region information.
7649 if (TM.getOptLevel() == CodeGenOptLevel::None)
7650 return;
7651
7652 const AllocaInst *LifetimeObject = dyn_cast<AllocaInst>(I.getArgOperand(0));
7653 if (!LifetimeObject)
7654 return;
7655
7656 // First check that the Alloca is static, otherwise it won't have a
7657 // valid frame index.
7658 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7659 if (SI == FuncInfo.StaticAllocaMap.end())
7660 return;
7661
7662 const int FrameIndex = SI->second;
7663 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex);
7664 DAG.setRoot(Res);
7665 return;
7666 }
7667 case Intrinsic::pseudoprobe: {
7668 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7669 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7670 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7671 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7672 DAG.setRoot(Res);
7673 return;
7674 }
7675 case Intrinsic::invariant_start:
7676 // Discard region information.
7677 setValue(&I,
7678 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7679 return;
7680 case Intrinsic::invariant_end:
7681 // Discard region information.
7682 return;
7683 case Intrinsic::clear_cache: {
7684 SDValue InputChain = DAG.getRoot();
7685 SDValue StartVal = getValue(I.getArgOperand(0));
7686 SDValue EndVal = getValue(I.getArgOperand(1));
7687 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7688 {InputChain, StartVal, EndVal});
7689 setValue(&I, Res);
7690 DAG.setRoot(Res);
7691 return;
7692 }
7693 case Intrinsic::donothing:
7694 case Intrinsic::seh_try_begin:
7695 case Intrinsic::seh_scope_begin:
7696 case Intrinsic::seh_try_end:
7697 case Intrinsic::seh_scope_end:
7698 // ignore
7699 return;
7700 case Intrinsic::experimental_stackmap:
7701 visitStackmap(I);
7702 return;
7703 case Intrinsic::experimental_patchpoint_void:
7704 case Intrinsic::experimental_patchpoint:
7705 visitPatchpoint(I);
7706 return;
7707 case Intrinsic::experimental_gc_statepoint:
7709 return;
7710 case Intrinsic::experimental_gc_result:
7711 visitGCResult(cast<GCResultInst>(I));
7712 return;
7713 case Intrinsic::experimental_gc_relocate:
7714 visitGCRelocate(cast<GCRelocateInst>(I));
7715 return;
7716 case Intrinsic::instrprof_cover:
7717 llvm_unreachable("instrprof failed to lower a cover");
7718 case Intrinsic::instrprof_increment:
7719 llvm_unreachable("instrprof failed to lower an increment");
7720 case Intrinsic::instrprof_timestamp:
7721 llvm_unreachable("instrprof failed to lower a timestamp");
7722 case Intrinsic::instrprof_value_profile:
7723 llvm_unreachable("instrprof failed to lower a value profiling call");
7724 case Intrinsic::instrprof_mcdc_parameters:
7725 llvm_unreachable("instrprof failed to lower mcdc parameters");
7726 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7727 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7728 case Intrinsic::localescape: {
7729 MachineFunction &MF = DAG.getMachineFunction();
7730 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7731
7732 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7733 // is the same on all targets.
7734 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7735 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7736 if (isa<ConstantPointerNull>(Arg))
7737 continue; // Skip null pointers. They represent a hole in index space.
7738 AllocaInst *Slot = cast<AllocaInst>(Arg);
7739 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7740 "can only escape static allocas");
7741 int FI = FuncInfo.StaticAllocaMap[Slot];
7742 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7744 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7745 TII->get(TargetOpcode::LOCAL_ESCAPE))
7746 .addSym(FrameAllocSym)
7747 .addFrameIndex(FI);
7748 }
7749
7750 return;
7751 }
7752
7753 case Intrinsic::localrecover: {
7754 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7755 MachineFunction &MF = DAG.getMachineFunction();
7756
7757 // Get the symbol that defines the frame offset.
7758 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7759 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7760 unsigned IdxVal =
7761 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7762 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7764
7765 Value *FP = I.getArgOperand(1);
7766 SDValue FPVal = getValue(FP);
7767 EVT PtrVT = FPVal.getValueType();
7768
7769 // Create a MCSymbol for the label to avoid any target lowering
7770 // that would make this PC relative.
7771 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7772 SDValue OffsetVal =
7773 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7774
7775 // Add the offset to the FP.
7776 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7777 setValue(&I, Add);
7778
7779 return;
7780 }
7781
7782 case Intrinsic::fake_use: {
7783 Value *V = I.getArgOperand(0);
7784 SDValue Ops[2];
7785 // For Values not declared or previously used in this basic block, the
7786 // NodeMap will not have an entry, and `getValue` will assert if V has no
7787 // valid register value.
7788 auto FakeUseValue = [&]() -> SDValue {
7789 SDValue &N = NodeMap[V];
7790 if (N.getNode())
7791 return N;
7792
7793 // If there's a virtual register allocated and initialized for this
7794 // value, use it.
7795 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
7796 return copyFromReg;
7797 // FIXME: Do we want to preserve constants? It seems pointless.
7798 if (isa<Constant>(V))
7799 return getValue(V);
7800 return SDValue();
7801 }();
7802 if (!FakeUseValue || FakeUseValue.isUndef())
7803 return;
7804 Ops[0] = getRoot();
7805 Ops[1] = FakeUseValue;
7806 // Also, do not translate a fake use with an undef operand, or any other
7807 // empty SDValues.
7808 if (!Ops[1] || Ops[1].isUndef())
7809 return;
7810 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops));
7811 return;
7812 }
7813
7814 case Intrinsic::reloc_none: {
7815 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7816 StringRef SymbolName = cast<MDString>(MD)->getString();
7817 SDValue Ops[2] = {
7818 getRoot(),
7819 DAG.getTargetExternalSymbol(
7820 SymbolName.data(), TLI.getProgramPointerTy(DAG.getDataLayout()))};
7821 DAG.setRoot(DAG.getNode(ISD::RELOC_NONE, sdl, MVT::Other, Ops));
7822 return;
7823 }
7824
7825 case Intrinsic::eh_exceptionpointer:
7826 case Intrinsic::eh_exceptioncode: {
7827 // Get the exception pointer vreg, copy from it, and resize it to fit.
7828 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7829 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7830 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7831 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7832 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7833 if (Intrinsic == Intrinsic::eh_exceptioncode)
7834 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7835 setValue(&I, N);
7836 return;
7837 }
7838 case Intrinsic::xray_customevent: {
7839 // Here we want to make sure that the intrinsic behaves as if it has a
7840 // specific calling convention.
7841 const auto &Triple = DAG.getTarget().getTargetTriple();
7842 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7843 return;
7844
7846
7847 // We want to say that we always want the arguments in registers.
7848 SDValue LogEntryVal = getValue(I.getArgOperand(0));
7849 SDValue StrSizeVal = getValue(I.getArgOperand(1));
7850 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7851 SDValue Chain = getRoot();
7852 Ops.push_back(LogEntryVal);
7853 Ops.push_back(StrSizeVal);
7854 Ops.push_back(Chain);
7855
7856 // We need to enforce the calling convention for the callsite, so that
7857 // argument ordering is enforced correctly, and that register allocation can
7858 // see that some registers may be assumed clobbered and have to preserve
7859 // them across calls to the intrinsic.
7860 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7861 sdl, NodeTys, Ops);
7862 SDValue patchableNode = SDValue(MN, 0);
7863 DAG.setRoot(patchableNode);
7864 setValue(&I, patchableNode);
7865 return;
7866 }
7867 case Intrinsic::xray_typedevent: {
7868 // Here we want to make sure that the intrinsic behaves as if it has a
7869 // specific calling convention.
7870 const auto &Triple = DAG.getTarget().getTargetTriple();
7871 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7872 return;
7873
7875
7876 // We want to say that we always want the arguments in registers.
7877 // It's unclear to me how manipulating the selection DAG here forces callers
7878 // to provide arguments in registers instead of on the stack.
7879 SDValue LogTypeId = getValue(I.getArgOperand(0));
7880 SDValue LogEntryVal = getValue(I.getArgOperand(1));
7881 SDValue StrSizeVal = getValue(I.getArgOperand(2));
7882 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7883 SDValue Chain = getRoot();
7884 Ops.push_back(LogTypeId);
7885 Ops.push_back(LogEntryVal);
7886 Ops.push_back(StrSizeVal);
7887 Ops.push_back(Chain);
7888
7889 // We need to enforce the calling convention for the callsite, so that
7890 // argument ordering is enforced correctly, and that register allocation can
7891 // see that some registers may be assumed clobbered and have to preserve
7892 // them across calls to the intrinsic.
7893 MachineSDNode *MN = DAG.getMachineNode(
7894 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7895 SDValue patchableNode = SDValue(MN, 0);
7896 DAG.setRoot(patchableNode);
7897 setValue(&I, patchableNode);
7898 return;
7899 }
7900 case Intrinsic::experimental_deoptimize:
7902 return;
7903 case Intrinsic::stepvector:
7904 visitStepVector(I);
7905 return;
7906 case Intrinsic::vector_reduce_fadd:
7907 case Intrinsic::vector_reduce_fmul:
7908 case Intrinsic::vector_reduce_add:
7909 case Intrinsic::vector_reduce_mul:
7910 case Intrinsic::vector_reduce_and:
7911 case Intrinsic::vector_reduce_or:
7912 case Intrinsic::vector_reduce_xor:
7913 case Intrinsic::vector_reduce_smax:
7914 case Intrinsic::vector_reduce_smin:
7915 case Intrinsic::vector_reduce_umax:
7916 case Intrinsic::vector_reduce_umin:
7917 case Intrinsic::vector_reduce_fmax:
7918 case Intrinsic::vector_reduce_fmin:
7919 case Intrinsic::vector_reduce_fmaximum:
7920 case Intrinsic::vector_reduce_fminimum:
7921 visitVectorReduce(I, Intrinsic);
7922 return;
7923
7924 case Intrinsic::icall_branch_funnel: {
7926 Ops.push_back(getValue(I.getArgOperand(0)));
7927
7928 int64_t Offset;
7930 I.getArgOperand(1), Offset, DAG.getDataLayout()));
7931 if (!Base)
7933 "llvm.icall.branch.funnel operand must be a GlobalValue");
7934 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7935
7936 struct BranchFunnelTarget {
7937 int64_t Offset;
7939 };
7941
7942 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7944 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7945 if (ElemBase != Base)
7946 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7947 "to the same GlobalValue");
7948
7949 SDValue Val = getValue(I.getArgOperand(Op + 1));
7950 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7951 if (!GA)
7953 "llvm.icall.branch.funnel operand must be a GlobalValue");
7954 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7955 GA->getGlobal(), sdl, Val.getValueType(),
7956 GA->getOffset())});
7957 }
7958 llvm::sort(Targets,
7959 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7960 return T1.Offset < T2.Offset;
7961 });
7962
7963 for (auto &T : Targets) {
7964 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7965 Ops.push_back(T.Target);
7966 }
7967
7968 Ops.push_back(DAG.getRoot()); // Chain
7969 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7970 MVT::Other, Ops),
7971 0);
7972 DAG.setRoot(N);
7973 setValue(&I, N);
7974 HasTailCall = true;
7975 return;
7976 }
7977
7978 case Intrinsic::wasm_landingpad_index:
7979 // Information this intrinsic contained has been transferred to
7980 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7981 // delete it now.
7982 return;
7983
7984 case Intrinsic::aarch64_settag:
7985 case Intrinsic::aarch64_settag_zero: {
7986 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7987 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7989 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7990 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7991 ZeroMemory);
7992 DAG.setRoot(Val);
7993 setValue(&I, Val);
7994 return;
7995 }
7996 case Intrinsic::amdgcn_cs_chain: {
7997 // At this point we don't care if it's amdgpu_cs_chain or
7998 // amdgpu_cs_chain_preserve.
8000
8001 Type *RetTy = I.getType();
8002 assert(RetTy->isVoidTy() && "Should not return");
8003
8004 SDValue Callee = getValue(I.getOperand(0));
8005
8006 // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
8007 // We'll also tack the value of the EXEC mask at the end.
8009 Args.reserve(3);
8010
8011 for (unsigned Idx : {2, 3, 1}) {
8012 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8013 I.getOperand(Idx)->getType());
8014 Arg.setAttributes(&I, Idx);
8015 Args.push_back(Arg);
8016 }
8017
8018 assert(Args[0].IsInReg && "SGPR args should be marked inreg");
8019 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
8020 Args[2].IsInReg = true; // EXEC should be inreg
8021
8022 // Forward the flags and any additional arguments.
8023 for (unsigned Idx = 4; Idx < I.arg_size(); ++Idx) {
8024 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8025 I.getOperand(Idx)->getType());
8026 Arg.setAttributes(&I, Idx);
8027 Args.push_back(Arg);
8028 }
8029
8030 TargetLowering::CallLoweringInfo CLI(DAG);
8031 CLI.setDebugLoc(getCurSDLoc())
8032 .setChain(getRoot())
8033 .setCallee(CC, RetTy, Callee, std::move(Args))
8034 .setNoReturn(true)
8035 .setTailCall(true)
8036 .setConvergent(I.isConvergent());
8037 CLI.CB = &I;
8038 std::pair<SDValue, SDValue> Result =
8039 lowerInvokable(CLI, /*EHPadBB*/ nullptr);
8040 (void)Result;
8041 assert(!Result.first.getNode() && !Result.second.getNode() &&
8042 "Should've lowered as tail call");
8043
8044 HasTailCall = true;
8045 return;
8046 }
8047 case Intrinsic::amdgcn_call_whole_wave: {
8049 bool isTailCall = I.isTailCall();
8050
8051 // The first argument is the callee. Skip it when assembling the call args.
8052 for (unsigned Idx = 1; Idx < I.arg_size(); ++Idx) {
8053 TargetLowering::ArgListEntry Arg(getValue(I.getArgOperand(Idx)),
8054 I.getArgOperand(Idx)->getType());
8055 Arg.setAttributes(&I, Idx);
8056
8057 // If we have an explicit sret argument that is an Instruction, (i.e., it
8058 // might point to function-local memory), we can't meaningfully tail-call.
8059 if (Arg.IsSRet && isa<Instruction>(I.getArgOperand(Idx)))
8060 isTailCall = false;
8061
8062 Args.push_back(Arg);
8063 }
8064
8065 SDValue ConvControlToken;
8066 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8067 auto *Token = Bundle->Inputs[0].get();
8068 ConvControlToken = getValue(Token);
8069 }
8070
8071 TargetLowering::CallLoweringInfo CLI(DAG);
8072 CLI.setDebugLoc(getCurSDLoc())
8073 .setChain(getRoot())
8074 .setCallee(CallingConv::AMDGPU_Gfx_WholeWave, I.getType(),
8075 getValue(I.getArgOperand(0)), std::move(Args))
8076 .setTailCall(isTailCall && canTailCall(I))
8077 .setIsPreallocated(
8078 I.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8079 .setConvergent(I.isConvergent())
8080 .setConvergenceControlToken(ConvControlToken);
8081 CLI.CB = &I;
8082
8083 std::pair<SDValue, SDValue> Result =
8084 lowerInvokable(CLI, /*EHPadBB=*/nullptr);
8085
8086 if (Result.first.getNode())
8087 setValue(&I, Result.first);
8088 return;
8089 }
8090 case Intrinsic::ptrmask: {
8091 SDValue Ptr = getValue(I.getOperand(0));
8092 SDValue Mask = getValue(I.getOperand(1));
8093
8094 // On arm64_32, pointers are 32 bits when stored in memory, but
8095 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to
8096 // match the index type, but the pointer is 64 bits, so the mask must be
8097 // zero-extended up to 64 bits to match the pointer.
8098 EVT PtrVT =
8099 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8100 EVT MemVT =
8101 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8102 assert(PtrVT == Ptr.getValueType());
8103 if (Mask.getValueType().getFixedSizeInBits() < MemVT.getFixedSizeInBits()) {
8104 // For AMDGPU buffer descriptors the mask is 48 bits, but the pointer is
8105 // 128-bit, so we have to pad the mask with ones for unused bits.
8106 auto HighOnes = DAG.getNode(
8107 ISD::SHL, sdl, PtrVT, DAG.getAllOnesConstant(sdl, PtrVT),
8108 DAG.getShiftAmountConstant(Mask.getValueType().getFixedSizeInBits(),
8109 PtrVT, sdl));
8110 Mask = DAG.getNode(ISD::OR, sdl, PtrVT,
8111 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8112 } else if (Mask.getValueType() != PtrVT)
8113 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8114
8115 assert(Mask.getValueType() == PtrVT);
8116 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
8117 return;
8118 }
8119 case Intrinsic::threadlocal_address: {
8120 setValue(&I, getValue(I.getOperand(0)));
8121 return;
8122 }
8123 case Intrinsic::get_active_lane_mask: {
8124 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8125 SDValue Index = getValue(I.getOperand(0));
8126 SDValue TripCount = getValue(I.getOperand(1));
8127 EVT ElementVT = Index.getValueType();
8128
8129 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
8130 setValue(&I, DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, sdl, CCVT, Index,
8131 TripCount));
8132 return;
8133 }
8134
8135 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
8136 CCVT.getVectorElementCount());
8137
8138 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
8139 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
8140 SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
8141 SDValue VectorInduction = DAG.getNode(
8142 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
8143 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
8144 VectorTripCount, ISD::CondCode::SETULT);
8145 setValue(&I, SetCC);
8146 return;
8147 }
8148 case Intrinsic::experimental_get_vector_length: {
8149 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
8150 "Expected positive VF");
8151 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
8152 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
8153
8154 SDValue Count = getValue(I.getOperand(0));
8155 EVT CountVT = Count.getValueType();
8156
8157 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
8158 visitTargetIntrinsic(I, Intrinsic);
8159 return;
8160 }
8161
8162 // Expand to a umin between the trip count and the maximum elements the type
8163 // can hold.
8164 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8165
8166 // Extend the trip count to at least the result VT.
8167 if (CountVT.bitsLT(VT)) {
8168 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
8169 CountVT = VT;
8170 }
8171
8172 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
8173 ElementCount::get(VF, IsScalable));
8174
8175 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
8176 // Clip to the result type if needed.
8177 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
8178
8179 setValue(&I, Trunc);
8180 return;
8181 }
8182 case Intrinsic::vector_partial_reduce_add: {
8183 SDValue Acc = getValue(I.getOperand(0));
8184 SDValue Input = getValue(I.getOperand(1));
8185 setValue(&I,
8186 DAG.getNode(ISD::PARTIAL_REDUCE_UMLA, sdl, Acc.getValueType(), Acc,
8187 Input, DAG.getConstant(1, sdl, Input.getValueType())));
8188 return;
8189 }
8190 case Intrinsic::vector_partial_reduce_fadd: {
8191 SDValue Acc = getValue(I.getOperand(0));
8192 SDValue Input = getValue(I.getOperand(1));
8193 setValue(&I, DAG.getNode(
8194 ISD::PARTIAL_REDUCE_FMLA, sdl, Acc.getValueType(), Acc,
8195 Input, DAG.getConstantFP(1.0, sdl, Input.getValueType())));
8196 return;
8197 }
8198 case Intrinsic::experimental_cttz_elts: {
8199 auto DL = getCurSDLoc();
8200 SDValue Op = getValue(I.getOperand(0));
8201 EVT OpVT = Op.getValueType();
8202
8203 if (!TLI.shouldExpandCttzElements(OpVT)) {
8204 visitTargetIntrinsic(I, Intrinsic);
8205 return;
8206 }
8207
8208 if (OpVT.getScalarType() != MVT::i1) {
8209 // Compare the input vector elements to zero & use to count trailing zeros
8210 SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8211 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8212 OpVT.getVectorElementCount());
8213 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8214 }
8215
8216 // If the zero-is-poison flag is set, we can assume the upper limit
8217 // of the result is VF-1.
8218 bool ZeroIsPoison =
8219 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8220 ConstantRange VScaleRange(1, true); // Dummy value.
8221 if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8222 VScaleRange = getVScaleRange(I.getCaller(), 64);
8223 unsigned EltWidth = TLI.getBitWidthForCttzElements(
8224 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8225
8226 MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8227
8228 // Create the new vector type & get the vector length
8229 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8230 OpVT.getVectorElementCount());
8231
8232 SDValue VL =
8233 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8234
8235 SDValue StepVec = DAG.getStepVector(DL, NewVT);
8236 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8237 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8238 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8239 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8240 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8241 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8242
8243 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8244 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8245
8246 setValue(&I, Ret);
8247 return;
8248 }
8249 case Intrinsic::vector_insert: {
8250 SDValue Vec = getValue(I.getOperand(0));
8251 SDValue SubVec = getValue(I.getOperand(1));
8252 SDValue Index = getValue(I.getOperand(2));
8253
8254 // The intrinsic's index type is i64, but the SDNode requires an index type
8255 // suitable for the target. Convert the index as required.
8256 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8257 if (Index.getValueType() != VectorIdxTy)
8258 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8259
8260 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8261 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8262 Index));
8263 return;
8264 }
8265 case Intrinsic::vector_extract: {
8266 SDValue Vec = getValue(I.getOperand(0));
8267 SDValue Index = getValue(I.getOperand(1));
8268 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8269
8270 // The intrinsic's index type is i64, but the SDNode requires an index type
8271 // suitable for the target. Convert the index as required.
8272 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8273 if (Index.getValueType() != VectorIdxTy)
8274 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8275
8276 setValue(&I,
8277 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8278 return;
8279 }
8280 case Intrinsic::experimental_vector_match: {
8281 SDValue Op1 = getValue(I.getOperand(0));
8282 SDValue Op2 = getValue(I.getOperand(1));
8283 SDValue Mask = getValue(I.getOperand(2));
8284 EVT Op1VT = Op1.getValueType();
8285 EVT Op2VT = Op2.getValueType();
8286 EVT ResVT = Mask.getValueType();
8287 unsigned SearchSize = Op2VT.getVectorNumElements();
8288
8289 // If the target has native support for this vector match operation, lower
8290 // the intrinsic untouched; otherwise, expand it below.
8291 if (!TLI.shouldExpandVectorMatch(Op1VT, SearchSize)) {
8292 visitTargetIntrinsic(I, Intrinsic);
8293 return;
8294 }
8295
8296 SDValue Ret = DAG.getConstant(0, sdl, ResVT);
8297
8298 for (unsigned i = 0; i < SearchSize; ++i) {
8299 SDValue Op2Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
8300 Op2VT.getVectorElementType(), Op2,
8301 DAG.getVectorIdxConstant(i, sdl));
8302 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, sdl, Op1VT, Op2Elem);
8303 SDValue Cmp = DAG.getSetCC(sdl, ResVT, Op1, Splat, ISD::SETEQ);
8304 Ret = DAG.getNode(ISD::OR, sdl, ResVT, Ret, Cmp);
8305 }
8306
8307 setValue(&I, DAG.getNode(ISD::AND, sdl, ResVT, Ret, Mask));
8308 return;
8309 }
8310 case Intrinsic::vector_reverse:
8311 visitVectorReverse(I);
8312 return;
8313 case Intrinsic::vector_splice:
8314 visitVectorSplice(I);
8315 return;
8316 case Intrinsic::callbr_landingpad:
8317 visitCallBrLandingPad(I);
8318 return;
8319 case Intrinsic::vector_interleave2:
8320 visitVectorInterleave(I, 2);
8321 return;
8322 case Intrinsic::vector_interleave3:
8323 visitVectorInterleave(I, 3);
8324 return;
8325 case Intrinsic::vector_interleave4:
8326 visitVectorInterleave(I, 4);
8327 return;
8328 case Intrinsic::vector_interleave5:
8329 visitVectorInterleave(I, 5);
8330 return;
8331 case Intrinsic::vector_interleave6:
8332 visitVectorInterleave(I, 6);
8333 return;
8334 case Intrinsic::vector_interleave7:
8335 visitVectorInterleave(I, 7);
8336 return;
8337 case Intrinsic::vector_interleave8:
8338 visitVectorInterleave(I, 8);
8339 return;
8340 case Intrinsic::vector_deinterleave2:
8341 visitVectorDeinterleave(I, 2);
8342 return;
8343 case Intrinsic::vector_deinterleave3:
8344 visitVectorDeinterleave(I, 3);
8345 return;
8346 case Intrinsic::vector_deinterleave4:
8347 visitVectorDeinterleave(I, 4);
8348 return;
8349 case Intrinsic::vector_deinterleave5:
8350 visitVectorDeinterleave(I, 5);
8351 return;
8352 case Intrinsic::vector_deinterleave6:
8353 visitVectorDeinterleave(I, 6);
8354 return;
8355 case Intrinsic::vector_deinterleave7:
8356 visitVectorDeinterleave(I, 7);
8357 return;
8358 case Intrinsic::vector_deinterleave8:
8359 visitVectorDeinterleave(I, 8);
8360 return;
8361 case Intrinsic::experimental_vector_compress:
8362 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8363 getValue(I.getArgOperand(0)).getValueType(),
8364 getValue(I.getArgOperand(0)),
8365 getValue(I.getArgOperand(1)),
8366 getValue(I.getArgOperand(2)), Flags));
8367 return;
8368 case Intrinsic::experimental_convergence_anchor:
8369 case Intrinsic::experimental_convergence_entry:
8370 case Intrinsic::experimental_convergence_loop:
8371 visitConvergenceControl(I, Intrinsic);
8372 return;
8373 case Intrinsic::experimental_vector_histogram_add: {
8374 visitVectorHistogram(I, Intrinsic);
8375 return;
8376 }
8377 case Intrinsic::experimental_vector_extract_last_active: {
8378 visitVectorExtractLastActive(I, Intrinsic);
8379 return;
8380 }
8381 case Intrinsic::loop_dependence_war_mask:
8382 setValue(&I,
8384 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8385 getValue(I.getOperand(1)), getValue(I.getOperand(2))));
8386 return;
8387 case Intrinsic::loop_dependence_raw_mask:
8388 setValue(&I,
8390 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8391 getValue(I.getOperand(1)), getValue(I.getOperand(2))));
8392 return;
8393 }
8394}
8395
8396void SelectionDAGBuilder::pushFPOpOutChain(SDValue Result,
8398 assert(Result.getNode()->getNumValues() == 2);
8399 SDValue OutChain = Result.getValue(1);
8400 assert(OutChain.getValueType() == MVT::Other);
8401
8402 // Instead of updating the root immediately, push the produced chain to the
8403 // appropriate list, deferring the update until the root is requested. In this
8404 // case, the nodes from the lists are chained using TokenFactor, indicating
8405 // that the operations are independent.
8406 //
8407 // In particular, the root is updated before any call that might access the
8408 // floating-point environment, except for constrained intrinsics.
8409 switch (EB) {
8412 PendingConstrainedFP.push_back(OutChain);
8413 break;
8415 PendingConstrainedFPStrict.push_back(OutChain);
8416 break;
8417 }
8418}
8419
8420void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8421 const ConstrainedFPIntrinsic &FPI) {
8422 SDLoc sdl = getCurSDLoc();
8423
8424 // We do not need to serialize constrained FP intrinsics against
8425 // each other or against (nonvolatile) loads, so they can be
8426 // chained like loads.
8428 SDValue Chain = getFPOperationRoot(EB);
8430 Opers.push_back(Chain);
8431 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8432 Opers.push_back(getValue(FPI.getArgOperand(I)));
8433
8434 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8435 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8436 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8437
8438 SDNodeFlags Flags;
8440 Flags.setNoFPExcept(true);
8441
8442 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8443 Flags.copyFMF(*FPOp);
8444
8445 unsigned Opcode;
8446 switch (FPI.getIntrinsicID()) {
8447 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
8448#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8449 case Intrinsic::INTRINSIC: \
8450 Opcode = ISD::STRICT_##DAGN; \
8451 break;
8452#include "llvm/IR/ConstrainedOps.def"
8453 case Intrinsic::experimental_constrained_fmuladd: {
8454 Opcode = ISD::STRICT_FMA;
8455 // Break fmuladd into fmul and fadd.
8456 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8457 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8458 Opers.pop_back();
8459 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8460 pushFPOpOutChain(Mul, EB);
8461 Opcode = ISD::STRICT_FADD;
8462 Opers.clear();
8463 Opers.push_back(Mul.getValue(1));
8464 Opers.push_back(Mul.getValue(0));
8465 Opers.push_back(getValue(FPI.getArgOperand(2)));
8466 }
8467 break;
8468 }
8469 }
8470
8471 // A few strict DAG nodes carry additional operands that are not
8472 // set up by the default code above.
8473 switch (Opcode) {
8474 default: break;
8476 Opers.push_back(
8477 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8478 break;
8479 case ISD::STRICT_FSETCC:
8480 case ISD::STRICT_FSETCCS: {
8482 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8483 if (TM.Options.NoNaNsFPMath)
8484 Condition = getFCmpCodeWithoutNaN(Condition);
8485 Opers.push_back(DAG.getCondCode(Condition));
8486 break;
8487 }
8488 }
8489
8490 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8491 pushFPOpOutChain(Result, EB);
8492
8493 SDValue FPResult = Result.getValue(0);
8494 setValue(&FPI, FPResult);
8495}
8496
8497static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8498 std::optional<unsigned> ResOPC;
8499 switch (VPIntrin.getIntrinsicID()) {
8500 case Intrinsic::vp_ctlz: {
8501 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8502 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8503 break;
8504 }
8505 case Intrinsic::vp_cttz: {
8506 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8507 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8508 break;
8509 }
8510 case Intrinsic::vp_cttz_elts: {
8511 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8512 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8513 break;
8514 }
8515#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8516 case Intrinsic::VPID: \
8517 ResOPC = ISD::VPSD; \
8518 break;
8519#include "llvm/IR/VPIntrinsics.def"
8520 }
8521
8522 if (!ResOPC)
8524 "Inconsistency: no SDNode available for this VPIntrinsic!");
8525
8526 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8527 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8528 if (VPIntrin.getFastMathFlags().allowReassoc())
8529 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8530 : ISD::VP_REDUCE_FMUL;
8531 }
8532
8533 return *ResOPC;
8534}
8535
8536void SelectionDAGBuilder::visitVPLoad(
8537 const VPIntrinsic &VPIntrin, EVT VT,
8538 const SmallVectorImpl<SDValue> &OpValues) {
8539 SDLoc DL = getCurSDLoc();
8540 Value *PtrOperand = VPIntrin.getArgOperand(0);
8541 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8542 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8543 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8544 SDValue LD;
8545 // Do not serialize variable-length loads of constant memory with
8546 // anything.
8547 if (!Alignment)
8548 Alignment = DAG.getEVTAlign(VT);
8549 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8550 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8551 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8552 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8553 MachineMemOperand::Flags MMOFlags =
8554 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8555 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8556 MachinePointerInfo(PtrOperand), MMOFlags,
8557 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8558 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8559 MMO, false /*IsExpanding */);
8560 if (AddToChain)
8561 PendingLoads.push_back(LD.getValue(1));
8562 setValue(&VPIntrin, LD);
8563}
8564
8565void SelectionDAGBuilder::visitVPLoadFF(
8566 const VPIntrinsic &VPIntrin, EVT VT, EVT EVLVT,
8567 const SmallVectorImpl<SDValue> &OpValues) {
8568 assert(OpValues.size() == 3 && "Unexpected number of operands");
8569 SDLoc DL = getCurSDLoc();
8570 Value *PtrOperand = VPIntrin.getArgOperand(0);
8571 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8572 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8573 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
8574 SDValue LD;
8575 // Do not serialize variable-length loads of constant memory with
8576 // anything.
8577 if (!Alignment)
8578 Alignment = DAG.getEVTAlign(VT);
8579 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8580 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8581 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8582 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8583 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8584 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8585 LD = DAG.getLoadFFVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8586 MMO);
8587 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, EVLVT, LD.getValue(1));
8588 if (AddToChain)
8589 PendingLoads.push_back(LD.getValue(2));
8590 setValue(&VPIntrin, DAG.getMergeValues({LD.getValue(0), Trunc}, DL));
8591}
8592
8593void SelectionDAGBuilder::visitVPGather(
8594 const VPIntrinsic &VPIntrin, EVT VT,
8595 const SmallVectorImpl<SDValue> &OpValues) {
8596 SDLoc DL = getCurSDLoc();
8597 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8598 Value *PtrOperand = VPIntrin.getArgOperand(0);
8599 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8600 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8601 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8602 SDValue LD;
8603 if (!Alignment)
8604 Alignment = DAG.getEVTAlign(VT.getScalarType());
8605 unsigned AS =
8606 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8607 MachineMemOperand::Flags MMOFlags =
8608 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8609 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8610 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8611 *Alignment, AAInfo, Ranges);
8612 SDValue Base, Index, Scale;
8613 bool UniformBase =
8614 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8615 VT.getScalarStoreSize());
8616 if (!UniformBase) {
8617 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8618 Index = getValue(PtrOperand);
8619 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8620 }
8621 EVT IdxVT = Index.getValueType();
8622 EVT EltTy = IdxVT.getVectorElementType();
8623 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8624 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8625 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8626 }
8627 LD = DAG.getGatherVP(
8628 DAG.getVTList(VT, MVT::Other), VT, DL,
8629 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8631 PendingLoads.push_back(LD.getValue(1));
8632 setValue(&VPIntrin, LD);
8633}
8634
8635void SelectionDAGBuilder::visitVPStore(
8636 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8637 SDLoc DL = getCurSDLoc();
8638 Value *PtrOperand = VPIntrin.getArgOperand(1);
8639 EVT VT = OpValues[0].getValueType();
8640 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8641 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8642 SDValue ST;
8643 if (!Alignment)
8644 Alignment = DAG.getEVTAlign(VT);
8645 SDValue Ptr = OpValues[1];
8646 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8647 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8648 MachineMemOperand::Flags MMOFlags =
8649 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8650 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8651 MachinePointerInfo(PtrOperand), MMOFlags,
8652 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8653 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8654 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8655 /* IsTruncating */ false, /*IsCompressing*/ false);
8656 DAG.setRoot(ST);
8657 setValue(&VPIntrin, ST);
8658}
8659
8660void SelectionDAGBuilder::visitVPScatter(
8661 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8662 SDLoc DL = getCurSDLoc();
8663 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8664 Value *PtrOperand = VPIntrin.getArgOperand(1);
8665 EVT VT = OpValues[0].getValueType();
8666 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8667 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8668 SDValue ST;
8669 if (!Alignment)
8670 Alignment = DAG.getEVTAlign(VT.getScalarType());
8671 unsigned AS =
8672 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8673 MachineMemOperand::Flags MMOFlags =
8674 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8675 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8676 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8677 *Alignment, AAInfo);
8678 SDValue Base, Index, Scale;
8679 bool UniformBase =
8680 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8681 VT.getScalarStoreSize());
8682 if (!UniformBase) {
8683 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8684 Index = getValue(PtrOperand);
8685 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8686 }
8687 EVT IdxVT = Index.getValueType();
8688 EVT EltTy = IdxVT.getVectorElementType();
8689 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8690 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8691 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8692 }
8693 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8694 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8695 OpValues[2], OpValues[3]},
8696 MMO, ISD::SIGNED_SCALED);
8697 DAG.setRoot(ST);
8698 setValue(&VPIntrin, ST);
8699}
8700
8701void SelectionDAGBuilder::visitVPStridedLoad(
8702 const VPIntrinsic &VPIntrin, EVT VT,
8703 const SmallVectorImpl<SDValue> &OpValues) {
8704 SDLoc DL = getCurSDLoc();
8705 Value *PtrOperand = VPIntrin.getArgOperand(0);
8706 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8707 if (!Alignment)
8708 Alignment = DAG.getEVTAlign(VT.getScalarType());
8709 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8710 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8711 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8712 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8713 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8714 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8715 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8716 MachineMemOperand::Flags MMOFlags =
8717 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8718 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8719 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8720 *Alignment, AAInfo, Ranges);
8721
8722 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8723 OpValues[2], OpValues[3], MMO,
8724 false /*IsExpanding*/);
8725
8726 if (AddToChain)
8727 PendingLoads.push_back(LD.getValue(1));
8728 setValue(&VPIntrin, LD);
8729}
8730
8731void SelectionDAGBuilder::visitVPStridedStore(
8732 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8733 SDLoc DL = getCurSDLoc();
8734 Value *PtrOperand = VPIntrin.getArgOperand(1);
8735 EVT VT = OpValues[0].getValueType();
8736 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8737 if (!Alignment)
8738 Alignment = DAG.getEVTAlign(VT.getScalarType());
8739 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8740 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8741 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8742 MachineMemOperand::Flags MMOFlags =
8743 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8744 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8745 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8746 *Alignment, AAInfo);
8747
8748 SDValue ST = DAG.getStridedStoreVP(
8749 getMemoryRoot(), DL, OpValues[0], OpValues[1],
8750 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8751 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8752 /*IsCompressing*/ false);
8753
8754 DAG.setRoot(ST);
8755 setValue(&VPIntrin, ST);
8756}
8757
8758void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8759 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8760 SDLoc DL = getCurSDLoc();
8761
8762 ISD::CondCode Condition;
8764 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8765 if (IsFP) {
8766 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8767 // flags, but calls that don't return floating-point types can't be
8768 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8769 Condition = getFCmpCondCode(CondCode);
8770 if (TM.Options.NoNaNsFPMath)
8771 Condition = getFCmpCodeWithoutNaN(Condition);
8772 } else {
8773 Condition = getICmpCondCode(CondCode);
8774 }
8775
8776 SDValue Op1 = getValue(VPIntrin.getOperand(0));
8777 SDValue Op2 = getValue(VPIntrin.getOperand(1));
8778 // #2 is the condition code
8779 SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8780 SDValue EVL = getValue(VPIntrin.getOperand(4));
8781 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8782 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8783 "Unexpected target EVL type");
8784 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8785
8786 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8787 VPIntrin.getType());
8788 setValue(&VPIntrin,
8789 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8790}
8791
8792void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8793 const VPIntrinsic &VPIntrin) {
8794 SDLoc DL = getCurSDLoc();
8795 unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8796
8797 auto IID = VPIntrin.getIntrinsicID();
8798
8799 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8800 return visitVPCmp(*CmpI);
8801
8802 SmallVector<EVT, 4> ValueVTs;
8803 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8804 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8805 SDVTList VTs = DAG.getVTList(ValueVTs);
8806
8807 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8808
8809 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8810 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8811 "Unexpected target EVL type");
8812
8813 // Request operands.
8814 SmallVector<SDValue, 7> OpValues;
8815 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8816 auto Op = getValue(VPIntrin.getArgOperand(I));
8817 if (I == EVLParamPos)
8818 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8819 OpValues.push_back(Op);
8820 }
8821
8822 switch (Opcode) {
8823 default: {
8824 SDNodeFlags SDFlags;
8825 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8826 SDFlags.copyFMF(*FPMO);
8827 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8828 setValue(&VPIntrin, Result);
8829 break;
8830 }
8831 case ISD::VP_LOAD:
8832 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8833 break;
8834 case ISD::VP_LOAD_FF:
8835 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8836 break;
8837 case ISD::VP_GATHER:
8838 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8839 break;
8840 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8841 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8842 break;
8843 case ISD::VP_STORE:
8844 visitVPStore(VPIntrin, OpValues);
8845 break;
8846 case ISD::VP_SCATTER:
8847 visitVPScatter(VPIntrin, OpValues);
8848 break;
8849 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8850 visitVPStridedStore(VPIntrin, OpValues);
8851 break;
8852 case ISD::VP_FMULADD: {
8853 assert(OpValues.size() == 5 && "Unexpected number of operands");
8854 SDNodeFlags SDFlags;
8855 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8856 SDFlags.copyFMF(*FPMO);
8857 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8858 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8859 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8860 } else {
8861 SDValue Mul = DAG.getNode(
8862 ISD::VP_FMUL, DL, VTs,
8863 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8864 SDValue Add =
8865 DAG.getNode(ISD::VP_FADD, DL, VTs,
8866 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8867 setValue(&VPIntrin, Add);
8868 }
8869 break;
8870 }
8871 case ISD::VP_IS_FPCLASS: {
8872 const DataLayout DLayout = DAG.getDataLayout();
8873 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8874 auto Constant = OpValues[1]->getAsZExtVal();
8875 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8876 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8877 {OpValues[0], Check, OpValues[2], OpValues[3]});
8878 setValue(&VPIntrin, V);
8879 return;
8880 }
8881 case ISD::VP_INTTOPTR: {
8882 SDValue N = OpValues[0];
8883 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8884 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8885 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8886 OpValues[2]);
8887 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8888 OpValues[2]);
8889 setValue(&VPIntrin, N);
8890 break;
8891 }
8892 case ISD::VP_PTRTOINT: {
8893 SDValue N = OpValues[0];
8894 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8895 VPIntrin.getType());
8896 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8897 VPIntrin.getOperand(0)->getType());
8898 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8899 OpValues[2]);
8900 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8901 OpValues[2]);
8902 setValue(&VPIntrin, N);
8903 break;
8904 }
8905 case ISD::VP_ABS:
8906 case ISD::VP_CTLZ:
8907 case ISD::VP_CTLZ_ZERO_UNDEF:
8908 case ISD::VP_CTTZ:
8909 case ISD::VP_CTTZ_ZERO_UNDEF:
8910 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8911 case ISD::VP_CTTZ_ELTS: {
8912 SDValue Result =
8913 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8914 setValue(&VPIntrin, Result);
8915 break;
8916 }
8917 }
8918}
8919
8920SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8921 const BasicBlock *EHPadBB,
8922 MCSymbol *&BeginLabel) {
8923 MachineFunction &MF = DAG.getMachineFunction();
8924
8925 // Insert a label before the invoke call to mark the try range. This can be
8926 // used to detect deletion of the invoke via the MachineModuleInfo.
8927 BeginLabel = MF.getContext().createTempSymbol();
8928
8929 // For SjLj, keep track of which landing pads go with which invokes
8930 // so as to maintain the ordering of pads in the LSDA.
8931 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8932 if (CallSiteIndex) {
8933 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8934 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
8935
8936 // Now that the call site is handled, stop tracking it.
8937 FuncInfo.setCurrentCallSite(0);
8938 }
8939
8940 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8941}
8942
8943SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8944 const BasicBlock *EHPadBB,
8945 MCSymbol *BeginLabel) {
8946 assert(BeginLabel && "BeginLabel should've been set");
8947
8948 MachineFunction &MF = DAG.getMachineFunction();
8949
8950 // Insert a label at the end of the invoke call to mark the try range. This
8951 // can be used to detect deletion of the invoke via the MachineModuleInfo.
8952 MCSymbol *EndLabel = MF.getContext().createTempSymbol();
8953 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8954
8955 // Inform MachineModuleInfo of range.
8956 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8957 // There is a platform (e.g. wasm) that uses funclet style IR but does not
8958 // actually use outlined funclets and their LSDA info style.
8959 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8960 assert(II && "II should've been set");
8961 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8962 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8963 } else if (!isScopedEHPersonality(Pers)) {
8964 assert(EHPadBB);
8965 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
8966 }
8967
8968 return Chain;
8969}
8970
8971std::pair<SDValue, SDValue>
8973 const BasicBlock *EHPadBB) {
8974 MCSymbol *BeginLabel = nullptr;
8975
8976 if (EHPadBB) {
8977 // Both PendingLoads and PendingExports must be flushed here;
8978 // this call might not return.
8979 (void)getRoot();
8980 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8981 CLI.setChain(getRoot());
8982 }
8983
8984 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8985 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8986
8987 assert((CLI.IsTailCall || Result.second.getNode()) &&
8988 "Non-null chain expected with non-tail call!");
8989 assert((Result.second.getNode() || !Result.first.getNode()) &&
8990 "Null value expected with tail call!");
8991
8992 if (!Result.second.getNode()) {
8993 // As a special case, a null chain means that a tail call has been emitted
8994 // and the DAG root is already updated.
8995 HasTailCall = true;
8996
8997 // Since there's no actual continuation from this block, nothing can be
8998 // relying on us setting vregs for them.
8999 PendingExports.clear();
9000 } else {
9001 DAG.setRoot(Result.second);
9002 }
9003
9004 if (EHPadBB) {
9005 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
9006 BeginLabel));
9007 Result.second = getRoot();
9008 }
9009
9010 return Result;
9011}
9012
9014 bool isMustTailCall = CB.isMustTailCall();
9015
9016 // Avoid emitting tail calls in functions with the disable-tail-calls
9017 // attribute.
9018 const Function *Caller = CB.getParent()->getParent();
9019 if (!isMustTailCall &&
9020 Caller->getFnAttribute("disable-tail-calls").getValueAsBool())
9021 return false;
9022
9023 // We can't tail call inside a function with a swifterror argument. Lowering
9024 // does not support this yet. It would have to move into the swifterror
9025 // register before the call.
9026 if (DAG.getTargetLoweringInfo().supportSwiftError() &&
9027 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
9028 return false;
9029
9030 // Check if target-independent constraints permit a tail call here.
9031 // Target-dependent constraints are checked within TLI->LowerCallTo.
9032 return isInTailCallPosition(CB, DAG.getTarget());
9033}
9034
9036 bool isTailCall, bool isMustTailCall,
9037 const BasicBlock *EHPadBB,
9038 const TargetLowering::PtrAuthInfo *PAI) {
9039 auto &DL = DAG.getDataLayout();
9040 FunctionType *FTy = CB.getFunctionType();
9041 Type *RetTy = CB.getType();
9042
9044 Args.reserve(CB.arg_size());
9045
9046 const Value *SwiftErrorVal = nullptr;
9047 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9048
9049 if (isTailCall)
9050 isTailCall = canTailCall(CB);
9051
9052 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
9053 const Value *V = *I;
9054
9055 // Skip empty types
9056 if (V->getType()->isEmptyTy())
9057 continue;
9058
9059 SDValue ArgNode = getValue(V);
9060 TargetLowering::ArgListEntry Entry(ArgNode, V->getType());
9061 Entry.setAttributes(&CB, I - CB.arg_begin());
9062
9063 // Use swifterror virtual register as input to the call.
9064 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
9065 SwiftErrorVal = V;
9066 // We find the virtual register for the actual swifterror argument.
9067 // Instead of using the Value, we use the virtual register instead.
9068 Entry.Node =
9069 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
9070 EVT(TLI.getPointerTy(DL)));
9071 }
9072
9073 Args.push_back(Entry);
9074
9075 // If we have an explicit sret argument that is an Instruction, (i.e., it
9076 // might point to function-local memory), we can't meaningfully tail-call.
9077 if (Entry.IsSRet && isa<Instruction>(V))
9078 isTailCall = false;
9079 }
9080
9081 // If call site has a cfguardtarget operand bundle, create and add an
9082 // additional ArgListEntry.
9083 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
9084 Value *V = Bundle->Inputs[0];
9086 Entry.IsCFGuardTarget = true;
9087 Args.push_back(Entry);
9088 }
9089
9090 // Disable tail calls if there is an swifterror argument. Targets have not
9091 // been updated to support tail calls.
9092 if (TLI.supportSwiftError() && SwiftErrorVal)
9093 isTailCall = false;
9094
9095 ConstantInt *CFIType = nullptr;
9096 if (CB.isIndirectCall()) {
9097 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
9098 if (!TLI.supportKCFIBundles())
9100 "Target doesn't support calls with kcfi operand bundles.");
9101 CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
9102 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
9103 }
9104 }
9105
9106 SDValue ConvControlToken;
9107 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
9108 auto *Token = Bundle->Inputs[0].get();
9109 ConvControlToken = getValue(Token);
9110 }
9111
9114 .setChain(getRoot())
9115 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9116 .setTailCall(isTailCall)
9120 .setCFIType(CFIType)
9121 .setConvergenceControlToken(ConvControlToken);
9122
9123 // Set the pointer authentication info if we have it.
9124 if (PAI) {
9125 if (!TLI.supportPtrAuthBundles())
9127 "This target doesn't support calls with ptrauth operand bundles.");
9128 CLI.setPtrAuth(*PAI);
9129 }
9130
9131 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9132
9133 if (Result.first.getNode()) {
9134 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
9135 setValue(&CB, Result.first);
9136 }
9137
9138 // The last element of CLI.InVals has the SDValue for swifterror return.
9139 // Here we copy it to a virtual register and update SwiftErrorMap for
9140 // book-keeping.
9141 if (SwiftErrorVal && TLI.supportSwiftError()) {
9142 // Get the last element of InVals.
9143 SDValue Src = CLI.InVals.back();
9144 Register VReg =
9145 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
9146 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
9147 DAG.setRoot(CopyNode);
9148 }
9149}
9150
9151static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
9152 SelectionDAGBuilder &Builder) {
9153 // Check to see if this load can be trivially constant folded, e.g. if the
9154 // input is from a string literal.
9155 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
9156 // Cast pointer to the type we really want to load.
9157 Type *LoadTy =
9158 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
9159 if (LoadVT.isVector())
9160 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
9161 if (const Constant *LoadCst =
9162 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
9163 LoadTy, Builder.DAG.getDataLayout()))
9164 return Builder.getValue(LoadCst);
9165 }
9166
9167 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
9168 // still constant memory, the input chain can be the entry node.
9169 SDValue Root;
9170 bool ConstantMemory = false;
9171
9172 // Do not serialize (non-volatile) loads of constant memory with anything.
9173 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9174 Root = Builder.DAG.getEntryNode();
9175 ConstantMemory = true;
9176 } else {
9177 // Do not serialize non-volatile loads against each other.
9178 Root = Builder.DAG.getRoot();
9179 }
9180
9181 SDValue Ptr = Builder.getValue(PtrVal);
9182 SDValue LoadVal =
9183 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
9184 MachinePointerInfo(PtrVal), Align(1));
9185
9186 if (!ConstantMemory)
9187 Builder.PendingLoads.push_back(LoadVal.getValue(1));
9188 return LoadVal;
9189}
9190
9191/// Record the value for an instruction that produces an integer result,
9192/// converting the type where necessary.
9193void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
9194 SDValue Value,
9195 bool IsSigned) {
9196 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9197 I.getType(), true);
9198 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
9199 setValue(&I, Value);
9200}
9201
9202/// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
9203/// true and lower it. Otherwise return false, and it will be lowered like a
9204/// normal call.
9205/// The caller already checked that \p I calls the appropriate LibFunc with a
9206/// correct prototype.
9207bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
9208 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
9209 const Value *Size = I.getArgOperand(2);
9210 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
9211 if (CSize && CSize->getZExtValue() == 0) {
9212 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9213 I.getType(), true);
9214 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
9215 return true;
9216 }
9217
9218 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9219 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
9220 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
9221 getValue(Size), &I);
9222 if (Res.first.getNode()) {
9223 processIntegerCallValue(I, Res.first, true);
9224 PendingLoads.push_back(Res.second);
9225 return true;
9226 }
9227
9228 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
9229 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
9230 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
9231 return false;
9232
9233 // If the target has a fast compare for the given size, it will return a
9234 // preferred load type for that size. Require that the load VT is legal and
9235 // that the target supports unaligned loads of that type. Otherwise, return
9236 // INVALID.
9237 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
9238 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9239 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
9240 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
9241 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
9242 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
9243 // TODO: Check alignment of src and dest ptrs.
9244 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
9245 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
9246 if (!TLI.isTypeLegal(LVT) ||
9247 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
9248 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
9250 }
9251
9252 return LVT;
9253 };
9254
9255 // This turns into unaligned loads. We only do this if the target natively
9256 // supports the MVT we'll be loading or if it is small enough (<= 4) that
9257 // we'll only produce a small number of byte loads.
9258 MVT LoadVT;
9259 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
9260 switch (NumBitsToCompare) {
9261 default:
9262 return false;
9263 case 16:
9264 LoadVT = MVT::i16;
9265 break;
9266 case 32:
9267 LoadVT = MVT::i32;
9268 break;
9269 case 64:
9270 case 128:
9271 case 256:
9272 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9273 break;
9274 }
9275
9276 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
9277 return false;
9278
9279 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
9280 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9281
9282 // Bitcast to a wide integer type if the loads are vectors.
9283 if (LoadVT.isVector()) {
9284 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9285 LoadL = DAG.getBitcast(CmpVT, LoadL);
9286 LoadR = DAG.getBitcast(CmpVT, LoadR);
9287 }
9288
9289 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9290 processIntegerCallValue(I, Cmp, false);
9291 return true;
9292}
9293
9294/// See if we can lower a memchr call into an optimized form. If so, return
9295/// true and lower it. Otherwise return false, and it will be lowered like a
9296/// normal call.
9297/// The caller already checked that \p I calls the appropriate LibFunc with a
9298/// correct prototype.
9299bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9300 const Value *Src = I.getArgOperand(0);
9301 const Value *Char = I.getArgOperand(1);
9302 const Value *Length = I.getArgOperand(2);
9303
9304 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9305 std::pair<SDValue, SDValue> Res =
9306 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9307 getValue(Src), getValue(Char), getValue(Length),
9308 MachinePointerInfo(Src));
9309 if (Res.first.getNode()) {
9310 setValue(&I, Res.first);
9311 PendingLoads.push_back(Res.second);
9312 return true;
9313 }
9314
9315 return false;
9316}
9317
9318/// See if we can lower a mempcpy call into an optimized form. If so, return
9319/// true and lower it. Otherwise return false, and it will be lowered like a
9320/// normal call.
9321/// The caller already checked that \p I calls the appropriate LibFunc with a
9322/// correct prototype.
9323bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9324 SDValue Dst = getValue(I.getArgOperand(0));
9325 SDValue Src = getValue(I.getArgOperand(1));
9326 SDValue Size = getValue(I.getArgOperand(2));
9327
9328 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9329 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9330 // DAG::getMemcpy needs Alignment to be defined.
9331 Align Alignment = std::min(DstAlign, SrcAlign);
9332
9333 SDLoc sdl = getCurSDLoc();
9334
9335 // In the mempcpy context we need to pass in a false value for isTailCall
9336 // because the return pointer needs to be adjusted by the size of
9337 // the copied memory.
9338 SDValue Root = getMemoryRoot();
9339 SDValue MC = DAG.getMemcpy(
9340 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9341 std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9342 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9343 assert(MC.getNode() != nullptr &&
9344 "** memcpy should not be lowered as TailCall in mempcpy context **");
9345 DAG.setRoot(MC);
9346
9347 // Check if Size needs to be truncated or extended.
9348 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9349
9350 // Adjust return pointer to point just past the last dst byte.
9351 SDValue DstPlusSize = DAG.getMemBasePlusOffset(Dst, Size, sdl);
9352 setValue(&I, DstPlusSize);
9353 return true;
9354}
9355
9356/// See if we can lower a strcpy call into an optimized form. If so, return
9357/// true and lower it, otherwise return false and it will be lowered like a
9358/// normal call.
9359/// The caller already checked that \p I calls the appropriate LibFunc with a
9360/// correct prototype.
9361bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9362 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9363
9364 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9365 std::pair<SDValue, SDValue> Res =
9367 getValue(Arg0), getValue(Arg1),
9368 MachinePointerInfo(Arg0),
9369 MachinePointerInfo(Arg1), isStpcpy);
9370 if (Res.first.getNode()) {
9371 setValue(&I, Res.first);
9372 DAG.setRoot(Res.second);
9373 return true;
9374 }
9375
9376 return false;
9377}
9378
9379/// See if we can lower a strcmp call into an optimized form. If so, return
9380/// true and lower it, otherwise return false and it will be lowered like a
9381/// normal call.
9382/// The caller already checked that \p I calls the appropriate LibFunc with a
9383/// correct prototype.
9384bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9385 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9386
9387 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9388 std::pair<SDValue, SDValue> Res =
9389 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9390 getValue(Arg0), getValue(Arg1),
9391 MachinePointerInfo(Arg0),
9392 MachinePointerInfo(Arg1));
9393 if (Res.first.getNode()) {
9394 processIntegerCallValue(I, Res.first, true);
9395 PendingLoads.push_back(Res.second);
9396 return true;
9397 }
9398
9399 return false;
9400}
9401
9402/// See if we can lower a strlen call into an optimized form. If so, return
9403/// true and lower it, otherwise return false and it will be lowered like a
9404/// normal call.
9405/// The caller already checked that \p I calls the appropriate LibFunc with a
9406/// correct prototype.
9407bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9408 const Value *Arg0 = I.getArgOperand(0);
9409
9410 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9411 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrlen(
9412 DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), &I);
9413 if (Res.first.getNode()) {
9414 processIntegerCallValue(I, Res.first, false);
9415 PendingLoads.push_back(Res.second);
9416 return true;
9417 }
9418
9419 return false;
9420}
9421
9422/// See if we can lower a strnlen call into an optimized form. If so, return
9423/// true and lower it, otherwise return false and it will be lowered like a
9424/// normal call.
9425/// The caller already checked that \p I calls the appropriate LibFunc with a
9426/// correct prototype.
9427bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9428 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9429
9430 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9431 std::pair<SDValue, SDValue> Res =
9432 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9433 getValue(Arg0), getValue(Arg1),
9434 MachinePointerInfo(Arg0));
9435 if (Res.first.getNode()) {
9436 processIntegerCallValue(I, Res.first, false);
9437 PendingLoads.push_back(Res.second);
9438 return true;
9439 }
9440
9441 return false;
9442}
9443
9444/// See if we can lower a unary floating-point operation into an SDNode with
9445/// the specified Opcode. If so, return true and lower it, otherwise return
9446/// false and it will be lowered like a normal call.
9447/// The caller already checked that \p I calls the appropriate LibFunc with a
9448/// correct prototype.
9449bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9450 unsigned Opcode) {
9451 // We already checked this call's prototype; verify it doesn't modify errno.
9452 if (!I.onlyReadsMemory())
9453 return false;
9454
9455 SDNodeFlags Flags;
9456 Flags.copyFMF(cast<FPMathOperator>(I));
9457
9458 SDValue Tmp = getValue(I.getArgOperand(0));
9459 setValue(&I,
9460 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9461 return true;
9462}
9463
9464/// See if we can lower a binary floating-point operation into an SDNode with
9465/// the specified Opcode. If so, return true and lower it. Otherwise return
9466/// false, and it will be lowered like a normal call.
9467/// The caller already checked that \p I calls the appropriate LibFunc with a
9468/// correct prototype.
9469bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9470 unsigned Opcode) {
9471 // We already checked this call's prototype; verify it doesn't modify errno.
9472 if (!I.onlyReadsMemory())
9473 return false;
9474
9475 SDNodeFlags Flags;
9476 Flags.copyFMF(cast<FPMathOperator>(I));
9477
9478 SDValue Tmp0 = getValue(I.getArgOperand(0));
9479 SDValue Tmp1 = getValue(I.getArgOperand(1));
9480 EVT VT = Tmp0.getValueType();
9481 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9482 return true;
9483}
9484
9485void SelectionDAGBuilder::visitCall(const CallInst &I) {
9486 // Handle inline assembly differently.
9487 if (I.isInlineAsm()) {
9488 visitInlineAsm(I);
9489 return;
9490 }
9491
9493
9494 if (Function *F = I.getCalledFunction()) {
9495 if (F->isDeclaration()) {
9496 // Is this an LLVM intrinsic?
9497 if (unsigned IID = F->getIntrinsicID()) {
9498 visitIntrinsicCall(I, IID);
9499 return;
9500 }
9501 }
9502
9503 // Check for well-known libc/libm calls. If the function is internal, it
9504 // can't be a library call. Don't do the check if marked as nobuiltin for
9505 // some reason or the call site requires strict floating point semantics.
9506 LibFunc Func;
9507 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9508 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9509 LibInfo->hasOptimizedCodeGen(Func)) {
9510 switch (Func) {
9511 default: break;
9512 case LibFunc_bcmp:
9513 if (visitMemCmpBCmpCall(I))
9514 return;
9515 break;
9516 case LibFunc_copysign:
9517 case LibFunc_copysignf:
9518 case LibFunc_copysignl:
9519 // We already checked this call's prototype; verify it doesn't modify
9520 // errno.
9521 if (I.onlyReadsMemory()) {
9522 SDValue LHS = getValue(I.getArgOperand(0));
9523 SDValue RHS = getValue(I.getArgOperand(1));
9525 LHS.getValueType(), LHS, RHS));
9526 return;
9527 }
9528 break;
9529 case LibFunc_fabs:
9530 case LibFunc_fabsf:
9531 case LibFunc_fabsl:
9532 if (visitUnaryFloatCall(I, ISD::FABS))
9533 return;
9534 break;
9535 case LibFunc_fmin:
9536 case LibFunc_fminf:
9537 case LibFunc_fminl:
9538 if (visitBinaryFloatCall(I, ISD::FMINNUM))
9539 return;
9540 break;
9541 case LibFunc_fmax:
9542 case LibFunc_fmaxf:
9543 case LibFunc_fmaxl:
9544 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9545 return;
9546 break;
9547 case LibFunc_fminimum_num:
9548 case LibFunc_fminimum_numf:
9549 case LibFunc_fminimum_numl:
9550 if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM))
9551 return;
9552 break;
9553 case LibFunc_fmaximum_num:
9554 case LibFunc_fmaximum_numf:
9555 case LibFunc_fmaximum_numl:
9556 if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM))
9557 return;
9558 break;
9559 case LibFunc_sin:
9560 case LibFunc_sinf:
9561 case LibFunc_sinl:
9562 if (visitUnaryFloatCall(I, ISD::FSIN))
9563 return;
9564 break;
9565 case LibFunc_cos:
9566 case LibFunc_cosf:
9567 case LibFunc_cosl:
9568 if (visitUnaryFloatCall(I, ISD::FCOS))
9569 return;
9570 break;
9571 case LibFunc_tan:
9572 case LibFunc_tanf:
9573 case LibFunc_tanl:
9574 if (visitUnaryFloatCall(I, ISD::FTAN))
9575 return;
9576 break;
9577 case LibFunc_asin:
9578 case LibFunc_asinf:
9579 case LibFunc_asinl:
9580 if (visitUnaryFloatCall(I, ISD::FASIN))
9581 return;
9582 break;
9583 case LibFunc_acos:
9584 case LibFunc_acosf:
9585 case LibFunc_acosl:
9586 if (visitUnaryFloatCall(I, ISD::FACOS))
9587 return;
9588 break;
9589 case LibFunc_atan:
9590 case LibFunc_atanf:
9591 case LibFunc_atanl:
9592 if (visitUnaryFloatCall(I, ISD::FATAN))
9593 return;
9594 break;
9595 case LibFunc_atan2:
9596 case LibFunc_atan2f:
9597 case LibFunc_atan2l:
9598 if (visitBinaryFloatCall(I, ISD::FATAN2))
9599 return;
9600 break;
9601 case LibFunc_sinh:
9602 case LibFunc_sinhf:
9603 case LibFunc_sinhl:
9604 if (visitUnaryFloatCall(I, ISD::FSINH))
9605 return;
9606 break;
9607 case LibFunc_cosh:
9608 case LibFunc_coshf:
9609 case LibFunc_coshl:
9610 if (visitUnaryFloatCall(I, ISD::FCOSH))
9611 return;
9612 break;
9613 case LibFunc_tanh:
9614 case LibFunc_tanhf:
9615 case LibFunc_tanhl:
9616 if (visitUnaryFloatCall(I, ISD::FTANH))
9617 return;
9618 break;
9619 case LibFunc_sqrt:
9620 case LibFunc_sqrtf:
9621 case LibFunc_sqrtl:
9622 case LibFunc_sqrt_finite:
9623 case LibFunc_sqrtf_finite:
9624 case LibFunc_sqrtl_finite:
9625 if (visitUnaryFloatCall(I, ISD::FSQRT))
9626 return;
9627 break;
9628 case LibFunc_floor:
9629 case LibFunc_floorf:
9630 case LibFunc_floorl:
9631 if (visitUnaryFloatCall(I, ISD::FFLOOR))
9632 return;
9633 break;
9634 case LibFunc_nearbyint:
9635 case LibFunc_nearbyintf:
9636 case LibFunc_nearbyintl:
9637 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9638 return;
9639 break;
9640 case LibFunc_ceil:
9641 case LibFunc_ceilf:
9642 case LibFunc_ceill:
9643 if (visitUnaryFloatCall(I, ISD::FCEIL))
9644 return;
9645 break;
9646 case LibFunc_rint:
9647 case LibFunc_rintf:
9648 case LibFunc_rintl:
9649 if (visitUnaryFloatCall(I, ISD::FRINT))
9650 return;
9651 break;
9652 case LibFunc_round:
9653 case LibFunc_roundf:
9654 case LibFunc_roundl:
9655 if (visitUnaryFloatCall(I, ISD::FROUND))
9656 return;
9657 break;
9658 case LibFunc_trunc:
9659 case LibFunc_truncf:
9660 case LibFunc_truncl:
9661 if (visitUnaryFloatCall(I, ISD::FTRUNC))
9662 return;
9663 break;
9664 case LibFunc_log2:
9665 case LibFunc_log2f:
9666 case LibFunc_log2l:
9667 if (visitUnaryFloatCall(I, ISD::FLOG2))
9668 return;
9669 break;
9670 case LibFunc_exp2:
9671 case LibFunc_exp2f:
9672 case LibFunc_exp2l:
9673 if (visitUnaryFloatCall(I, ISD::FEXP2))
9674 return;
9675 break;
9676 case LibFunc_exp10:
9677 case LibFunc_exp10f:
9678 case LibFunc_exp10l:
9679 if (visitUnaryFloatCall(I, ISD::FEXP10))
9680 return;
9681 break;
9682 case LibFunc_ldexp:
9683 case LibFunc_ldexpf:
9684 case LibFunc_ldexpl:
9685 if (visitBinaryFloatCall(I, ISD::FLDEXP))
9686 return;
9687 break;
9688 case LibFunc_memcmp:
9689 if (visitMemCmpBCmpCall(I))
9690 return;
9691 break;
9692 case LibFunc_mempcpy:
9693 if (visitMemPCpyCall(I))
9694 return;
9695 break;
9696 case LibFunc_memchr:
9697 if (visitMemChrCall(I))
9698 return;
9699 break;
9700 case LibFunc_strcpy:
9701 if (visitStrCpyCall(I, false))
9702 return;
9703 break;
9704 case LibFunc_stpcpy:
9705 if (visitStrCpyCall(I, true))
9706 return;
9707 break;
9708 case LibFunc_strcmp:
9709 if (visitStrCmpCall(I))
9710 return;
9711 break;
9712 case LibFunc_strlen:
9713 if (visitStrLenCall(I))
9714 return;
9715 break;
9716 case LibFunc_strnlen:
9717 if (visitStrNLenCall(I))
9718 return;
9719 break;
9720 }
9721 }
9722 }
9723
9724 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9725 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9726 return;
9727 }
9728
9729 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9730 // have to do anything here to lower funclet bundles.
9731 // CFGuardTarget bundles are lowered in LowerCallTo.
9733 I, "calls",
9738
9739 SDValue Callee = getValue(I.getCalledOperand());
9740
9741 if (I.hasDeoptState())
9742 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9743 else
9744 // Check if we can potentially perform a tail call. More detailed checking
9745 // is be done within LowerCallTo, after more information about the call is
9746 // known.
9747 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9748}
9749
9751 const CallBase &CB, const BasicBlock *EHPadBB) {
9752 auto PAB = CB.getOperandBundle("ptrauth");
9753 const Value *CalleeV = CB.getCalledOperand();
9754
9755 // Gather the call ptrauth data from the operand bundle:
9756 // [ i32 <key>, i64 <discriminator> ]
9757 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9758 const Value *Discriminator = PAB->Inputs[1];
9759
9760 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9761 assert(Discriminator->getType()->isIntegerTy(64) &&
9762 "Invalid ptrauth discriminator");
9763
9764 // Look through ptrauth constants to find the raw callee.
9765 // Do a direct unauthenticated call if we found it and everything matches.
9766 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9767 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9768 DAG.getDataLayout()))
9769 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9770 CB.isMustTailCall(), EHPadBB);
9771
9772 // Functions should never be ptrauth-called directly.
9773 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9774
9775 // Otherwise, do an authenticated indirect call.
9776 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9777 getValue(Discriminator)};
9778
9779 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9780 EHPadBB, &PAI);
9781}
9782
9783namespace {
9784
9785/// AsmOperandInfo - This contains information for each constraint that we are
9786/// lowering.
9787class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9788public:
9789 /// CallOperand - If this is the result output operand or a clobber
9790 /// this is null, otherwise it is the incoming operand to the CallInst.
9791 /// This gets modified as the asm is processed.
9792 SDValue CallOperand;
9793
9794 /// AssignedRegs - If this is a register or register class operand, this
9795 /// contains the set of register corresponding to the operand.
9796 RegsForValue AssignedRegs;
9797
9798 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9799 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9800 }
9801
9802 /// Whether or not this operand accesses memory
9803 bool hasMemory(const TargetLowering &TLI) const {
9804 // Indirect operand accesses access memory.
9805 if (isIndirect)
9806 return true;
9807
9808 for (const auto &Code : Codes)
9810 return true;
9811
9812 return false;
9813 }
9814};
9815
9816
9817} // end anonymous namespace
9818
9819/// Make sure that the output operand \p OpInfo and its corresponding input
9820/// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9821/// out).
9822static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9823 SDISelAsmOperandInfo &MatchingOpInfo,
9824 SelectionDAG &DAG) {
9825 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9826 return;
9827
9829 const auto &TLI = DAG.getTargetLoweringInfo();
9830
9831 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9832 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9833 OpInfo.ConstraintVT);
9834 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9835 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9836 MatchingOpInfo.ConstraintVT);
9837 const bool OutOpIsIntOrFP =
9838 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9839 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9840 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9841 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9842 // FIXME: error out in a more elegant fashion
9843 report_fatal_error("Unsupported asm: input constraint"
9844 " with a matching output constraint of"
9845 " incompatible type!");
9846 }
9847 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9848}
9849
9850/// Get a direct memory input to behave well as an indirect operand.
9851/// This may introduce stores, hence the need for a \p Chain.
9852/// \return The (possibly updated) chain.
9853static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9854 SDISelAsmOperandInfo &OpInfo,
9855 SelectionDAG &DAG) {
9856 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9857
9858 // If we don't have an indirect input, put it in the constpool if we can,
9859 // otherwise spill it to a stack slot.
9860 // TODO: This isn't quite right. We need to handle these according to
9861 // the addressing mode that the constraint wants. Also, this may take
9862 // an additional register for the computation and we don't want that
9863 // either.
9864
9865 // If the operand is a float, integer, or vector constant, spill to a
9866 // constant pool entry to get its address.
9867 const Value *OpVal = OpInfo.CallOperandVal;
9868 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9870 OpInfo.CallOperand = DAG.getConstantPool(
9871 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9872 return Chain;
9873 }
9874
9875 // Otherwise, create a stack slot and emit a store to it before the asm.
9876 Type *Ty = OpVal->getType();
9877 auto &DL = DAG.getDataLayout();
9878 TypeSize TySize = DL.getTypeAllocSize(Ty);
9881 int StackID = 0;
9882 if (TySize.isScalable())
9883 StackID = TFI->getStackIDForScalableVectors();
9884 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9885 DL.getPrefTypeAlign(Ty), false,
9886 nullptr, StackID);
9887 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9888 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9890 TLI.getMemValueType(DL, Ty));
9891 OpInfo.CallOperand = StackSlot;
9892
9893 return Chain;
9894}
9895
9896/// GetRegistersForValue - Assign registers (virtual or physical) for the
9897/// specified operand. We prefer to assign virtual registers, to allow the
9898/// register allocator to handle the assignment process. However, if the asm
9899/// uses features that we can't model on machineinstrs, we have SDISel do the
9900/// allocation. This produces generally horrible, but correct, code.
9901///
9902/// OpInfo describes the operand
9903/// RefOpInfo describes the matching operand if any, the operand otherwise
9904static std::optional<unsigned>
9906 SDISelAsmOperandInfo &OpInfo,
9907 SDISelAsmOperandInfo &RefOpInfo) {
9908 LLVMContext &Context = *DAG.getContext();
9909 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9910
9914
9915 // No work to do for memory/address operands.
9916 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9917 OpInfo.ConstraintType == TargetLowering::C_Address)
9918 return std::nullopt;
9919
9920 // If this is a constraint for a single physreg, or a constraint for a
9921 // register class, find it.
9922 unsigned AssignedReg;
9923 const TargetRegisterClass *RC;
9924 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9925 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9926 // RC is unset only on failure. Return immediately.
9927 if (!RC)
9928 return std::nullopt;
9929
9930 // Get the actual register value type. This is important, because the user
9931 // may have asked for (e.g.) the AX register in i32 type. We need to
9932 // remember that AX is actually i16 to get the right extension.
9933 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9934
9935 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9936 // If this is an FP operand in an integer register (or visa versa), or more
9937 // generally if the operand value disagrees with the register class we plan
9938 // to stick it in, fix the operand type.
9939 //
9940 // If this is an input value, the bitcast to the new type is done now.
9941 // Bitcast for output value is done at the end of visitInlineAsm().
9942 if ((OpInfo.Type == InlineAsm::isOutput ||
9943 OpInfo.Type == InlineAsm::isInput) &&
9944 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9945 // Try to convert to the first EVT that the reg class contains. If the
9946 // types are identical size, use a bitcast to convert (e.g. two differing
9947 // vector types). Note: output bitcast is done at the end of
9948 // visitInlineAsm().
9949 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9950 // Exclude indirect inputs while they are unsupported because the code
9951 // to perform the load is missing and thus OpInfo.CallOperand still
9952 // refers to the input address rather than the pointed-to value.
9953 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9954 OpInfo.CallOperand =
9955 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9956 OpInfo.ConstraintVT = RegVT;
9957 // If the operand is an FP value and we want it in integer registers,
9958 // use the corresponding integer type. This turns an f64 value into
9959 // i64, which can be passed with two i32 values on a 32-bit machine.
9960 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9961 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9962 if (OpInfo.Type == InlineAsm::isInput)
9963 OpInfo.CallOperand =
9964 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9965 OpInfo.ConstraintVT = VT;
9966 }
9967 }
9968 }
9969
9970 // No need to allocate a matching input constraint since the constraint it's
9971 // matching to has already been allocated.
9972 if (OpInfo.isMatchingInputConstraint())
9973 return std::nullopt;
9974
9975 EVT ValueVT = OpInfo.ConstraintVT;
9976 if (OpInfo.ConstraintVT == MVT::Other)
9977 ValueVT = RegVT;
9978
9979 // Initialize NumRegs.
9980 unsigned NumRegs = 1;
9981 if (OpInfo.ConstraintVT != MVT::Other)
9982 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9983
9984 // If this is a constraint for a specific physical register, like {r17},
9985 // assign it now.
9986
9987 // If this associated to a specific register, initialize iterator to correct
9988 // place. If virtual, make sure we have enough registers
9989
9990 // Initialize iterator if necessary
9993
9994 // Do not check for single registers.
9995 if (AssignedReg) {
9996 I = std::find(I, RC->end(), AssignedReg);
9997 if (I == RC->end()) {
9998 // RC does not contain the selected register, which indicates a
9999 // mismatch between the register and the required type/bitwidth.
10000 return {AssignedReg};
10001 }
10002 }
10003
10004 for (; NumRegs; --NumRegs, ++I) {
10005 assert(I != RC->end() && "Ran out of registers to allocate!");
10006 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
10007 Regs.push_back(R);
10008 }
10009
10010 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
10011 return std::nullopt;
10012}
10013
10014static unsigned
10016 const std::vector<SDValue> &AsmNodeOperands) {
10017 // Scan until we find the definition we already emitted of this operand.
10018 unsigned CurOp = InlineAsm::Op_FirstOperand;
10019 for (; OperandNo; --OperandNo) {
10020 // Advance to the next operand.
10021 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
10022 const InlineAsm::Flag F(OpFlag);
10023 assert(
10024 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
10025 "Skipped past definitions?");
10026 CurOp += F.getNumOperandRegisters() + 1;
10027 }
10028 return CurOp;
10029}
10030
10031namespace {
10032
10033class ExtraFlags {
10034 unsigned Flags = 0;
10035
10036public:
10037 explicit ExtraFlags(const CallBase &Call) {
10038 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10039 if (IA->hasSideEffects())
10041 if (IA->isAlignStack())
10043 if (Call.isConvergent())
10045 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
10046 }
10047
10048 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
10049 // Ideally, we would only check against memory constraints. However, the
10050 // meaning of an Other constraint can be target-specific and we can't easily
10051 // reason about it. Therefore, be conservative and set MayLoad/MayStore
10052 // for Other constraints as well.
10055 if (OpInfo.Type == InlineAsm::isInput)
10057 else if (OpInfo.Type == InlineAsm::isOutput)
10059 else if (OpInfo.Type == InlineAsm::isClobber)
10061 }
10062 }
10063
10064 unsigned get() const { return Flags; }
10065};
10066
10067} // end anonymous namespace
10068
10069static bool isFunction(SDValue Op) {
10070 if (Op && Op.getOpcode() == ISD::GlobalAddress) {
10071 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10072 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
10073
10074 // In normal "call dllimport func" instruction (non-inlineasm) it force
10075 // indirect access by specifing call opcode. And usually specially print
10076 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
10077 // not do in this way now. (In fact, this is similar with "Data Access"
10078 // action). So here we ignore dllimport function.
10079 if (Fn && !Fn->hasDLLImportStorageClass())
10080 return true;
10081 }
10082 }
10083 return false;
10084}
10085
10086/// visitInlineAsm - Handle a call to an InlineAsm object.
10087void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
10088 const BasicBlock *EHPadBB) {
10089 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10090
10091 /// ConstraintOperands - Information about all of the constraints.
10092 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
10093
10094 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10096 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
10097
10098 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
10099 // AsmDialect, MayLoad, MayStore).
10100 bool HasSideEffect = IA->hasSideEffects();
10101 ExtraFlags ExtraInfo(Call);
10102
10103 for (auto &T : TargetConstraints) {
10104 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
10105 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
10106
10107 if (OpInfo.CallOperandVal)
10108 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
10109
10110 if (!HasSideEffect)
10111 HasSideEffect = OpInfo.hasMemory(TLI);
10112
10113 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
10114 // FIXME: Could we compute this on OpInfo rather than T?
10115
10116 // Compute the constraint code and ConstraintType to use.
10118
10119 if (T.ConstraintType == TargetLowering::C_Immediate &&
10120 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
10121 // We've delayed emitting a diagnostic like the "n" constraint because
10122 // inlining could cause an integer showing up.
10123 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
10124 "' expects an integer constant "
10125 "expression");
10126
10127 ExtraInfo.update(T);
10128 }
10129
10130 // We won't need to flush pending loads if this asm doesn't touch
10131 // memory and is nonvolatile.
10132 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
10133
10134 bool EmitEHLabels = isa<InvokeInst>(Call);
10135 if (EmitEHLabels) {
10136 assert(EHPadBB && "InvokeInst must have an EHPadBB");
10137 }
10138 bool IsCallBr = isa<CallBrInst>(Call);
10139
10140 if (IsCallBr || EmitEHLabels) {
10141 // If this is a callbr or invoke we need to flush pending exports since
10142 // inlineasm_br and invoke are terminators.
10143 // We need to do this before nodes are glued to the inlineasm_br node.
10144 Chain = getControlRoot();
10145 }
10146
10147 MCSymbol *BeginLabel = nullptr;
10148 if (EmitEHLabels) {
10149 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10150 }
10151
10152 int OpNo = -1;
10153 SmallVector<StringRef> AsmStrs;
10154 IA->collectAsmStrs(AsmStrs);
10155
10156 // Second pass over the constraints: compute which constraint option to use.
10157 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10158 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
10159 OpNo++;
10160
10161 // If this is an output operand with a matching input operand, look up the
10162 // matching input. If their types mismatch, e.g. one is an integer, the
10163 // other is floating point, or their sizes are different, flag it as an
10164 // error.
10165 if (OpInfo.hasMatchingInput()) {
10166 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10167 patchMatchingInput(OpInfo, Input, DAG);
10168 }
10169
10170 // Compute the constraint code and ConstraintType to use.
10171 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
10172
10173 if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
10174 OpInfo.Type == InlineAsm::isClobber) ||
10175 OpInfo.ConstraintType == TargetLowering::C_Address)
10176 continue;
10177
10178 // In Linux PIC model, there are 4 cases about value/label addressing:
10179 //
10180 // 1: Function call or Label jmp inside the module.
10181 // 2: Data access (such as global variable, static variable) inside module.
10182 // 3: Function call or Label jmp outside the module.
10183 // 4: Data access (such as global variable) outside the module.
10184 //
10185 // Due to current llvm inline asm architecture designed to not "recognize"
10186 // the asm code, there are quite troubles for us to treat mem addressing
10187 // differently for same value/adress used in different instuctions.
10188 // For example, in pic model, call a func may in plt way or direclty
10189 // pc-related, but lea/mov a function adress may use got.
10190 //
10191 // Here we try to "recognize" function call for the case 1 and case 3 in
10192 // inline asm. And try to adjust the constraint for them.
10193 //
10194 // TODO: Due to current inline asm didn't encourage to jmp to the outsider
10195 // label, so here we don't handle jmp function label now, but we need to
10196 // enhance it (especilly in PIC model) if we meet meaningful requirements.
10197 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
10198 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
10199 TM.getCodeModel() != CodeModel::Large) {
10200 OpInfo.isIndirect = false;
10201 OpInfo.ConstraintType = TargetLowering::C_Address;
10202 }
10203
10204 // If this is a memory input, and if the operand is not indirect, do what we
10205 // need to provide an address for the memory input.
10206 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
10207 !OpInfo.isIndirect) {
10208 assert((OpInfo.isMultipleAlternative ||
10209 (OpInfo.Type == InlineAsm::isInput)) &&
10210 "Can only indirectify direct input operands!");
10211
10212 // Memory operands really want the address of the value.
10213 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
10214
10215 // There is no longer a Value* corresponding to this operand.
10216 OpInfo.CallOperandVal = nullptr;
10217
10218 // It is now an indirect operand.
10219 OpInfo.isIndirect = true;
10220 }
10221
10222 }
10223
10224 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
10225 std::vector<SDValue> AsmNodeOperands;
10226 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
10227 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
10228 IA->getAsmString().data(), TLI.getProgramPointerTy(DAG.getDataLayout())));
10229
10230 // If we have a !srcloc metadata node associated with it, we want to attach
10231 // this to the ultimately generated inline asm machineinstr. To do this, we
10232 // pass in the third operand as this (potentially null) inline asm MDNode.
10233 const MDNode *SrcLoc = Call.getMetadata("srcloc");
10234 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
10235
10236 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
10237 // bits as operand 3.
10238 AsmNodeOperands.push_back(DAG.getTargetConstant(
10239 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10240
10241 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
10242 // this, assign virtual and physical registers for inputs and otput.
10243 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10244 // Assign Registers.
10245 SDISelAsmOperandInfo &RefOpInfo =
10246 OpInfo.isMatchingInputConstraint()
10247 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10248 : OpInfo;
10249 const auto RegError =
10250 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
10251 if (RegError) {
10252 const MachineFunction &MF = DAG.getMachineFunction();
10253 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10254 const char *RegName = TRI.getName(*RegError);
10255 emitInlineAsmError(Call, "register '" + Twine(RegName) +
10256 "' allocated for constraint '" +
10257 Twine(OpInfo.ConstraintCode) +
10258 "' does not match required type");
10259 return;
10260 }
10261
10262 auto DetectWriteToReservedRegister = [&]() {
10263 const MachineFunction &MF = DAG.getMachineFunction();
10264 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10265 for (Register Reg : OpInfo.AssignedRegs.Regs) {
10266 if (Reg.isPhysical() && TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
10267 const char *RegName = TRI.getName(Reg);
10268 emitInlineAsmError(Call, "write to reserved register '" +
10269 Twine(RegName) + "'");
10270 return true;
10271 }
10272 }
10273 return false;
10274 };
10275 assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
10276 (OpInfo.Type == InlineAsm::isInput &&
10277 !OpInfo.isMatchingInputConstraint())) &&
10278 "Only address as input operand is allowed.");
10279
10280 switch (OpInfo.Type) {
10282 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10283 const InlineAsm::ConstraintCode ConstraintID =
10284 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10286 "Failed to convert memory constraint code to constraint id.");
10287
10288 // Add information to the INLINEASM node to know about this output.
10289 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10290 OpFlags.setMemConstraint(ConstraintID);
10291 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10292 MVT::i32));
10293 AsmNodeOperands.push_back(OpInfo.CallOperand);
10294 } else {
10295 // Otherwise, this outputs to a register (directly for C_Register /
10296 // C_RegisterClass, and a target-defined fashion for
10297 // C_Immediate/C_Other). Find a register that we can use.
10298 if (OpInfo.AssignedRegs.Regs.empty()) {
10299 emitInlineAsmError(
10300 Call, "couldn't allocate output register for constraint '" +
10301 Twine(OpInfo.ConstraintCode) + "'");
10302 return;
10303 }
10304
10305 if (DetectWriteToReservedRegister())
10306 return;
10307
10308 // Add information to the INLINEASM node to know that this register is
10309 // set.
10310 OpInfo.AssignedRegs.AddInlineAsmOperands(
10311 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10313 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10314 }
10315 break;
10316
10317 case InlineAsm::isInput:
10318 case InlineAsm::isLabel: {
10319 SDValue InOperandVal = OpInfo.CallOperand;
10320
10321 if (OpInfo.isMatchingInputConstraint()) {
10322 // If this is required to match an output register we have already set,
10323 // just use its register.
10324 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10325 AsmNodeOperands);
10326 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10327 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10328 if (OpInfo.isIndirect) {
10329 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10330 emitInlineAsmError(Call, "inline asm not supported yet: "
10331 "don't know how to handle tied "
10332 "indirect register inputs");
10333 return;
10334 }
10335
10337 MachineFunction &MF = DAG.getMachineFunction();
10338 MachineRegisterInfo &MRI = MF.getRegInfo();
10339 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10340 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10341 Register TiedReg = R->getReg();
10342 MVT RegVT = R->getSimpleValueType(0);
10343 const TargetRegisterClass *RC =
10344 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg)
10345 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10346 : TRI.getMinimalPhysRegClass(TiedReg);
10347 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10348 Regs.push_back(MRI.createVirtualRegister(RC));
10349
10350 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10351
10352 SDLoc dl = getCurSDLoc();
10353 // Use the produced MatchedRegs object to
10354 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10355 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10356 OpInfo.getMatchedOperand(), dl, DAG,
10357 AsmNodeOperands);
10358 break;
10359 }
10360
10361 assert(Flag.isMemKind() && "Unknown matching constraint!");
10362 assert(Flag.getNumOperandRegisters() == 1 &&
10363 "Unexpected number of operands");
10364 // Add information to the INLINEASM node to know about this input.
10365 // See InlineAsm.h isUseOperandTiedToDef.
10366 Flag.clearMemConstraint();
10367 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10368 AsmNodeOperands.push_back(DAG.getTargetConstant(
10369 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10370 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10371 break;
10372 }
10373
10374 // Treat indirect 'X' constraint as memory.
10375 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10376 OpInfo.isIndirect)
10377 OpInfo.ConstraintType = TargetLowering::C_Memory;
10378
10379 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10380 OpInfo.ConstraintType == TargetLowering::C_Other) {
10381 std::vector<SDValue> Ops;
10382 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10383 Ops, DAG);
10384 if (Ops.empty()) {
10385 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10386 if (isa<ConstantSDNode>(InOperandVal)) {
10387 emitInlineAsmError(Call, "value out of range for constraint '" +
10388 Twine(OpInfo.ConstraintCode) + "'");
10389 return;
10390 }
10391
10392 emitInlineAsmError(Call,
10393 "invalid operand for inline asm constraint '" +
10394 Twine(OpInfo.ConstraintCode) + "'");
10395 return;
10396 }
10397
10398 // Add information to the INLINEASM node to know about this input.
10399 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10400 AsmNodeOperands.push_back(DAG.getTargetConstant(
10401 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10402 llvm::append_range(AsmNodeOperands, Ops);
10403 break;
10404 }
10405
10406 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10407 assert((OpInfo.isIndirect ||
10408 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10409 "Operand must be indirect to be a mem!");
10410 assert(InOperandVal.getValueType() ==
10411 TLI.getPointerTy(DAG.getDataLayout()) &&
10412 "Memory operands expect pointer values");
10413
10414 const InlineAsm::ConstraintCode ConstraintID =
10415 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10417 "Failed to convert memory constraint code to constraint id.");
10418
10419 // Add information to the INLINEASM node to know about this input.
10420 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10421 ResOpType.setMemConstraint(ConstraintID);
10422 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10423 getCurSDLoc(),
10424 MVT::i32));
10425 AsmNodeOperands.push_back(InOperandVal);
10426 break;
10427 }
10428
10429 if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10430 const InlineAsm::ConstraintCode ConstraintID =
10431 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10433 "Failed to convert memory constraint code to constraint id.");
10434
10435 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10436
10437 SDValue AsmOp = InOperandVal;
10438 if (isFunction(InOperandVal)) {
10439 auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10440 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10441 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10442 InOperandVal.getValueType(),
10443 GA->getOffset());
10444 }
10445
10446 // Add information to the INLINEASM node to know about this input.
10447 ResOpType.setMemConstraint(ConstraintID);
10448
10449 AsmNodeOperands.push_back(
10450 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10451
10452 AsmNodeOperands.push_back(AsmOp);
10453 break;
10454 }
10455
10456 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10457 OpInfo.ConstraintType != TargetLowering::C_Register) {
10458 emitInlineAsmError(Call, "unknown asm constraint '" +
10459 Twine(OpInfo.ConstraintCode) + "'");
10460 return;
10461 }
10462
10463 // TODO: Support this.
10464 if (OpInfo.isIndirect) {
10465 emitInlineAsmError(
10466 Call, "Don't know how to handle indirect register inputs yet "
10467 "for constraint '" +
10468 Twine(OpInfo.ConstraintCode) + "'");
10469 return;
10470 }
10471
10472 // Copy the input into the appropriate registers.
10473 if (OpInfo.AssignedRegs.Regs.empty()) {
10474 emitInlineAsmError(Call,
10475 "couldn't allocate input reg for constraint '" +
10476 Twine(OpInfo.ConstraintCode) + "'");
10477 return;
10478 }
10479
10480 if (DetectWriteToReservedRegister())
10481 return;
10482
10483 SDLoc dl = getCurSDLoc();
10484
10485 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10486 &Call);
10487
10488 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10489 0, dl, DAG, AsmNodeOperands);
10490 break;
10491 }
10493 // Add the clobbered value to the operand list, so that the register
10494 // allocator is aware that the physreg got clobbered.
10495 if (!OpInfo.AssignedRegs.Regs.empty())
10497 false, 0, getCurSDLoc(), DAG,
10498 AsmNodeOperands);
10499 break;
10500 }
10501 }
10502
10503 // Finish up input operands. Set the input chain and add the flag last.
10504 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10505 if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10506
10507 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10508 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10509 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10510 Glue = Chain.getValue(1);
10511
10512 // Do additional work to generate outputs.
10513
10514 SmallVector<EVT, 1> ResultVTs;
10515 SmallVector<SDValue, 1> ResultValues;
10516 SmallVector<SDValue, 8> OutChains;
10517
10518 llvm::Type *CallResultType = Call.getType();
10519 ArrayRef<Type *> ResultTypes;
10520 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10521 ResultTypes = StructResult->elements();
10522 else if (!CallResultType->isVoidTy())
10523 ResultTypes = ArrayRef(CallResultType);
10524
10525 auto CurResultType = ResultTypes.begin();
10526 auto handleRegAssign = [&](SDValue V) {
10527 assert(CurResultType != ResultTypes.end() && "Unexpected value");
10528 assert((*CurResultType)->isSized() && "Unexpected unsized type");
10529 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10530 ++CurResultType;
10531 // If the type of the inline asm call site return value is different but has
10532 // same size as the type of the asm output bitcast it. One example of this
10533 // is for vectors with different width / number of elements. This can
10534 // happen for register classes that can contain multiple different value
10535 // types. The preg or vreg allocated may not have the same VT as was
10536 // expected.
10537 //
10538 // This can also happen for a return value that disagrees with the register
10539 // class it is put in, eg. a double in a general-purpose register on a
10540 // 32-bit machine.
10541 if (ResultVT != V.getValueType() &&
10542 ResultVT.getSizeInBits() == V.getValueSizeInBits())
10543 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10544 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10545 V.getValueType().isInteger()) {
10546 // If a result value was tied to an input value, the computed result
10547 // may have a wider width than the expected result. Extract the
10548 // relevant portion.
10549 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10550 }
10551 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10552 ResultVTs.push_back(ResultVT);
10553 ResultValues.push_back(V);
10554 };
10555
10556 // Deal with output operands.
10557 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10558 if (OpInfo.Type == InlineAsm::isOutput) {
10559 SDValue Val;
10560 // Skip trivial output operands.
10561 if (OpInfo.AssignedRegs.Regs.empty())
10562 continue;
10563
10564 switch (OpInfo.ConstraintType) {
10567 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10568 Chain, &Glue, &Call);
10569 break;
10572 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10573 OpInfo, DAG);
10574 break;
10576 break; // Already handled.
10578 break; // Silence warning.
10580 assert(false && "Unexpected unknown constraint");
10581 }
10582
10583 // Indirect output manifest as stores. Record output chains.
10584 if (OpInfo.isIndirect) {
10585 const Value *Ptr = OpInfo.CallOperandVal;
10586 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10587 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10588 MachinePointerInfo(Ptr));
10589 OutChains.push_back(Store);
10590 } else {
10591 // generate CopyFromRegs to associated registers.
10592 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10593 if (Val.getOpcode() == ISD::MERGE_VALUES) {
10594 for (const SDValue &V : Val->op_values())
10595 handleRegAssign(V);
10596 } else
10597 handleRegAssign(Val);
10598 }
10599 }
10600 }
10601
10602 // Set results.
10603 if (!ResultValues.empty()) {
10604 assert(CurResultType == ResultTypes.end() &&
10605 "Mismatch in number of ResultTypes");
10606 assert(ResultValues.size() == ResultTypes.size() &&
10607 "Mismatch in number of output operands in asm result");
10608
10610 DAG.getVTList(ResultVTs), ResultValues);
10611 setValue(&Call, V);
10612 }
10613
10614 // Collect store chains.
10615 if (!OutChains.empty())
10616 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10617
10618 if (EmitEHLabels) {
10619 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10620 }
10621
10622 // Only Update Root if inline assembly has a memory effect.
10623 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10624 EmitEHLabels)
10625 DAG.setRoot(Chain);
10626}
10627
10628void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10629 const Twine &Message) {
10630 LLVMContext &Ctx = *DAG.getContext();
10631 Ctx.diagnose(DiagnosticInfoInlineAsm(Call, Message));
10632
10633 // Make sure we leave the DAG in a valid state
10634 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10635 SmallVector<EVT, 1> ValueVTs;
10636 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10637
10638 if (ValueVTs.empty())
10639 return;
10640
10642 for (const EVT &VT : ValueVTs)
10643 Ops.push_back(DAG.getUNDEF(VT));
10644
10645 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10646}
10647
10648void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10649 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10650 MVT::Other, getRoot(),
10651 getValue(I.getArgOperand(0)),
10652 DAG.getSrcValue(I.getArgOperand(0))));
10653}
10654
10655void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10656 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10657 const DataLayout &DL = DAG.getDataLayout();
10658 SDValue V = DAG.getVAArg(
10659 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10660 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10661 DL.getABITypeAlign(I.getType()).value());
10662 DAG.setRoot(V.getValue(1));
10663
10664 if (I.getType()->isPointerTy())
10665 V = DAG.getPtrExtOrTrunc(
10666 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10667 setValue(&I, V);
10668}
10669
10670void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10671 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10672 MVT::Other, getRoot(),
10673 getValue(I.getArgOperand(0)),
10674 DAG.getSrcValue(I.getArgOperand(0))));
10675}
10676
10677void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10678 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10679 MVT::Other, getRoot(),
10680 getValue(I.getArgOperand(0)),
10681 getValue(I.getArgOperand(1)),
10682 DAG.getSrcValue(I.getArgOperand(0)),
10683 DAG.getSrcValue(I.getArgOperand(1))));
10684}
10685
10687 const Instruction &I,
10688 SDValue Op) {
10689 std::optional<ConstantRange> CR = getRange(I);
10690
10691 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10692 return Op;
10693
10694 APInt Lo = CR->getUnsignedMin();
10695 if (!Lo.isMinValue())
10696 return Op;
10697
10698 APInt Hi = CR->getUnsignedMax();
10699 unsigned Bits = std::max(Hi.getActiveBits(),
10700 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10701
10702 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10703
10704 SDLoc SL = getCurSDLoc();
10705
10706 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10707 DAG.getValueType(SmallVT));
10708 unsigned NumVals = Op.getNode()->getNumValues();
10709 if (NumVals == 1)
10710 return ZExt;
10711
10713
10714 Ops.push_back(ZExt);
10715 for (unsigned I = 1; I != NumVals; ++I)
10716 Ops.push_back(Op.getValue(I));
10717
10718 return DAG.getMergeValues(Ops, SL);
10719}
10720
10721/// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10722/// the call being lowered.
10723///
10724/// This is a helper for lowering intrinsics that follow a target calling
10725/// convention or require stack pointer adjustment. Only a subset of the
10726/// intrinsic's operands need to participate in the calling convention.
10729 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10730 AttributeSet RetAttrs, bool IsPatchPoint) {
10732 Args.reserve(NumArgs);
10733
10734 // Populate the argument list.
10735 // Attributes for args start at offset 1, after the return attribute.
10736 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10737 ArgI != ArgE; ++ArgI) {
10738 const Value *V = Call->getOperand(ArgI);
10739
10740 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10741
10742 TargetLowering::ArgListEntry Entry(getValue(V), V->getType());
10743 Entry.setAttributes(Call, ArgI);
10744 Args.push_back(Entry);
10745 }
10746
10748 .setChain(getRoot())
10749 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10750 RetAttrs)
10751 .setDiscardResult(Call->use_empty())
10752 .setIsPatchPoint(IsPatchPoint)
10754 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10755}
10756
10757/// Add a stack map intrinsic call's live variable operands to a stackmap
10758/// or patchpoint target node's operand list.
10759///
10760/// Constants are converted to TargetConstants purely as an optimization to
10761/// avoid constant materialization and register allocation.
10762///
10763/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10764/// generate addess computation nodes, and so FinalizeISel can convert the
10765/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10766/// address materialization and register allocation, but may also be required
10767/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10768/// alloca in the entry block, then the runtime may assume that the alloca's
10769/// StackMap location can be read immediately after compilation and that the
10770/// location is valid at any point during execution (this is similar to the
10771/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10772/// only available in a register, then the runtime would need to trap when
10773/// execution reaches the StackMap in order to read the alloca's location.
10774static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10776 SelectionDAGBuilder &Builder) {
10777 SelectionDAG &DAG = Builder.DAG;
10778 for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10779 SDValue Op = Builder.getValue(Call.getArgOperand(I));
10780
10781 // Things on the stack are pointer-typed, meaning that they are already
10782 // legal and can be emitted directly to target nodes.
10784 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10785 } else {
10786 // Otherwise emit a target independent node to be legalised.
10787 Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10788 }
10789 }
10790}
10791
10792/// Lower llvm.experimental.stackmap.
10793void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10794 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10795 // [live variables...])
10796
10797 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10798
10799 SDValue Chain, InGlue, Callee;
10801
10802 SDLoc DL = getCurSDLoc();
10804
10805 // The stackmap intrinsic only records the live variables (the arguments
10806 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10807 // intrinsic, this won't be lowered to a function call. This means we don't
10808 // have to worry about calling conventions and target specific lowering code.
10809 // Instead we perform the call lowering right here.
10810 //
10811 // chain, flag = CALLSEQ_START(chain, 0, 0)
10812 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10813 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10814 //
10815 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10816 InGlue = Chain.getValue(1);
10817
10818 // Add the STACKMAP operands, starting with DAG house-keeping.
10819 Ops.push_back(Chain);
10820 Ops.push_back(InGlue);
10821
10822 // Add the <id>, <numShadowBytes> operands.
10823 //
10824 // These do not require legalisation, and can be emitted directly to target
10825 // constant nodes.
10827 assert(ID.getValueType() == MVT::i64);
10828 SDValue IDConst =
10829 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10830 Ops.push_back(IDConst);
10831
10832 SDValue Shad = getValue(CI.getArgOperand(1));
10833 assert(Shad.getValueType() == MVT::i32);
10834 SDValue ShadConst =
10835 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10836 Ops.push_back(ShadConst);
10837
10838 // Add the live variables.
10839 addStackMapLiveVars(CI, 2, DL, Ops, *this);
10840
10841 // Create the STACKMAP node.
10842 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10843 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10844 InGlue = Chain.getValue(1);
10845
10846 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10847
10848 // Stackmaps don't generate values, so nothing goes into the NodeMap.
10849
10850 // Set the root to the target-lowered call chain.
10851 DAG.setRoot(Chain);
10852
10853 // Inform the Frame Information that we have a stackmap in this function.
10854 FuncInfo.MF->getFrameInfo().setHasStackMap();
10855}
10856
10857/// Lower llvm.experimental.patchpoint directly to its target opcode.
10858void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10859 const BasicBlock *EHPadBB) {
10860 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10861 // i32 <numBytes>,
10862 // i8* <target>,
10863 // i32 <numArgs>,
10864 // [Args...],
10865 // [live variables...])
10866
10868 bool IsAnyRegCC = CC == CallingConv::AnyReg;
10869 bool HasDef = !CB.getType()->isVoidTy();
10870 SDLoc dl = getCurSDLoc();
10872
10873 // Handle immediate and symbolic callees.
10874 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10875 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10876 /*isTarget=*/true);
10877 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10878 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10879 SDLoc(SymbolicCallee),
10880 SymbolicCallee->getValueType(0));
10881
10882 // Get the real number of arguments participating in the call <numArgs>
10884 unsigned NumArgs = NArgVal->getAsZExtVal();
10885
10886 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10887 // Intrinsics include all meta-operands up to but not including CC.
10888 unsigned NumMetaOpers = PatchPointOpers::CCPos;
10889 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10890 "Not enough arguments provided to the patchpoint intrinsic");
10891
10892 // For AnyRegCC the arguments are lowered later on manually.
10893 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10894 Type *ReturnTy =
10895 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10896
10897 TargetLowering::CallLoweringInfo CLI(DAG);
10898 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10899 ReturnTy, CB.getAttributes().getRetAttrs(), true);
10900 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10901
10902 SDNode *CallEnd = Result.second.getNode();
10903 if (CallEnd->getOpcode() == ISD::EH_LABEL)
10904 CallEnd = CallEnd->getOperand(0).getNode();
10905 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10906 CallEnd = CallEnd->getOperand(0).getNode();
10907
10908 /// Get a call instruction from the call sequence chain.
10909 /// Tail calls are not allowed.
10910 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10911 "Expected a callseq node.");
10912 SDNode *Call = CallEnd->getOperand(0).getNode();
10913 bool HasGlue = Call->getGluedNode();
10914
10915 // Replace the target specific call node with the patchable intrinsic.
10917
10918 // Push the chain.
10919 Ops.push_back(*(Call->op_begin()));
10920
10921 // Optionally, push the glue (if any).
10922 if (HasGlue)
10923 Ops.push_back(*(Call->op_end() - 1));
10924
10925 // Push the register mask info.
10926 if (HasGlue)
10927 Ops.push_back(*(Call->op_end() - 2));
10928 else
10929 Ops.push_back(*(Call->op_end() - 1));
10930
10931 // Add the <id> and <numBytes> constants.
10933 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10935 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10936
10937 // Add the callee.
10938 Ops.push_back(Callee);
10939
10940 // Adjust <numArgs> to account for any arguments that have been passed on the
10941 // stack instead.
10942 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10943 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10944 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10945 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10946
10947 // Add the calling convention
10948 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10949
10950 // Add the arguments we omitted previously. The register allocator should
10951 // place these in any free register.
10952 if (IsAnyRegCC)
10953 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10954 Ops.push_back(getValue(CB.getArgOperand(i)));
10955
10956 // Push the arguments from the call instruction.
10957 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10958 Ops.append(Call->op_begin() + 2, e);
10959
10960 // Push live variables for the stack map.
10961 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10962
10963 SDVTList NodeTys;
10964 if (IsAnyRegCC && HasDef) {
10965 // Create the return types based on the intrinsic definition
10966 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10967 SmallVector<EVT, 3> ValueVTs;
10968 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10969 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10970
10971 // There is always a chain and a glue type at the end
10972 ValueVTs.push_back(MVT::Other);
10973 ValueVTs.push_back(MVT::Glue);
10974 NodeTys = DAG.getVTList(ValueVTs);
10975 } else
10976 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10977
10978 // Replace the target specific call node with a PATCHPOINT node.
10979 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10980
10981 // Update the NodeMap.
10982 if (HasDef) {
10983 if (IsAnyRegCC)
10984 setValue(&CB, SDValue(PPV.getNode(), 0));
10985 else
10986 setValue(&CB, Result.first);
10987 }
10988
10989 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10990 // call sequence. Furthermore the location of the chain and glue can change
10991 // when the AnyReg calling convention is used and the intrinsic returns a
10992 // value.
10993 if (IsAnyRegCC && HasDef) {
10994 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10995 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10996 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10997 } else
10998 DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10999 DAG.DeleteNode(Call);
11000
11001 // Inform the Frame Information that we have a patchpoint in this function.
11002 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
11003}
11004
11005void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
11006 unsigned Intrinsic) {
11007 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11008 SDValue Op1 = getValue(I.getArgOperand(0));
11009 SDValue Op2;
11010 if (I.arg_size() > 1)
11011 Op2 = getValue(I.getArgOperand(1));
11012 SDLoc dl = getCurSDLoc();
11013 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11014 SDValue Res;
11015 SDNodeFlags SDFlags;
11016 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
11017 SDFlags.copyFMF(*FPMO);
11018
11019 switch (Intrinsic) {
11020 case Intrinsic::vector_reduce_fadd:
11021 if (SDFlags.hasAllowReassociation())
11022 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
11023 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
11024 SDFlags);
11025 else
11026 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
11027 break;
11028 case Intrinsic::vector_reduce_fmul:
11029 if (SDFlags.hasAllowReassociation())
11030 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
11031 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
11032 SDFlags);
11033 else
11034 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
11035 break;
11036 case Intrinsic::vector_reduce_add:
11037 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
11038 break;
11039 case Intrinsic::vector_reduce_mul:
11040 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
11041 break;
11042 case Intrinsic::vector_reduce_and:
11043 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
11044 break;
11045 case Intrinsic::vector_reduce_or:
11046 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
11047 break;
11048 case Intrinsic::vector_reduce_xor:
11049 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
11050 break;
11051 case Intrinsic::vector_reduce_smax:
11052 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
11053 break;
11054 case Intrinsic::vector_reduce_smin:
11055 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
11056 break;
11057 case Intrinsic::vector_reduce_umax:
11058 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
11059 break;
11060 case Intrinsic::vector_reduce_umin:
11061 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
11062 break;
11063 case Intrinsic::vector_reduce_fmax:
11064 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
11065 break;
11066 case Intrinsic::vector_reduce_fmin:
11067 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
11068 break;
11069 case Intrinsic::vector_reduce_fmaximum:
11070 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
11071 break;
11072 case Intrinsic::vector_reduce_fminimum:
11073 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
11074 break;
11075 default:
11076 llvm_unreachable("Unhandled vector reduce intrinsic");
11077 }
11078 setValue(&I, Res);
11079}
11080
11081/// Returns an AttributeList representing the attributes applied to the return
11082/// value of the given call.
11085 if (CLI.RetSExt)
11086 Attrs.push_back(Attribute::SExt);
11087 if (CLI.RetZExt)
11088 Attrs.push_back(Attribute::ZExt);
11089 if (CLI.IsInReg)
11090 Attrs.push_back(Attribute::InReg);
11091
11092 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
11093 Attrs);
11094}
11095
11096/// TargetLowering::LowerCallTo - This is the default LowerCallTo
11097/// implementation, which just calls LowerCall.
11098/// FIXME: When all targets are
11099/// migrated to using LowerCall, this hook should be integrated into SDISel.
11100std::pair<SDValue, SDValue>
11102 LLVMContext &Context = CLI.RetTy->getContext();
11103
11104 // Handle the incoming return values from the call.
11105 CLI.Ins.clear();
11106 SmallVector<Type *, 4> RetOrigTys;
11108 auto &DL = CLI.DAG.getDataLayout();
11109 ComputeValueTypes(DL, CLI.OrigRetTy, RetOrigTys, &Offsets);
11110
11111 SmallVector<EVT, 4> RetVTs;
11112 if (CLI.RetTy != CLI.OrigRetTy) {
11113 assert(RetOrigTys.size() == 1 &&
11114 "Only supported for non-aggregate returns");
11115 RetVTs.push_back(getValueType(DL, CLI.RetTy));
11116 } else {
11117 for (Type *Ty : RetOrigTys)
11118 RetVTs.push_back(getValueType(DL, Ty));
11119 }
11120
11121 if (CLI.IsPostTypeLegalization) {
11122 // If we are lowering a libcall after legalization, split the return type.
11123 SmallVector<Type *, 4> OldRetOrigTys;
11124 SmallVector<EVT, 4> OldRetVTs;
11125 SmallVector<TypeSize, 4> OldOffsets;
11126 RetOrigTys.swap(OldRetOrigTys);
11127 RetVTs.swap(OldRetVTs);
11128 Offsets.swap(OldOffsets);
11129
11130 for (size_t i = 0, e = OldRetVTs.size(); i != e; ++i) {
11131 EVT RetVT = OldRetVTs[i];
11132 uint64_t Offset = OldOffsets[i];
11133 MVT RegisterVT = getRegisterType(Context, RetVT);
11134 unsigned NumRegs = getNumRegisters(Context, RetVT);
11135 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
11136 RetOrigTys.append(NumRegs, OldRetOrigTys[i]);
11137 RetVTs.append(NumRegs, RegisterVT);
11138 for (unsigned j = 0; j != NumRegs; ++j)
11139 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
11140 }
11141 }
11142
11144 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
11145
11146 bool CanLowerReturn =
11148 CLI.IsVarArg, Outs, Context, CLI.RetTy);
11149
11150 SDValue DemoteStackSlot;
11151 int DemoteStackIdx = -100;
11152 if (!CanLowerReturn) {
11153 // FIXME: equivalent assert?
11154 // assert(!CS.hasInAllocaArgument() &&
11155 // "sret demotion is incompatible with inalloca");
11156 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
11157 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
11159 DemoteStackIdx =
11160 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
11161 Type *StackSlotPtrType = PointerType::get(Context, DL.getAllocaAddrSpace());
11162
11163 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
11164 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11165 Entry.IsSRet = true;
11166 Entry.Alignment = Alignment;
11167 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
11168 CLI.NumFixedArgs += 1;
11169 CLI.getArgs()[0].IndirectType = CLI.RetTy;
11170 CLI.RetTy = CLI.OrigRetTy = Type::getVoidTy(Context);
11171
11172 // sret demotion isn't compatible with tail-calls, since the sret argument
11173 // points into the callers stack frame.
11174 CLI.IsTailCall = false;
11175 } else {
11176 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11177 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
11178 for (unsigned I = 0, E = RetVTs.size(); I != E; ++I) {
11179 ISD::ArgFlagsTy Flags;
11180 if (NeedsRegBlock) {
11181 Flags.setInConsecutiveRegs();
11182 if (I == RetVTs.size() - 1)
11183 Flags.setInConsecutiveRegsLast();
11184 }
11185 EVT VT = RetVTs[I];
11186 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11187 unsigned NumRegs =
11188 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11189 for (unsigned i = 0; i != NumRegs; ++i) {
11190 ISD::InputArg Ret(Flags, RegisterVT, VT, RetOrigTys[I],
11192 if (CLI.RetTy->isPointerTy()) {
11193 Ret.Flags.setPointer();
11194 Ret.Flags.setPointerAddrSpace(
11195 cast<PointerType>(CLI.RetTy)->getAddressSpace());
11196 }
11197 if (CLI.RetSExt)
11198 Ret.Flags.setSExt();
11199 if (CLI.RetZExt)
11200 Ret.Flags.setZExt();
11201 if (CLI.IsInReg)
11202 Ret.Flags.setInReg();
11203 CLI.Ins.push_back(Ret);
11204 }
11205 }
11206 }
11207
11208 // We push in swifterror return as the last element of CLI.Ins.
11209 ArgListTy &Args = CLI.getArgs();
11210 if (supportSwiftError()) {
11211 for (const ArgListEntry &Arg : Args) {
11212 if (Arg.IsSwiftError) {
11213 ISD::ArgFlagsTy Flags;
11214 Flags.setSwiftError();
11216 PointerType::getUnqual(Context),
11217 /*Used=*/true, ISD::InputArg::NoArgIndex, 0);
11218 CLI.Ins.push_back(Ret);
11219 }
11220 }
11221 }
11222
11223 // Handle all of the outgoing arguments.
11224 CLI.Outs.clear();
11225 CLI.OutVals.clear();
11226 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
11227 SmallVector<Type *, 4> OrigArgTys;
11228 ComputeValueTypes(DL, Args[i].OrigTy, OrigArgTys);
11229 // FIXME: Split arguments if CLI.IsPostTypeLegalization
11230 Type *FinalType = Args[i].Ty;
11231 if (Args[i].IsByVal)
11232 FinalType = Args[i].IndirectType;
11233 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11234 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
11235 for (unsigned Value = 0, NumValues = OrigArgTys.size(); Value != NumValues;
11236 ++Value) {
11237 Type *OrigArgTy = OrigArgTys[Value];
11238 Type *ArgTy = OrigArgTy;
11239 if (Args[i].Ty != Args[i].OrigTy) {
11240 assert(Value == 0 && "Only supported for non-aggregate arguments");
11241 ArgTy = Args[i].Ty;
11242 }
11243
11244 EVT VT = getValueType(DL, ArgTy);
11245 SDValue Op = SDValue(Args[i].Node.getNode(),
11246 Args[i].Node.getResNo() + Value);
11247 ISD::ArgFlagsTy Flags;
11248
11249 // Certain targets (such as MIPS), may have a different ABI alignment
11250 // for a type depending on the context. Give the target a chance to
11251 // specify the alignment it wants.
11252 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
11253 Flags.setOrigAlign(OriginalAlignment);
11254
11255 if (i >= CLI.NumFixedArgs)
11256 Flags.setVarArg();
11257 if (ArgTy->isPointerTy()) {
11258 Flags.setPointer();
11259 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11260 }
11261 if (Args[i].IsZExt)
11262 Flags.setZExt();
11263 if (Args[i].IsSExt)
11264 Flags.setSExt();
11265 if (Args[i].IsNoExt)
11266 Flags.setNoExt();
11267 if (Args[i].IsInReg) {
11268 // If we are using vectorcall calling convention, a structure that is
11269 // passed InReg - is surely an HVA
11271 isa<StructType>(FinalType)) {
11272 // The first value of a structure is marked
11273 if (0 == Value)
11274 Flags.setHvaStart();
11275 Flags.setHva();
11276 }
11277 // Set InReg Flag
11278 Flags.setInReg();
11279 }
11280 if (Args[i].IsSRet)
11281 Flags.setSRet();
11282 if (Args[i].IsSwiftSelf)
11283 Flags.setSwiftSelf();
11284 if (Args[i].IsSwiftAsync)
11285 Flags.setSwiftAsync();
11286 if (Args[i].IsSwiftError)
11287 Flags.setSwiftError();
11288 if (Args[i].IsCFGuardTarget)
11289 Flags.setCFGuardTarget();
11290 if (Args[i].IsByVal)
11291 Flags.setByVal();
11292 if (Args[i].IsByRef)
11293 Flags.setByRef();
11294 if (Args[i].IsPreallocated) {
11295 Flags.setPreallocated();
11296 // Set the byval flag for CCAssignFn callbacks that don't know about
11297 // preallocated. This way we can know how many bytes we should've
11298 // allocated and how many bytes a callee cleanup function will pop. If
11299 // we port preallocated to more targets, we'll have to add custom
11300 // preallocated handling in the various CC lowering callbacks.
11301 Flags.setByVal();
11302 }
11303 if (Args[i].IsInAlloca) {
11304 Flags.setInAlloca();
11305 // Set the byval flag for CCAssignFn callbacks that don't know about
11306 // inalloca. This way we can know how many bytes we should've allocated
11307 // and how many bytes a callee cleanup function will pop. If we port
11308 // inalloca to more targets, we'll have to add custom inalloca handling
11309 // in the various CC lowering callbacks.
11310 Flags.setByVal();
11311 }
11312 Align MemAlign;
11313 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11314 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11315 Flags.setByValSize(FrameSize);
11316
11317 // info is not there but there are cases it cannot get right.
11318 if (auto MA = Args[i].Alignment)
11319 MemAlign = *MA;
11320 else
11321 MemAlign = getByValTypeAlignment(Args[i].IndirectType, DL);
11322 } else if (auto MA = Args[i].Alignment) {
11323 MemAlign = *MA;
11324 } else {
11325 MemAlign = OriginalAlignment;
11326 }
11327 Flags.setMemAlign(MemAlign);
11328 if (Args[i].IsNest)
11329 Flags.setNest();
11330 if (NeedsRegBlock)
11331 Flags.setInConsecutiveRegs();
11332
11333 MVT PartVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11334 unsigned NumParts =
11335 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11336 SmallVector<SDValue, 4> Parts(NumParts);
11337 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11338
11339 if (Args[i].IsSExt)
11340 ExtendKind = ISD::SIGN_EXTEND;
11341 else if (Args[i].IsZExt)
11342 ExtendKind = ISD::ZERO_EXTEND;
11343
11344 // Conservatively only handle 'returned' on non-vectors that can be lowered,
11345 // for now.
11346 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11348 assert((CLI.RetTy == Args[i].Ty ||
11349 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11351 Args[i].Ty->getPointerAddressSpace())) &&
11352 RetVTs.size() == NumValues && "unexpected use of 'returned'");
11353 // Before passing 'returned' to the target lowering code, ensure that
11354 // either the register MVT and the actual EVT are the same size or that
11355 // the return value and argument are extended in the same way; in these
11356 // cases it's safe to pass the argument register value unchanged as the
11357 // return register value (although it's at the target's option whether
11358 // to do so)
11359 // TODO: allow code generation to take advantage of partially preserved
11360 // registers rather than clobbering the entire register when the
11361 // parameter extension method is not compatible with the return
11362 // extension method
11363 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11364 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11365 CLI.RetZExt == Args[i].IsZExt))
11366 Flags.setReturned();
11367 }
11368
11369 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11370 CLI.CallConv, ExtendKind);
11371
11372 for (unsigned j = 0; j != NumParts; ++j) {
11373 // if it isn't first piece, alignment must be 1
11374 // For scalable vectors the scalable part is currently handled
11375 // by individual targets, so we just use the known minimum size here.
11376 ISD::OutputArg MyFlags(
11377 Flags, Parts[j].getValueType().getSimpleVT(), VT, OrigArgTy, i,
11378 j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11379 if (NumParts > 1 && j == 0)
11380 MyFlags.Flags.setSplit();
11381 else if (j != 0) {
11382 MyFlags.Flags.setOrigAlign(Align(1));
11383 if (j == NumParts - 1)
11384 MyFlags.Flags.setSplitEnd();
11385 }
11386
11387 CLI.Outs.push_back(MyFlags);
11388 CLI.OutVals.push_back(Parts[j]);
11389 }
11390
11391 if (NeedsRegBlock && Value == NumValues - 1)
11392 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11393 }
11394 }
11395
11397 CLI.Chain = LowerCall(CLI, InVals);
11398
11399 // Update CLI.InVals to use outside of this function.
11400 CLI.InVals = InVals;
11401
11402 // Verify that the target's LowerCall behaved as expected.
11403 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11404 "LowerCall didn't return a valid chain!");
11405 assert((!CLI.IsTailCall || InVals.empty()) &&
11406 "LowerCall emitted a return value for a tail call!");
11407 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11408 "LowerCall didn't emit the correct number of values!");
11409
11410 // For a tail call, the return value is merely live-out and there aren't
11411 // any nodes in the DAG representing it. Return a special value to
11412 // indicate that a tail call has been emitted and no more Instructions
11413 // should be processed in the current block.
11414 if (CLI.IsTailCall) {
11415 CLI.DAG.setRoot(CLI.Chain);
11416 return std::make_pair(SDValue(), SDValue());
11417 }
11418
11419#ifndef NDEBUG
11420 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11421 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11422 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11423 "LowerCall emitted a value with the wrong type!");
11424 }
11425#endif
11426
11427 SmallVector<SDValue, 4> ReturnValues;
11428 if (!CanLowerReturn) {
11429 // The instruction result is the result of loading from the
11430 // hidden sret parameter.
11431 MVT PtrVT = getPointerTy(DL, DL.getAllocaAddrSpace());
11432
11433 unsigned NumValues = RetVTs.size();
11434 ReturnValues.resize(NumValues);
11435 SmallVector<SDValue, 4> Chains(NumValues);
11436
11437 // An aggregate return value cannot wrap around the address space, so
11438 // offsets to its parts don't wrap either.
11440 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11441 for (unsigned i = 0; i < NumValues; ++i) {
11443 DemoteStackSlot, CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT),
11445 SDValue L = CLI.DAG.getLoad(
11446 RetVTs[i], CLI.DL, CLI.Chain, Add,
11448 DemoteStackIdx, Offsets[i]),
11449 HiddenSRetAlign);
11450 ReturnValues[i] = L;
11451 Chains[i] = L.getValue(1);
11452 }
11453
11454 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11455 } else {
11456 // Collect the legal value parts into potentially illegal values
11457 // that correspond to the original function's return values.
11458 std::optional<ISD::NodeType> AssertOp;
11459 if (CLI.RetSExt)
11460 AssertOp = ISD::AssertSext;
11461 else if (CLI.RetZExt)
11462 AssertOp = ISD::AssertZext;
11463 unsigned CurReg = 0;
11464 for (EVT VT : RetVTs) {
11465 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11466 unsigned NumRegs =
11467 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11468
11469 ReturnValues.push_back(getCopyFromParts(
11470 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11471 CLI.Chain, CLI.CallConv, AssertOp));
11472 CurReg += NumRegs;
11473 }
11474
11475 // For a function returning void, there is no return value. We can't create
11476 // such a node, so we just return a null return value in that case. In
11477 // that case, nothing will actually look at the value.
11478 if (ReturnValues.empty())
11479 return std::make_pair(SDValue(), CLI.Chain);
11480 }
11481
11482 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11483 CLI.DAG.getVTList(RetVTs), ReturnValues);
11484 return std::make_pair(Res, CLI.Chain);
11485}
11486
11487/// Places new result values for the node in Results (their number
11488/// and types must exactly match those of the original return values of
11489/// the node), or leaves Results empty, which indicates that the node is not
11490/// to be custom lowered after all.
11493 SelectionDAG &DAG) const {
11494 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11495
11496 if (!Res.getNode())
11497 return;
11498
11499 // If the original node has one result, take the return value from
11500 // LowerOperation as is. It might not be result number 0.
11501 if (N->getNumValues() == 1) {
11502 Results.push_back(Res);
11503 return;
11504 }
11505
11506 // If the original node has multiple results, then the return node should
11507 // have the same number of results.
11508 assert((N->getNumValues() == Res->getNumValues()) &&
11509 "Lowering returned the wrong number of results!");
11510
11511 // Places new result values base on N result number.
11512 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11513 Results.push_back(Res.getValue(I));
11514}
11515
11517 llvm_unreachable("LowerOperation not implemented for this target!");
11518}
11519
11521 Register Reg,
11522 ISD::NodeType ExtendType) {
11524 assert((Op.getOpcode() != ISD::CopyFromReg ||
11525 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11526 "Copy from a reg to the same reg!");
11527 assert(!Reg.isPhysical() && "Is a physreg");
11528
11529 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11530 // If this is an InlineAsm we have to match the registers required, not the
11531 // notional registers required by the type.
11532
11533 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11534 std::nullopt); // This is not an ABI copy.
11535 SDValue Chain = DAG.getEntryNode();
11536
11537 if (ExtendType == ISD::ANY_EXTEND) {
11538 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11539 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11540 ExtendType = PreferredExtendIt->second;
11541 }
11542 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11543 PendingExports.push_back(Chain);
11544}
11545
11547
11548/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11549/// entry block, return true. This includes arguments used by switches, since
11550/// the switch may expand into multiple basic blocks.
11551static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11552 // With FastISel active, we may be splitting blocks, so force creation
11553 // of virtual registers for all non-dead arguments.
11554 if (FastISel)
11555 return A->use_empty();
11556
11557 const BasicBlock &Entry = A->getParent()->front();
11558 for (const User *U : A->users())
11559 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11560 return false; // Use not in entry block.
11561
11562 return true;
11563}
11564
11566 DenseMap<const Argument *,
11567 std::pair<const AllocaInst *, const StoreInst *>>;
11568
11569/// Scan the entry block of the function in FuncInfo for arguments that look
11570/// like copies into a local alloca. Record any copied arguments in
11571/// ArgCopyElisionCandidates.
11572static void
11574 FunctionLoweringInfo *FuncInfo,
11575 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11576 // Record the state of every static alloca used in the entry block. Argument
11577 // allocas are all used in the entry block, so we need approximately as many
11578 // entries as we have arguments.
11579 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11581 unsigned NumArgs = FuncInfo->Fn->arg_size();
11582 StaticAllocas.reserve(NumArgs * 2);
11583
11584 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11585 if (!V)
11586 return nullptr;
11587 V = V->stripPointerCasts();
11588 const auto *AI = dyn_cast<AllocaInst>(V);
11589 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11590 return nullptr;
11591 auto Iter = StaticAllocas.insert({AI, Unknown});
11592 return &Iter.first->second;
11593 };
11594
11595 // Look for stores of arguments to static allocas. Look through bitcasts and
11596 // GEPs to handle type coercions, as long as the alloca is fully initialized
11597 // by the store. Any non-store use of an alloca escapes it and any subsequent
11598 // unanalyzed store might write it.
11599 // FIXME: Handle structs initialized with multiple stores.
11600 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11601 // Look for stores, and handle non-store uses conservatively.
11602 const auto *SI = dyn_cast<StoreInst>(&I);
11603 if (!SI) {
11604 // We will look through cast uses, so ignore them completely.
11605 if (I.isCast())
11606 continue;
11607 // Ignore debug info and pseudo op intrinsics, they don't escape or store
11608 // to allocas.
11609 if (I.isDebugOrPseudoInst())
11610 continue;
11611 // This is an unknown instruction. Assume it escapes or writes to all
11612 // static alloca operands.
11613 for (const Use &U : I.operands()) {
11614 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11615 *Info = StaticAllocaInfo::Clobbered;
11616 }
11617 continue;
11618 }
11619
11620 // If the stored value is a static alloca, mark it as escaped.
11621 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11622 *Info = StaticAllocaInfo::Clobbered;
11623
11624 // Check if the destination is a static alloca.
11625 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11626 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11627 if (!Info)
11628 continue;
11629 const AllocaInst *AI = cast<AllocaInst>(Dst);
11630
11631 // Skip allocas that have been initialized or clobbered.
11632 if (*Info != StaticAllocaInfo::Unknown)
11633 continue;
11634
11635 // Check if the stored value is an argument, and that this store fully
11636 // initializes the alloca.
11637 // If the argument type has padding bits we can't directly forward a pointer
11638 // as the upper bits may contain garbage.
11639 // Don't elide copies from the same argument twice.
11640 const Value *Val = SI->getValueOperand()->stripPointerCasts();
11641 const auto *Arg = dyn_cast<Argument>(Val);
11642 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11643 Arg->getType()->isEmptyTy() ||
11644 DL.getTypeStoreSize(Arg->getType()) !=
11645 DL.getTypeAllocSize(AI->getAllocatedType()) ||
11646 !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11647 ArgCopyElisionCandidates.count(Arg)) {
11648 *Info = StaticAllocaInfo::Clobbered;
11649 continue;
11650 }
11651
11652 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11653 << '\n');
11654
11655 // Mark this alloca and store for argument copy elision.
11656 *Info = StaticAllocaInfo::Elidable;
11657 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11658
11659 // Stop scanning if we've seen all arguments. This will happen early in -O0
11660 // builds, which is useful, because -O0 builds have large entry blocks and
11661 // many allocas.
11662 if (ArgCopyElisionCandidates.size() == NumArgs)
11663 break;
11664 }
11665}
11666
11667/// Try to elide argument copies from memory into a local alloca. Succeeds if
11668/// ArgVal is a load from a suitable fixed stack object.
11671 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11672 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11673 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11674 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11675 // Check if this is a load from a fixed stack object.
11676 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11677 if (!LNode)
11678 return;
11679 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11680 if (!FINode)
11681 return;
11682
11683 // Check that the fixed stack object is the right size and alignment.
11684 // Look at the alignment that the user wrote on the alloca instead of looking
11685 // at the stack object.
11686 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11687 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11688 const AllocaInst *AI = ArgCopyIter->second.first;
11689 int FixedIndex = FINode->getIndex();
11690 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11691 int OldIndex = AllocaIndex;
11692 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11693 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11694 LLVM_DEBUG(
11695 dbgs() << " argument copy elision failed due to bad fixed stack "
11696 "object size\n");
11697 return;
11698 }
11699 Align RequiredAlignment = AI->getAlign();
11700 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11701 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
11702 "greater than stack argument alignment ("
11703 << DebugStr(RequiredAlignment) << " vs "
11704 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11705 return;
11706 }
11707
11708 // Perform the elision. Delete the old stack object and replace its only use
11709 // in the variable info map. Mark the stack object as mutable and aliased.
11710 LLVM_DEBUG({
11711 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11712 << " Replacing frame index " << OldIndex << " with " << FixedIndex
11713 << '\n';
11714 });
11715 MFI.RemoveStackObject(OldIndex);
11716 MFI.setIsImmutableObjectIndex(FixedIndex, false);
11717 MFI.setIsAliasedObjectIndex(FixedIndex, true);
11718 AllocaIndex = FixedIndex;
11719 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11720 for (SDValue ArgVal : ArgVals)
11721 Chains.push_back(ArgVal.getValue(1));
11722
11723 // Avoid emitting code for the store implementing the copy.
11724 const StoreInst *SI = ArgCopyIter->second.second;
11725 ElidedArgCopyInstrs.insert(SI);
11726
11727 // Check for uses of the argument again so that we can avoid exporting ArgVal
11728 // if it is't used by anything other than the store.
11729 for (const Value *U : Arg.users()) {
11730 if (U != SI) {
11731 ArgHasUses = true;
11732 break;
11733 }
11734 }
11735}
11736
11737void SelectionDAGISel::LowerArguments(const Function &F) {
11738 SelectionDAG &DAG = SDB->DAG;
11739 SDLoc dl = SDB->getCurSDLoc();
11740 const DataLayout &DL = DAG.getDataLayout();
11742
11743 // In Naked functions we aren't going to save any registers.
11744 if (F.hasFnAttribute(Attribute::Naked))
11745 return;
11746
11747 if (!FuncInfo->CanLowerReturn) {
11748 // Put in an sret pointer parameter before all the other parameters.
11749 MVT ValueVT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11750
11751 ISD::ArgFlagsTy Flags;
11752 Flags.setSRet();
11753 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVT);
11754 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT, F.getReturnType(), true,
11756 Ins.push_back(RetArg);
11757 }
11758
11759 // Look for stores of arguments to static allocas. Mark such arguments with a
11760 // flag to ask the target to give us the memory location of that argument if
11761 // available.
11762 ArgCopyElisionMapTy ArgCopyElisionCandidates;
11764 ArgCopyElisionCandidates);
11765
11766 // Set up the incoming argument description vector.
11767 for (const Argument &Arg : F.args()) {
11768 unsigned ArgNo = Arg.getArgNo();
11770 ComputeValueTypes(DAG.getDataLayout(), Arg.getType(), Types);
11771 bool isArgValueUsed = !Arg.use_empty();
11772 unsigned PartBase = 0;
11773 Type *FinalType = Arg.getType();
11774 if (Arg.hasAttribute(Attribute::ByVal))
11775 FinalType = Arg.getParamByValType();
11776 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11777 FinalType, F.getCallingConv(), F.isVarArg(), DL);
11778 for (unsigned Value = 0, NumValues = Types.size(); Value != NumValues;
11779 ++Value) {
11780 Type *ArgTy = Types[Value];
11781 EVT VT = TLI->getValueType(DL, ArgTy);
11782 ISD::ArgFlagsTy Flags;
11783
11784 if (ArgTy->isPointerTy()) {
11785 Flags.setPointer();
11786 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11787 }
11788 if (Arg.hasAttribute(Attribute::ZExt))
11789 Flags.setZExt();
11790 if (Arg.hasAttribute(Attribute::SExt))
11791 Flags.setSExt();
11792 if (Arg.hasAttribute(Attribute::InReg)) {
11793 // If we are using vectorcall calling convention, a structure that is
11794 // passed InReg - is surely an HVA
11795 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11796 isa<StructType>(Arg.getType())) {
11797 // The first value of a structure is marked
11798 if (0 == Value)
11799 Flags.setHvaStart();
11800 Flags.setHva();
11801 }
11802 // Set InReg Flag
11803 Flags.setInReg();
11804 }
11805 if (Arg.hasAttribute(Attribute::StructRet))
11806 Flags.setSRet();
11807 if (Arg.hasAttribute(Attribute::SwiftSelf))
11808 Flags.setSwiftSelf();
11809 if (Arg.hasAttribute(Attribute::SwiftAsync))
11810 Flags.setSwiftAsync();
11811 if (Arg.hasAttribute(Attribute::SwiftError))
11812 Flags.setSwiftError();
11813 if (Arg.hasAttribute(Attribute::ByVal))
11814 Flags.setByVal();
11815 if (Arg.hasAttribute(Attribute::ByRef))
11816 Flags.setByRef();
11817 if (Arg.hasAttribute(Attribute::InAlloca)) {
11818 Flags.setInAlloca();
11819 // Set the byval flag for CCAssignFn callbacks that don't know about
11820 // inalloca. This way we can know how many bytes we should've allocated
11821 // and how many bytes a callee cleanup function will pop. If we port
11822 // inalloca to more targets, we'll have to add custom inalloca handling
11823 // in the various CC lowering callbacks.
11824 Flags.setByVal();
11825 }
11826 if (Arg.hasAttribute(Attribute::Preallocated)) {
11827 Flags.setPreallocated();
11828 // Set the byval flag for CCAssignFn callbacks that don't know about
11829 // preallocated. This way we can know how many bytes we should've
11830 // allocated and how many bytes a callee cleanup function will pop. If
11831 // we port preallocated to more targets, we'll have to add custom
11832 // preallocated handling in the various CC lowering callbacks.
11833 Flags.setByVal();
11834 }
11835
11836 // Certain targets (such as MIPS), may have a different ABI alignment
11837 // for a type depending on the context. Give the target a chance to
11838 // specify the alignment it wants.
11839 const Align OriginalAlignment(
11840 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11841 Flags.setOrigAlign(OriginalAlignment);
11842
11843 Align MemAlign;
11844 Type *ArgMemTy = nullptr;
11845 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11846 Flags.isByRef()) {
11847 if (!ArgMemTy)
11848 ArgMemTy = Arg.getPointeeInMemoryValueType();
11849
11850 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11851
11852 // For in-memory arguments, size and alignment should be passed from FE.
11853 // BE will guess if this info is not there but there are cases it cannot
11854 // get right.
11855 if (auto ParamAlign = Arg.getParamStackAlign())
11856 MemAlign = *ParamAlign;
11857 else if ((ParamAlign = Arg.getParamAlign()))
11858 MemAlign = *ParamAlign;
11859 else
11860 MemAlign = TLI->getByValTypeAlignment(ArgMemTy, DL);
11861 if (Flags.isByRef())
11862 Flags.setByRefSize(MemSize);
11863 else
11864 Flags.setByValSize(MemSize);
11865 } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11866 MemAlign = *ParamAlign;
11867 } else {
11868 MemAlign = OriginalAlignment;
11869 }
11870 Flags.setMemAlign(MemAlign);
11871
11872 if (Arg.hasAttribute(Attribute::Nest))
11873 Flags.setNest();
11874 if (NeedsRegBlock)
11875 Flags.setInConsecutiveRegs();
11876 if (ArgCopyElisionCandidates.count(&Arg))
11877 Flags.setCopyElisionCandidate();
11878 if (Arg.hasAttribute(Attribute::Returned))
11879 Flags.setReturned();
11880
11881 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11882 *CurDAG->getContext(), F.getCallingConv(), VT);
11883 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11884 *CurDAG->getContext(), F.getCallingConv(), VT);
11885 for (unsigned i = 0; i != NumRegs; ++i) {
11886 // For scalable vectors, use the minimum size; individual targets
11887 // are responsible for handling scalable vector arguments and
11888 // return values.
11889 ISD::InputArg MyFlags(
11890 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11891 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11892 if (NumRegs > 1 && i == 0)
11893 MyFlags.Flags.setSplit();
11894 // if it isn't first piece, alignment must be 1
11895 else if (i > 0) {
11896 MyFlags.Flags.setOrigAlign(Align(1));
11897 if (i == NumRegs - 1)
11898 MyFlags.Flags.setSplitEnd();
11899 }
11900 Ins.push_back(MyFlags);
11901 }
11902 if (NeedsRegBlock && Value == NumValues - 1)
11903 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11904 PartBase += VT.getStoreSize().getKnownMinValue();
11905 }
11906 }
11907
11908 // Call the target to set up the argument values.
11910 SDValue NewRoot = TLI->LowerFormalArguments(
11911 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11912
11913 // Verify that the target's LowerFormalArguments behaved as expected.
11914 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11915 "LowerFormalArguments didn't return a valid chain!");
11916 assert(InVals.size() == Ins.size() &&
11917 "LowerFormalArguments didn't emit the correct number of values!");
11918 LLVM_DEBUG({
11919 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11920 assert(InVals[i].getNode() &&
11921 "LowerFormalArguments emitted a null value!");
11922 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11923 "LowerFormalArguments emitted a value with the wrong type!");
11924 }
11925 });
11926
11927 // Update the DAG with the new chain value resulting from argument lowering.
11928 DAG.setRoot(NewRoot);
11929
11930 // Set up the argument values.
11931 unsigned i = 0;
11932 if (!FuncInfo->CanLowerReturn) {
11933 // Create a virtual register for the sret pointer, and put in a copy
11934 // from the sret argument into it.
11935 MVT VT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11936 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11937 std::optional<ISD::NodeType> AssertOp;
11938 SDValue ArgValue =
11939 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11940 F.getCallingConv(), AssertOp);
11941
11942 MachineFunction& MF = SDB->DAG.getMachineFunction();
11943 MachineRegisterInfo& RegInfo = MF.getRegInfo();
11944 Register SRetReg =
11945 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11946 FuncInfo->DemoteRegister = SRetReg;
11947 NewRoot =
11948 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11949 DAG.setRoot(NewRoot);
11950
11951 // i indexes lowered arguments. Bump it past the hidden sret argument.
11952 ++i;
11953 }
11954
11956 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11957 for (const Argument &Arg : F.args()) {
11958 SmallVector<SDValue, 4> ArgValues;
11959 SmallVector<EVT, 4> ValueVTs;
11960 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11961 unsigned NumValues = ValueVTs.size();
11962 if (NumValues == 0)
11963 continue;
11964
11965 bool ArgHasUses = !Arg.use_empty();
11966
11967 // Elide the copying store if the target loaded this argument from a
11968 // suitable fixed stack object.
11969 if (Ins[i].Flags.isCopyElisionCandidate()) {
11970 unsigned NumParts = 0;
11971 for (EVT VT : ValueVTs)
11972 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11973 F.getCallingConv(), VT);
11974
11975 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11976 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11977 ArrayRef(&InVals[i], NumParts), ArgHasUses);
11978 }
11979
11980 // If this argument is unused then remember its value. It is used to generate
11981 // debugging information.
11982 bool isSwiftErrorArg =
11983 TLI->supportSwiftError() &&
11984 Arg.hasAttribute(Attribute::SwiftError);
11985 if (!ArgHasUses && !isSwiftErrorArg) {
11986 SDB->setUnusedArgValue(&Arg, InVals[i]);
11987
11988 // Also remember any frame index for use in FastISel.
11989 if (FrameIndexSDNode *FI =
11991 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11992 }
11993
11994 for (unsigned Val = 0; Val != NumValues; ++Val) {
11995 EVT VT = ValueVTs[Val];
11996 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11997 F.getCallingConv(), VT);
11998 unsigned NumParts = TLI->getNumRegistersForCallingConv(
11999 *CurDAG->getContext(), F.getCallingConv(), VT);
12000
12001 // Even an apparent 'unused' swifterror argument needs to be returned. So
12002 // we do generate a copy for it that can be used on return from the
12003 // function.
12004 if (ArgHasUses || isSwiftErrorArg) {
12005 std::optional<ISD::NodeType> AssertOp;
12006 if (Arg.hasAttribute(Attribute::SExt))
12007 AssertOp = ISD::AssertSext;
12008 else if (Arg.hasAttribute(Attribute::ZExt))
12009 AssertOp = ISD::AssertZext;
12010
12011 SDValue OutVal =
12012 getCopyFromParts(DAG, dl, &InVals[i], NumParts, PartVT, VT, nullptr,
12013 NewRoot, F.getCallingConv(), AssertOp);
12014
12015 FPClassTest NoFPClass = Arg.getNoFPClass();
12016 if (NoFPClass != fcNone) {
12017 SDValue SDNoFPClass = DAG.getTargetConstant(
12018 static_cast<uint64_t>(NoFPClass), dl, MVT::i32);
12019 OutVal = DAG.getNode(ISD::AssertNoFPClass, dl, OutVal.getValueType(),
12020 OutVal, SDNoFPClass);
12021 }
12022 ArgValues.push_back(OutVal);
12023 }
12024
12025 i += NumParts;
12026 }
12027
12028 // We don't need to do anything else for unused arguments.
12029 if (ArgValues.empty())
12030 continue;
12031
12032 // Note down frame index.
12033 if (FrameIndexSDNode *FI =
12034 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
12035 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12036
12037 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
12038 SDB->getCurSDLoc());
12039
12040 SDB->setValue(&Arg, Res);
12041 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
12042 // We want to associate the argument with the frame index, among
12043 // involved operands, that correspond to the lowest address. The
12044 // getCopyFromParts function, called earlier, is swapping the order of
12045 // the operands to BUILD_PAIR depending on endianness. The result of
12046 // that swapping is that the least significant bits of the argument will
12047 // be in the first operand of the BUILD_PAIR node, and the most
12048 // significant bits will be in the second operand.
12049 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
12050 if (LoadSDNode *LNode =
12051 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
12052 if (FrameIndexSDNode *FI =
12053 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
12054 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12055 }
12056
12057 // Analyses past this point are naive and don't expect an assertion.
12058 if (Res.getOpcode() == ISD::AssertZext)
12059 Res = Res.getOperand(0);
12060
12061 // Update the SwiftErrorVRegDefMap.
12062 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
12063 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12064 if (Reg.isVirtual())
12065 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
12066 Reg);
12067 }
12068
12069 // If this argument is live outside of the entry block, insert a copy from
12070 // wherever we got it to the vreg that other BB's will reference it as.
12071 if (Res.getOpcode() == ISD::CopyFromReg) {
12072 // If we can, though, try to skip creating an unnecessary vreg.
12073 // FIXME: This isn't very clean... it would be nice to make this more
12074 // general.
12075 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12076 if (Reg.isVirtual()) {
12077 FuncInfo->ValueMap[&Arg] = Reg;
12078 continue;
12079 }
12080 }
12081 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
12082 FuncInfo->InitializeRegForValue(&Arg);
12083 SDB->CopyToExportRegsIfNeeded(&Arg);
12084 }
12085 }
12086
12087 if (!Chains.empty()) {
12088 Chains.push_back(NewRoot);
12089 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
12090 }
12091
12092 DAG.setRoot(NewRoot);
12093
12094 assert(i == InVals.size() && "Argument register count mismatch!");
12095
12096 // If any argument copy elisions occurred and we have debug info, update the
12097 // stale frame indices used in the dbg.declare variable info table.
12098 if (!ArgCopyElisionFrameIndexMap.empty()) {
12099 for (MachineFunction::VariableDbgInfo &VI :
12100 MF->getInStackSlotVariableDbgInfo()) {
12101 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
12102 if (I != ArgCopyElisionFrameIndexMap.end())
12103 VI.updateStackSlot(I->second);
12104 }
12105 }
12106
12107 // Finally, if the target has anything special to do, allow it to do so.
12109}
12110
12111/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
12112/// ensure constants are generated when needed. Remember the virtual registers
12113/// that need to be added to the Machine PHI nodes as input. We cannot just
12114/// directly add them, because expansion might result in multiple MBB's for one
12115/// BB. As such, the start of the BB might correspond to a different MBB than
12116/// the end.
12117void
12118SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
12119 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12120
12121 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12122
12123 // Check PHI nodes in successors that expect a value to be available from this
12124 // block.
12125 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
12126 if (!isa<PHINode>(SuccBB->begin())) continue;
12127 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
12128
12129 // If this terminator has multiple identical successors (common for
12130 // switches), only handle each succ once.
12131 if (!SuccsHandled.insert(SuccMBB).second)
12132 continue;
12133
12135
12136 // At this point we know that there is a 1-1 correspondence between LLVM PHI
12137 // nodes and Machine PHI nodes, but the incoming operands have not been
12138 // emitted yet.
12139 for (const PHINode &PN : SuccBB->phis()) {
12140 // Ignore dead phi's.
12141 if (PN.use_empty())
12142 continue;
12143
12144 // Skip empty types
12145 if (PN.getType()->isEmptyTy())
12146 continue;
12147
12148 Register Reg;
12149 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12150
12151 if (const auto *C = dyn_cast<Constant>(PHIOp)) {
12152 Register &RegOut = ConstantsOut[C];
12153 if (!RegOut) {
12154 RegOut = FuncInfo.CreateRegs(&PN);
12155 // We need to zero/sign extend ConstantInt phi operands to match
12156 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
12157 ISD::NodeType ExtendType = ISD::ANY_EXTEND;
12158 if (auto *CI = dyn_cast<ConstantInt>(C))
12159 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
12161 CopyValueToVirtualRegister(C, RegOut, ExtendType);
12162 }
12163 Reg = RegOut;
12164 } else {
12166 FuncInfo.ValueMap.find(PHIOp);
12167 if (I != FuncInfo.ValueMap.end())
12168 Reg = I->second;
12169 else {
12170 assert(isa<AllocaInst>(PHIOp) &&
12171 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
12172 "Didn't codegen value into a register!??");
12173 Reg = FuncInfo.CreateRegs(&PN);
12175 }
12176 }
12177
12178 // Remember that this register needs to added to the machine PHI node as
12179 // the input for this MBB.
12180 SmallVector<EVT, 4> ValueVTs;
12181 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
12182 for (EVT VT : ValueVTs) {
12183 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
12184 for (unsigned i = 0; i != NumRegisters; ++i)
12185 FuncInfo.PHINodesToUpdate.emplace_back(&*MBBI++, Reg + i);
12186 Reg += NumRegisters;
12187 }
12188 }
12189 }
12190
12191 ConstantsOut.clear();
12192}
12193
12194MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
12196 if (++I == FuncInfo.MF->end())
12197 return nullptr;
12198 return &*I;
12199}
12200
12201/// During lowering new call nodes can be created (such as memset, etc.).
12202/// Those will become new roots of the current DAG, but complications arise
12203/// when they are tail calls. In such cases, the call lowering will update
12204/// the root, but the builder still needs to know that a tail call has been
12205/// lowered in order to avoid generating an additional return.
12206void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
12207 // If the node is null, we do have a tail call.
12208 if (MaybeTC.getNode() != nullptr)
12209 DAG.setRoot(MaybeTC);
12210 else
12211 HasTailCall = true;
12212}
12213
12214void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
12215 MachineBasicBlock *SwitchMBB,
12216 MachineBasicBlock *DefaultMBB) {
12217 MachineFunction *CurMF = FuncInfo.MF;
12218 MachineBasicBlock *NextMBB = nullptr;
12220 if (++BBI != FuncInfo.MF->end())
12221 NextMBB = &*BBI;
12222
12223 unsigned Size = W.LastCluster - W.FirstCluster + 1;
12224
12225 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12226
12227 if (Size == 2 && W.MBB == SwitchMBB) {
12228 // If any two of the cases has the same destination, and if one value
12229 // is the same as the other, but has one bit unset that the other has set,
12230 // use bit manipulation to do two compares at once. For example:
12231 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
12232 // TODO: This could be extended to merge any 2 cases in switches with 3
12233 // cases.
12234 // TODO: Handle cases where W.CaseBB != SwitchBB.
12235 CaseCluster &Small = *W.FirstCluster;
12236 CaseCluster &Big = *W.LastCluster;
12237
12238 if (Small.Low == Small.High && Big.Low == Big.High &&
12239 Small.MBB == Big.MBB) {
12240 const APInt &SmallValue = Small.Low->getValue();
12241 const APInt &BigValue = Big.Low->getValue();
12242
12243 // Check that there is only one bit different.
12244 APInt CommonBit = BigValue ^ SmallValue;
12245 if (CommonBit.isPowerOf2()) {
12246 SDValue CondLHS = getValue(Cond);
12247 EVT VT = CondLHS.getValueType();
12248 SDLoc DL = getCurSDLoc();
12249
12250 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
12251 DAG.getConstant(CommonBit, DL, VT));
12252 SDValue Cond = DAG.getSetCC(
12253 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
12254 ISD::SETEQ);
12255
12256 // Update successor info.
12257 // Both Small and Big will jump to Small.BB, so we sum up the
12258 // probabilities.
12259 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
12260 if (BPI)
12261 addSuccessorWithProb(
12262 SwitchMBB, DefaultMBB,
12263 // The default destination is the first successor in IR.
12264 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
12265 else
12266 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12267
12268 // Insert the true branch.
12269 SDValue BrCond =
12270 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12271 DAG.getBasicBlock(Small.MBB));
12272 // Insert the false branch.
12273 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12274 DAG.getBasicBlock(DefaultMBB));
12275
12276 DAG.setRoot(BrCond);
12277 return;
12278 }
12279 }
12280 }
12281
12282 if (TM.getOptLevel() != CodeGenOptLevel::None) {
12283 // Here, we order cases by probability so the most likely case will be
12284 // checked first. However, two clusters can have the same probability in
12285 // which case their relative ordering is non-deterministic. So we use Low
12286 // as a tie-breaker as clusters are guaranteed to never overlap.
12287 llvm::sort(W.FirstCluster, W.LastCluster + 1,
12288 [](const CaseCluster &a, const CaseCluster &b) {
12289 return a.Prob != b.Prob ?
12290 a.Prob > b.Prob :
12291 a.Low->getValue().slt(b.Low->getValue());
12292 });
12293
12294 // Rearrange the case blocks so that the last one falls through if possible
12295 // without changing the order of probabilities.
12296 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12297 --I;
12298 if (I->Prob > W.LastCluster->Prob)
12299 break;
12300 if (I->Kind == CC_Range && I->MBB == NextMBB) {
12301 std::swap(*I, *W.LastCluster);
12302 break;
12303 }
12304 }
12305 }
12306
12307 // Compute total probability.
12308 BranchProbability DefaultProb = W.DefaultProb;
12309 BranchProbability UnhandledProbs = DefaultProb;
12310 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12311 UnhandledProbs += I->Prob;
12312
12313 MachineBasicBlock *CurMBB = W.MBB;
12314 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12315 bool FallthroughUnreachable = false;
12316 MachineBasicBlock *Fallthrough;
12317 if (I == W.LastCluster) {
12318 // For the last cluster, fall through to the default destination.
12319 Fallthrough = DefaultMBB;
12320 FallthroughUnreachable = isa<UnreachableInst>(
12321 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12322 } else {
12323 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12324 CurMF->insert(BBI, Fallthrough);
12325 // Put Cond in a virtual register to make it available from the new blocks.
12327 }
12328 UnhandledProbs -= I->Prob;
12329
12330 switch (I->Kind) {
12331 case CC_JumpTable: {
12332 // FIXME: Optimize away range check based on pivot comparisons.
12333 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12334 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12335
12336 // The jump block hasn't been inserted yet; insert it here.
12337 MachineBasicBlock *JumpMBB = JT->MBB;
12338 CurMF->insert(BBI, JumpMBB);
12339
12340 auto JumpProb = I->Prob;
12341 auto FallthroughProb = UnhandledProbs;
12342
12343 // If the default statement is a target of the jump table, we evenly
12344 // distribute the default probability to successors of CurMBB. Also
12345 // update the probability on the edge from JumpMBB to Fallthrough.
12346 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12347 SE = JumpMBB->succ_end();
12348 SI != SE; ++SI) {
12349 if (*SI == DefaultMBB) {
12350 JumpProb += DefaultProb / 2;
12351 FallthroughProb -= DefaultProb / 2;
12352 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12353 JumpMBB->normalizeSuccProbs();
12354 break;
12355 }
12356 }
12357
12358 // If the default clause is unreachable, propagate that knowledge into
12359 // JTH->FallthroughUnreachable which will use it to suppress the range
12360 // check.
12361 //
12362 // However, don't do this if we're doing branch target enforcement,
12363 // because a table branch _without_ a range check can be a tempting JOP
12364 // gadget - out-of-bounds inputs that are impossible in correct
12365 // execution become possible again if an attacker can influence the
12366 // control flow. So if an attacker doesn't already have a BTI bypass
12367 // available, we don't want them to be able to get one out of this
12368 // table branch.
12369 if (FallthroughUnreachable) {
12370 Function &CurFunc = CurMF->getFunction();
12371 if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12372 JTH->FallthroughUnreachable = true;
12373 }
12374
12375 if (!JTH->FallthroughUnreachable)
12376 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12377 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12378 CurMBB->normalizeSuccProbs();
12379
12380 // The jump table header will be inserted in our current block, do the
12381 // range check, and fall through to our fallthrough block.
12382 JTH->HeaderBB = CurMBB;
12383 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12384
12385 // If we're in the right place, emit the jump table header right now.
12386 if (CurMBB == SwitchMBB) {
12387 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12388 JTH->Emitted = true;
12389 }
12390 break;
12391 }
12392 case CC_BitTests: {
12393 // FIXME: Optimize away range check based on pivot comparisons.
12394 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12395
12396 // The bit test blocks haven't been inserted yet; insert them here.
12397 for (BitTestCase &BTC : BTB->Cases)
12398 CurMF->insert(BBI, BTC.ThisBB);
12399
12400 // Fill in fields of the BitTestBlock.
12401 BTB->Parent = CurMBB;
12402 BTB->Default = Fallthrough;
12403
12404 BTB->DefaultProb = UnhandledProbs;
12405 // If the cases in bit test don't form a contiguous range, we evenly
12406 // distribute the probability on the edge to Fallthrough to two
12407 // successors of CurMBB.
12408 if (!BTB->ContiguousRange) {
12409 BTB->Prob += DefaultProb / 2;
12410 BTB->DefaultProb -= DefaultProb / 2;
12411 }
12412
12413 if (FallthroughUnreachable)
12414 BTB->FallthroughUnreachable = true;
12415
12416 // If we're in the right place, emit the bit test header right now.
12417 if (CurMBB == SwitchMBB) {
12418 visitBitTestHeader(*BTB, SwitchMBB);
12419 BTB->Emitted = true;
12420 }
12421 break;
12422 }
12423 case CC_Range: {
12424 const Value *RHS, *LHS, *MHS;
12425 ISD::CondCode CC;
12426 if (I->Low == I->High) {
12427 // Check Cond == I->Low.
12428 CC = ISD::SETEQ;
12429 LHS = Cond;
12430 RHS=I->Low;
12431 MHS = nullptr;
12432 } else {
12433 // Check I->Low <= Cond <= I->High.
12434 CC = ISD::SETLE;
12435 LHS = I->Low;
12436 MHS = Cond;
12437 RHS = I->High;
12438 }
12439
12440 // If Fallthrough is unreachable, fold away the comparison.
12441 if (FallthroughUnreachable)
12442 CC = ISD::SETTRUE;
12443
12444 // The false probability is the sum of all unhandled cases.
12445 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12446 getCurSDLoc(), I->Prob, UnhandledProbs);
12447
12448 if (CurMBB == SwitchMBB)
12449 visitSwitchCase(CB, SwitchMBB);
12450 else
12451 SL->SwitchCases.push_back(CB);
12452
12453 break;
12454 }
12455 }
12456 CurMBB = Fallthrough;
12457 }
12458}
12459
12460void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12461 const SwitchWorkListItem &W,
12462 Value *Cond,
12463 MachineBasicBlock *SwitchMBB) {
12464 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12465 "Clusters not sorted?");
12466 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12467
12468 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12469 SL->computeSplitWorkItemInfo(W);
12470
12471 // Use the first element on the right as pivot since we will make less-than
12472 // comparisons against it.
12473 CaseClusterIt PivotCluster = FirstRight;
12474 assert(PivotCluster > W.FirstCluster);
12475 assert(PivotCluster <= W.LastCluster);
12476
12477 CaseClusterIt FirstLeft = W.FirstCluster;
12478 CaseClusterIt LastRight = W.LastCluster;
12479
12480 const ConstantInt *Pivot = PivotCluster->Low;
12481
12482 // New blocks will be inserted immediately after the current one.
12484 ++BBI;
12485
12486 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12487 // we can branch to its destination directly if it's squeezed exactly in
12488 // between the known lower bound and Pivot - 1.
12489 MachineBasicBlock *LeftMBB;
12490 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12491 FirstLeft->Low == W.GE &&
12492 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12493 LeftMBB = FirstLeft->MBB;
12494 } else {
12495 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12496 FuncInfo.MF->insert(BBI, LeftMBB);
12497 WorkList.push_back(
12498 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12499 // Put Cond in a virtual register to make it available from the new blocks.
12501 }
12502
12503 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12504 // single cluster, RHS.Low == Pivot, and we can branch to its destination
12505 // directly if RHS.High equals the current upper bound.
12506 MachineBasicBlock *RightMBB;
12507 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12508 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12509 RightMBB = FirstRight->MBB;
12510 } else {
12511 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12512 FuncInfo.MF->insert(BBI, RightMBB);
12513 WorkList.push_back(
12514 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12515 // Put Cond in a virtual register to make it available from the new blocks.
12517 }
12518
12519 // Create the CaseBlock record that will be used to lower the branch.
12520 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12521 getCurSDLoc(), LeftProb, RightProb);
12522
12523 if (W.MBB == SwitchMBB)
12524 visitSwitchCase(CB, SwitchMBB);
12525 else
12526 SL->SwitchCases.push_back(CB);
12527}
12528
12529// Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12530// from the swith statement.
12532 BranchProbability PeeledCaseProb) {
12533 if (PeeledCaseProb == BranchProbability::getOne())
12535 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12536
12537 uint32_t Numerator = CaseProb.getNumerator();
12538 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12539 return BranchProbability(Numerator, std::max(Numerator, Denominator));
12540}
12541
12542// Try to peel the top probability case if it exceeds the threshold.
12543// Return current MachineBasicBlock for the switch statement if the peeling
12544// does not occur.
12545// If the peeling is performed, return the newly created MachineBasicBlock
12546// for the peeled switch statement. Also update Clusters to remove the peeled
12547// case. PeeledCaseProb is the BranchProbability for the peeled case.
12548MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12549 const SwitchInst &SI, CaseClusterVector &Clusters,
12550 BranchProbability &PeeledCaseProb) {
12551 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12552 // Don't perform if there is only one cluster or optimizing for size.
12553 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12554 TM.getOptLevel() == CodeGenOptLevel::None ||
12555 SwitchMBB->getParent()->getFunction().hasMinSize())
12556 return SwitchMBB;
12557
12558 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12559 unsigned PeeledCaseIndex = 0;
12560 bool SwitchPeeled = false;
12561 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12562 CaseCluster &CC = Clusters[Index];
12563 if (CC.Prob < TopCaseProb)
12564 continue;
12565 TopCaseProb = CC.Prob;
12566 PeeledCaseIndex = Index;
12567 SwitchPeeled = true;
12568 }
12569 if (!SwitchPeeled)
12570 return SwitchMBB;
12571
12572 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12573 << TopCaseProb << "\n");
12574
12575 // Record the MBB for the peeled switch statement.
12576 MachineFunction::iterator BBI(SwitchMBB);
12577 ++BBI;
12578 MachineBasicBlock *PeeledSwitchMBB =
12579 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12580 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12581
12582 ExportFromCurrentBlock(SI.getCondition());
12583 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12584 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12585 nullptr, nullptr, TopCaseProb.getCompl()};
12586 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12587
12588 Clusters.erase(PeeledCaseIt);
12589 for (CaseCluster &CC : Clusters) {
12590 LLVM_DEBUG(
12591 dbgs() << "Scale the probablity for one cluster, before scaling: "
12592 << CC.Prob << "\n");
12593 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12594 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12595 }
12596 PeeledCaseProb = TopCaseProb;
12597 return PeeledSwitchMBB;
12598}
12599
12600void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12601 // Extract cases from the switch.
12602 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12603 CaseClusterVector Clusters;
12604 Clusters.reserve(SI.getNumCases());
12605 for (auto I : SI.cases()) {
12606 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12607 const ConstantInt *CaseVal = I.getCaseValue();
12608 BranchProbability Prob =
12609 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12610 : BranchProbability(1, SI.getNumCases() + 1);
12611 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12612 }
12613
12614 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12615
12616 // Cluster adjacent cases with the same destination. We do this at all
12617 // optimization levels because it's cheap to do and will make codegen faster
12618 // if there are many clusters.
12619 sortAndRangeify(Clusters);
12620
12621 // The branch probablity of the peeled case.
12622 BranchProbability PeeledCaseProb = BranchProbability::getZero();
12623 MachineBasicBlock *PeeledSwitchMBB =
12624 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12625
12626 // If there is only the default destination, jump there directly.
12627 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12628 if (Clusters.empty()) {
12629 assert(PeeledSwitchMBB == SwitchMBB);
12630 SwitchMBB->addSuccessor(DefaultMBB);
12631 if (DefaultMBB != NextBlock(SwitchMBB)) {
12632 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12633 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12634 }
12635 return;
12636 }
12637
12638 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12639 DAG.getBFI());
12640 SL->findBitTestClusters(Clusters, &SI);
12641
12642 LLVM_DEBUG({
12643 dbgs() << "Case clusters: ";
12644 for (const CaseCluster &C : Clusters) {
12645 if (C.Kind == CC_JumpTable)
12646 dbgs() << "JT:";
12647 if (C.Kind == CC_BitTests)
12648 dbgs() << "BT:";
12649
12650 C.Low->getValue().print(dbgs(), true);
12651 if (C.Low != C.High) {
12652 dbgs() << '-';
12653 C.High->getValue().print(dbgs(), true);
12654 }
12655 dbgs() << ' ';
12656 }
12657 dbgs() << '\n';
12658 });
12659
12660 assert(!Clusters.empty());
12661 SwitchWorkList WorkList;
12662 CaseClusterIt First = Clusters.begin();
12663 CaseClusterIt Last = Clusters.end() - 1;
12664 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12665 // Scale the branchprobability for DefaultMBB if the peel occurs and
12666 // DefaultMBB is not replaced.
12667 if (PeeledCaseProb != BranchProbability::getZero() &&
12668 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12669 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12670 WorkList.push_back(
12671 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12672
12673 while (!WorkList.empty()) {
12674 SwitchWorkListItem W = WorkList.pop_back_val();
12675 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12676
12677 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12678 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12679 // For optimized builds, lower large range as a balanced binary tree.
12680 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12681 continue;
12682 }
12683
12684 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12685 }
12686}
12687
12688void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12689 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12690 auto DL = getCurSDLoc();
12691 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12692 setValue(&I, DAG.getStepVector(DL, ResultVT));
12693}
12694
12695void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12696 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12697 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12698
12699 SDLoc DL = getCurSDLoc();
12700 SDValue V = getValue(I.getOperand(0));
12701 assert(VT == V.getValueType() && "Malformed vector.reverse!");
12702
12703 if (VT.isScalableVector()) {
12704 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12705 return;
12706 }
12707
12708 // Use VECTOR_SHUFFLE for the fixed-length vector
12709 // to maintain existing behavior.
12710 SmallVector<int, 8> Mask;
12711 unsigned NumElts = VT.getVectorMinNumElements();
12712 for (unsigned i = 0; i != NumElts; ++i)
12713 Mask.push_back(NumElts - 1 - i);
12714
12715 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12716}
12717
12718void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I,
12719 unsigned Factor) {
12720 auto DL = getCurSDLoc();
12721 SDValue InVec = getValue(I.getOperand(0));
12722
12723 SmallVector<EVT, 4> ValueVTs;
12724 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12725 ValueVTs);
12726
12727 EVT OutVT = ValueVTs[0];
12728 unsigned OutNumElts = OutVT.getVectorMinNumElements();
12729
12730 SmallVector<SDValue, 4> SubVecs(Factor);
12731 for (unsigned i = 0; i != Factor; ++i) {
12732 assert(ValueVTs[i] == OutVT && "Expected VTs to be the same");
12733 SubVecs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12734 DAG.getVectorIdxConstant(OutNumElts * i, DL));
12735 }
12736
12737 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12738 // from existing legalisation and combines.
12739 if (OutVT.isFixedLengthVector() && Factor == 2) {
12740 SDValue Even = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12741 createStrideMask(0, 2, OutNumElts));
12742 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12743 createStrideMask(1, 2, OutNumElts));
12744 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12745 setValue(&I, Res);
12746 return;
12747 }
12748
12749 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12750 DAG.getVTList(ValueVTs), SubVecs);
12751 setValue(&I, Res);
12752}
12753
12754void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I,
12755 unsigned Factor) {
12756 auto DL = getCurSDLoc();
12757 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12758 EVT InVT = getValue(I.getOperand(0)).getValueType();
12759 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12760
12761 SmallVector<SDValue, 8> InVecs(Factor);
12762 for (unsigned i = 0; i < Factor; ++i) {
12763 InVecs[i] = getValue(I.getOperand(i));
12764 assert(InVecs[i].getValueType() == InVecs[0].getValueType() &&
12765 "Expected VTs to be the same");
12766 }
12767
12768 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12769 // from existing legalisation and combines.
12770 if (OutVT.isFixedLengthVector() && Factor == 2) {
12771 unsigned NumElts = InVT.getVectorMinNumElements();
12772 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVecs);
12773 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12774 createInterleaveMask(NumElts, 2)));
12775 return;
12776 }
12777
12778 SmallVector<EVT, 8> ValueVTs(Factor, InVT);
12779 SDValue Res =
12780 DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, DAG.getVTList(ValueVTs), InVecs);
12781
12783 for (unsigned i = 0; i < Factor; ++i)
12784 Results[i] = Res.getValue(i);
12785
12786 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Results);
12787 setValue(&I, Res);
12788}
12789
12790void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12791 SmallVector<EVT, 4> ValueVTs;
12792 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12793 ValueVTs);
12794 unsigned NumValues = ValueVTs.size();
12795 if (NumValues == 0) return;
12796
12797 SmallVector<SDValue, 4> Values(NumValues);
12798 SDValue Op = getValue(I.getOperand(0));
12799
12800 for (unsigned i = 0; i != NumValues; ++i)
12801 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12802 SDValue(Op.getNode(), Op.getResNo() + i));
12803
12805 DAG.getVTList(ValueVTs), Values));
12806}
12807
12808void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12809 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12810 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12811
12812 SDLoc DL = getCurSDLoc();
12813 SDValue V1 = getValue(I.getOperand(0));
12814 SDValue V2 = getValue(I.getOperand(1));
12815 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12816
12817 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12818 if (VT.isScalableVector()) {
12819 setValue(
12820 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12821 DAG.getSignedConstant(
12822 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
12823 return;
12824 }
12825
12826 unsigned NumElts = VT.getVectorNumElements();
12827
12828 uint64_t Idx = (NumElts + Imm) % NumElts;
12829
12830 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12831 SmallVector<int, 8> Mask;
12832 for (unsigned i = 0; i < NumElts; ++i)
12833 Mask.push_back(Idx + i);
12834 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12835}
12836
12837// Consider the following MIR after SelectionDAG, which produces output in
12838// phyregs in the first case or virtregs in the second case.
12839//
12840// INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12841// %5:gr32 = COPY $ebx
12842// %6:gr32 = COPY $edx
12843// %1:gr32 = COPY %6:gr32
12844// %0:gr32 = COPY %5:gr32
12845//
12846// INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12847// %1:gr32 = COPY %6:gr32
12848// %0:gr32 = COPY %5:gr32
12849//
12850// Given %0, we'd like to return $ebx in the first case and %5 in the second.
12851// Given %1, we'd like to return $edx in the first case and %6 in the second.
12852//
12853// If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12854// to a single virtreg (such as %0). The remaining outputs monotonically
12855// increase in virtreg number from there. If a callbr has no outputs, then it
12856// should not have a corresponding callbr landingpad; in fact, the callbr
12857// landingpad would not even be able to refer to such a callbr.
12859 MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12860 // There is definitely at least one copy.
12861 assert(MI->getOpcode() == TargetOpcode::COPY &&
12862 "start of copy chain MUST be COPY");
12863 Reg = MI->getOperand(1).getReg();
12864
12865 // If the copied register in the first copy must be virtual.
12866 assert(Reg.isVirtual() && "expected COPY of virtual register");
12867 MI = MRI.def_begin(Reg)->getParent();
12868
12869 // There may be an optional second copy.
12870 if (MI->getOpcode() == TargetOpcode::COPY) {
12871 assert(Reg.isVirtual() && "expected COPY of virtual register");
12872 Reg = MI->getOperand(1).getReg();
12873 assert(Reg.isPhysical() && "expected COPY of physical register");
12874 } else {
12875 // The start of the chain must be an INLINEASM_BR.
12876 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12877 "end of copy chain MUST be INLINEASM_BR");
12878 }
12879
12880 return Reg;
12881}
12882
12883// We must do this walk rather than the simpler
12884// setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12885// otherwise we will end up with copies of virtregs only valid along direct
12886// edges.
12887void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12888 SmallVector<EVT, 8> ResultVTs;
12889 SmallVector<SDValue, 8> ResultValues;
12890 const auto *CBR =
12891 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12892
12893 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12894 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12895 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12896
12897 Register InitialDef = FuncInfo.ValueMap[CBR];
12898 SDValue Chain = DAG.getRoot();
12899
12900 // Re-parse the asm constraints string.
12901 TargetLowering::AsmOperandInfoVector TargetConstraints =
12902 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12903 for (auto &T : TargetConstraints) {
12904 SDISelAsmOperandInfo OpInfo(T);
12905 if (OpInfo.Type != InlineAsm::isOutput)
12906 continue;
12907
12908 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12909 // individual constraint.
12910 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12911
12912 switch (OpInfo.ConstraintType) {
12915 // Fill in OpInfo.AssignedRegs.Regs.
12916 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12917
12918 // getRegistersForValue may produce 1 to many registers based on whether
12919 // the OpInfo.ConstraintVT is legal on the target or not.
12920 for (Register &Reg : OpInfo.AssignedRegs.Regs) {
12921 Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12922 if (OriginalDef.isPhysical())
12923 FuncInfo.MBB->addLiveIn(OriginalDef);
12924 // Update the assigned registers to use the original defs.
12925 Reg = OriginalDef;
12926 }
12927
12928 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12929 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12930 ResultValues.push_back(V);
12931 ResultVTs.push_back(OpInfo.ConstraintVT);
12932 break;
12933 }
12935 SDValue Flag;
12936 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12937 OpInfo, DAG);
12938 ++InitialDef;
12939 ResultValues.push_back(V);
12940 ResultVTs.push_back(OpInfo.ConstraintVT);
12941 break;
12942 }
12943 default:
12944 break;
12945 }
12946 }
12948 DAG.getVTList(ResultVTs), ResultValues);
12949 setValue(&I, V);
12950}
unsigned const MachineRegisterInfo * MRI
return SDValue()
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil translate DXIL Translate Metadata
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
Definition FastISel.cpp:942
#define Check(C,...)
static Value * getCondition(Instruction *I)
Hexagon Common GEP
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
This file contains the declarations for metadata subclasses.
Type::TypeID TypeID
#define T
#define T1
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t High
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
#define P(N)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
Value * RHS
Value * LHS
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
Class for arbitrary precision integers.
Definition APInt.h:78
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
Definition Function.cpp:339
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
Definition Argument.h:50
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
iterator end() const
Definition ArrayRef.h:132
size_t size() const
size - Get the array size.
Definition ArrayRef.h:143
iterator begin() const
Definition ArrayRef.h:131
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:138
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ Add
*p = old + v
@ FAdd
*p = old + v
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
This class holds the attributes for a particular argument, parameter, function, or return value.
Definition Attributes.h:361
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Definition Constants.h:899
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition Constants.h:593
A constant value that is initialized with an expression using other constant values.
Definition Constants.h:1120
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:214
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
A signed pointer, in the ptrauth sense.
Definition Constants.h:1032
uint64_t getZExtValue() const
Constant Vector Declarations.
Definition Constants.h:517
This is an important base class in LLVM.
Definition Constant.h:43
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isBigEndian() const
Definition DataLayout.h:208
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
A debug info location.
Definition DebugLoc.h:124
LLVM_ABI DILocation * getInlinedAt() const
Definition DebugLoc.cpp:67
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Definition DenseMap.h:74
bool empty() const
Definition DenseMap.h:109
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
Definition DenseMap.h:75
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Definition DenseMap.h:114
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:310
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:316
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:321
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
Class representing an expression and its matching format.
This instruction extracts a struct member or array element value from an aggregate value.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition FastISel.h:66
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:803
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
Definition Function.h:807
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition Function.h:244
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
Definition Function.cpp:739
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
size_t arg_size() const
Definition Function.h:899
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:727
Garbage collection metadata for a single function.
Definition GCMetadata.h:80
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
bool isInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
Machine Value Type.
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
Definition MapVector.h:141
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
Definition MapVector.h:111
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
Metadata wrapper in the Value hierarchy.
Definition Metadata.h:183
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:79
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li)
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void resize(size_type N)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Multiway switch.
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const
Return a TargetTransformInfo for a given function.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
@ TCK_Latency
The latency of instruction.
LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
Definition Type.cpp:181
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isTokenTy() const
Return true if this is 'token'.
Definition Type.h:234
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:301
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_iterator op_begin()
Definition User.h:284
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
op_iterator op_end()
Definition User.h:286
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:231
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
const ParentTy * getParent() const
Definition ilist_node.h:34
A raw_ostream that writes to an std::string.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
Definition CallingConv.h:60
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ LOOP_DEPENDENCE_RAW_MASK
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
Definition ISDOpcodes.h:163
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:593
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:771
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
Definition ISDOpcodes.h:167
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
Definition ISDOpcodes.h:508
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:400
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
Definition ISDOpcodes.h:151
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
Definition ISDOpcodes.h:117
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
Definition ISDOpcodes.h:628
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:541
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
Definition ISDOpcodes.h:958
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ PtrAuthGlobalAddress
A ptrauth constant.
Definition ISDOpcodes.h:100
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:607
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
Definition ISDOpcodes.h:134
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
Definition ISDOpcodes.h:130
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
Definition ISDOpcodes.h:633
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:406
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:793
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
Definition ISDOpcodes.h:145
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition ISDOpcodes.h:110
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ STRICT_FADD
Constrained versions of the binary floating point operators.
Definition ISDOpcodes.h:420
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
Definition ISDOpcodes.h:122
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
Definition ISDOpcodes.h:157
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
Definition ISDOpcodes.h:617
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:549
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
Offsets
Offsets in bytes from the start of the input buffer.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
ExceptionBehavior
Exception behavior used for floating point operations.
Definition FPEnv.h:39
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
Definition FPEnv.h:41
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr float log2ef
Definition MathExtras.h:51
constexpr double e
constexpr float ln2f
Definition MathExtras.h:49
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
@ Offset
Definition DWP.cpp:477
@ Length
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1655
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
@ Done
Definition Threading.h:60
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:293
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:243
auto cast_or_null(const Y &Val)
Definition Casting.h:714
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
gep_type_iterator gep_type_end(const User *GEP)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1150
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
Definition STLExtras.h:852
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition STLExtras.h:300
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
Definition Analysis.cpp:207
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
Definition Local.cpp:2274
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
TargetTransformInfo TTI
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
Definition Analysis.cpp:229
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
Definition FPEnv.cpp:25
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2120
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
Definition Analysis.cpp:185
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2108
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
Definition Analysis.cpp:33
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
#define NC
Definition regutils.h:42
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
uint64_t getScalarStoreSize() const
Definition ValueTypes.h:402
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
Definition ValueTypes.h:179
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
InputArg - This struct carries flags and type information about a single incoming (formal) argument o...
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
Definition InlineAsm.h:128
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
RegsForValue()=default
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:257
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)