99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
102#define DEBUG_TYPE "selectiondag"
106 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
109 cl::desc(
"Number limit for gluing ld/st of memcpy."),
114 cl::desc(
"DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
153 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->
trunc(EltSize);
166 unsigned SplatBitSize;
168 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
173 const bool IsBigEndian =
false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
184 while (
N->getOpcode() == ISD::BITCAST)
185 N =
N->getOperand(0).getNode();
194 unsigned i = 0, e =
N->getNumOperands();
197 while (i != e &&
N->getOperand(i).isUndef())
201 if (i == e)
return false;
213 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
222 for (++i; i != e; ++i)
223 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
230 while (
N->getOpcode() == ISD::BITCAST)
231 N =
N->getOperand(0).getNode();
240 bool IsAllUndef =
true;
253 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
254 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
303 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
305 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
310 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
315 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
328 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
329 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
331 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
342 if (
N->getNumOperands() == 0)
348 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
351template <
typename ConstNodeType>
353 std::function<
bool(ConstNodeType *)> Match,
354 bool AllowUndefs,
bool AllowTruncation) {
364 EVT SVT =
Op.getValueType().getScalarType();
365 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
388 bool AllowUndefs,
bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
395 return Match(LHSCst, RHSCst);
398 if (LHS.getOpcode() != RHS.getOpcode() ||
404 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
407 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
413 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
416 if (!Match(LHSCst, RHSCst))
438 switch (VecReduceOpcode) {
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
500#include "llvm/IR/VPIntrinsics.def"
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
549#include "llvm/IR/VPIntrinsics.def"
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
561#include "llvm/IR/VPIntrinsics.def"
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
633 bool isIntegerLike) {
658 bool IsInteger =
Type.isInteger();
663 unsigned Op = Op1 | Op2;
679 bool IsInteger =
Type.isInteger();
714 ID.AddPointer(VTList.
VTs);
720 for (
const auto &
Op :
Ops) {
721 ID.AddPointer(
Op.getNode());
722 ID.AddInteger(
Op.getResNo());
729 for (
const auto &
Op :
Ops) {
730 ID.AddPointer(
Op.getNode());
731 ID.AddInteger(
Op.getResNo());
744 switch (
N->getOpcode()) {
753 ID.AddPointer(
C->getConstantIntValue());
754 ID.AddBoolean(
C->isOpaque());
787 case ISD::PSEUDO_PROBE:
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(
ID);
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
840 case ISD::VP_LOAD_FF: {
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
848 case ISD::VP_STORE: {
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
870 case ISD::VP_GATHER: {
878 case ISD::VP_SCATTER: {
910 case ISD::MSCATTER: {
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
947 case ISD::ADDRSPACECAST: {
969 case ISD::MDNODE_SDNODE:
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
1003 if (
N->getValueType(0) == MVT::Glue)
1006 switch (
N->getOpcode()) {
1008 case ISD::HANDLENODE:
1014 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1015 if (
N->getValueType(i) == MVT::Glue)
1032 if (
Node.use_empty())
1047 while (!DeadNodes.
empty()) {
1056 DUL->NodeDeleted(
N,
nullptr);
1059 RemoveNodeFromCSEMaps(
N);
1090 RemoveNodeFromCSEMaps(
N);
1094 DeleteNodeNotInCSEMaps(
N);
1097void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1098 assert(
N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1109 assert(!(V->isVariadic() && isParameter));
1111 ByvalParmDbgValues.push_back(V);
1113 DbgValues.push_back(V);
1116 DbgValMap[
Node].push_back(V);
1120 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1121 if (
I == DbgValMap.end())
1123 for (
auto &Val:
I->second)
1124 Val->setIsInvalidated();
1128void SelectionDAG::DeallocateNode(
SDNode *
N) {
1151void SelectionDAG::verifyNode(
SDNode *
N)
const {
1152 switch (
N->getOpcode()) {
1154 if (
N->isTargetOpcode())
1158 EVT VT =
N->getValueType(0);
1159 assert(
N->getNumValues() == 1 &&
"Too many results!");
1161 "Wrong return type!");
1162 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1163 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1166 "Wrong operand type!");
1168 "Wrong return type size");
1172 assert(
N->getNumValues() == 1 &&
"Too many results!");
1173 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1174 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT =
N->getValueType(0).getVectorElementType();
1177 for (
const SDUse &
Op :
N->ops()) {
1178 assert((
Op.getValueType() == EltVT ||
1179 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1180 EltVT.
bitsLE(
Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1195void SelectionDAG::InsertNode(SDNode *
N) {
1196 AllNodes.push_back(
N);
1198 N->PersistentId = NextPersistentId++;
1202 DUL->NodeInserted(
N);
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1210 bool Erased =
false;
1211 switch (
N->getOpcode()) {
1212 case ISD::HANDLENODE:
return false;
1215 "Cond code doesn't exist!");
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1247 Erased = CSEMap.RemoveNode(
N);
1254 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1274 if (Existing !=
N) {
1285 DUL->NodeDeleted(
N, Existing);
1286 DeleteNodeNotInCSEMaps(
N);
1293 DUL->NodeUpdated(
N);
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1306 FoldingSetNodeID
ID;
1309 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1311 Node->intersectFlagsWith(
N->getFlags());
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1326 FoldingSetNodeID
ID;
1329 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1331 Node->intersectFlagsWith(
N->getFlags());
1344 FoldingSetNodeID
ID;
1347 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1349 Node->intersectFlagsWith(
N->getFlags());
1362 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1365 InsertNode(&EntryNode);
1376 SDAGISelPass = PassPtr;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1386 FnVarLocs = VarLocs;
1390 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1392 OperandRecycler.clear(OperandAllocator);
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1406 NextPersistentId = 0;
1412 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1414 switch (
N->getOpcode()) {
1419 "debug location. Use another overload.");
1426 const SDLoc &
DL,
void *&InsertPos) {
1427 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1429 switch (
N->getOpcode()) {
1435 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1442 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1443 N->setDebugLoc(
DL.getDebugLoc());
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1464 EntryNode.UseList =
nullptr;
1465 InsertNode(&EntryNode);
1471 return VT.
bitsGT(
Op.getValueType())
1477std::pair<SDValue, SDValue>
1481 "Strict no-op FP extend/round not allowed.");
1488 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1492 return VT.
bitsGT(
Op.getValueType()) ?
1498 return VT.
bitsGT(
Op.getValueType()) ?
1504 return VT.
bitsGT(
Op.getValueType()) ?
1512 auto Type =
Op.getValueType();
1516 auto Size =
Op.getValueSizeInBits();
1527 auto Type =
Op.getValueType();
1531 auto Size =
Op.getValueSizeInBits();
1542 auto Type =
Op.getValueType();
1546 auto Size =
Op.getValueSizeInBits();
1560 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1564 EVT OpVT =
Op.getValueType();
1566 "Cannot getZeroExtendInReg FP types");
1568 "getZeroExtendInReg type should be vector iff the operand "
1572 "Vector element counts must match in getZeroExtendInReg");
1584 EVT OpVT =
Op.getValueType();
1586 "Cannot getVPZeroExtendInReg FP types");
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1629 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1640 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1642 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1651 switch (TLI->getBooleanContents(OpVT)) {
1662 bool isT,
bool isO) {
1668 bool isT,
bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1673 EVT VT,
bool isT,
bool isO) {
1690 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1696 Elt = ConstantInt::get(*
getContext(), NewVal);
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1715 "Can only handle an even split!");
1719 for (
unsigned i = 0; i != Parts; ++i)
1721 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1722 ViaEltVT, isT, isO));
1727 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1738 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1739 ViaEltVT, isT, isO));
1744 std::reverse(EltParts.
begin(), EltParts.
end());
1763 "APInt size does not match type size!");
1772 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(
N, IP);
1790 bool isT,
bool isO) {
1798 IsTarget, IsOpaque);
1830 EVT VT,
bool isTarget) {
1851 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(
N, IP);
1871 if (EltVT == MVT::f32)
1873 if (EltVT == MVT::f64)
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1887 EVT VT, int64_t
Offset,
bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1908 ID.AddInteger(TargetFlags);
1910 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1913 auto *
N = newSDNode<GlobalAddressSDNode>(
1914 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1915 CSEMap.InsertNode(
N, IP);
1927 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1930 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(
N, IP);
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1945 ID.AddInteger(TargetFlags);
1947 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1950 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(
N, IP);
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO,
DL, MVT::Glue, Chain,
1965 bool isTarget,
unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1976 ID.AddInteger(Alignment->value());
1979 ID.AddInteger(TargetFlags);
1981 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1984 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
1986 CSEMap.InsertNode(
N, IP);
1995 bool isTarget,
unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
2004 ID.AddInteger(Alignment->value());
2006 C->addSelectionDAGCSEId(
ID);
2007 ID.AddInteger(TargetFlags);
2009 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2012 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2014 CSEMap.InsertNode(
N, IP);
2024 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2027 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2028 CSEMap.InsertNode(
N, IP);
2035 ValueTypeNodes.size())
2042 N = newSDNode<VTSDNode>(VT);
2048 SDNode *&
N = ExternalSymbols[Sym];
2050 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2059 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2065 unsigned TargetFlags) {
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2069 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2075 if ((
unsigned)
Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(
Cond+1);
2078 if (!CondCodeNodes[
Cond]) {
2079 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2080 CondCodeNodes[
Cond] =
N;
2088 bool ConstantFold) {
2090 "APInt size does not match type size!");
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2121 const APInt &StepVal) {
2145 "Must have the same number of vector elements as mask elements!");
2147 "Invalid VECTOR_SHUFFLE");
2155 int NElts = Mask.size();
2157 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2166 for (
int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2174 if (TLI->hasVectorBlend()) {
2183 for (
int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2188 if (UndefElements[MaskVec[i] -
Offset]) {
2194 if (!UndefElements[i])
2199 BlendSplat(N1BV, 0);
2201 BlendSplat(N2BV, NElts);
2206 bool AllLHS =
true, AllRHS =
true;
2208 for (
int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2214 }
else if (MaskVec[i] >= 0) {
2218 if (AllLHS && AllRHS)
2220 if (AllLHS && !N2Undef)
2233 bool Identity =
true, AllSame =
true;
2234 for (
int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2238 if (Identity && NElts)
2247 while (V.getOpcode() == ISD::BITCAST)
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2279 NewBV =
getNode(ISD::BITCAST, dl, VT, NewBV);
2289 for (
int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2293 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2299 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2302 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2304 createOperands(
N,
Ops);
2306 CSEMap.InsertNode(
N, IP);
2327 ID.AddInteger(Reg.id());
2329 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2332 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2334 CSEMap.InsertNode(
N, IP);
2342 ID.AddPointer(RegMask);
2344 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2347 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(
N, IP);
2363 ID.AddPointer(Label);
2365 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2370 createOperands(
N,
Ops);
2372 CSEMap.InsertNode(
N, IP);
2378 int64_t
Offset,
bool isTarget,
2379 unsigned TargetFlags) {
2387 ID.AddInteger(TargetFlags);
2389 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2392 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2393 CSEMap.InsertNode(
N, IP);
2404 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2407 auto *
N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(
N, IP);
2419 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2422 auto *
N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(
N, IP);
2429 if (VT == V.getValueType())
2436 unsigned SrcAS,
unsigned DestAS) {
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2445 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2449 VTs, SrcAS, DestAS);
2450 createOperands(
N,
Ops);
2452 CSEMap.InsertNode(
N, IP);
2464 EVT OpTy =
Op.getValueType();
2466 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2481 if (
Op.getNode() != FPNode)
2485 while (!Worklist.
empty()) {
2496 if (
Node == FPNode ||
Node->getOpcode() == ISD::CALLSEQ_START)
2499 if (
Node->getOpcode() == ISD::CALLSEQ_END) {
2518 std::optional<unsigned> CallRetResNo) {
2520 EVT VT =
Node->getValueType(0);
2521 unsigned NumResults =
Node->getNumValues();
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2526 const char *LCName = TLI->getLibcallName(LC);
2530 auto getVecDesc = [&]() ->
VecDesc const * {
2531 for (
bool Masked : {
false,
true}) {
2542 if (VT.
isVector() && !(VD = getVecDesc()))
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.
getResNo();
2556 if (CallRetResNo == ResNo)
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2566 if (ST->getAlign() <
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2582 EVT ArgVT =
Op.getValueType();
2584 Args.emplace_back(
Op, ArgTy);
2591 if (ResNo == CallRetResNo)
2593 EVT ResVT =
Node->getValueType(ResNo);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr,
PointerTy);
2608 Type *RetType = CallRetResNo.has_value()
2609 ?
Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2618 auto [
Call, CallChain] = TLI->LowerCallTo(CLI);
2621 if (ResNo == CallRetResNo) {
2627 getLoad(
Node->getValueType(ResNo),
DL, CallChain, ResultPtr, PtrInfo);
2633 PtrInfo = ST->getPointerInfo();
2639 Results.push_back(LoadResult);
2649 EVT VT =
Node->getValueType(0);
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2696 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2698 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2706 if (RedAlign > StackAlign) {
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2713 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2720 RedAlign = std::min(RedAlign, StackAlign);
2735 false,
nullptr, StackID);
2750 "Don't know how to choose the maximum size when creating a stack "
2759 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2767 auto GetUndefBooleanConstant = [&]() {
2769 TLI->getBooleanContents(OpVT) ==
2806 return GetUndefBooleanConstant();
2811 return GetUndefBooleanConstant();
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2832 if (N1CFP && N2CFP) {
2837 return GetUndefBooleanConstant();
2842 return GetUndefBooleanConstant();
2848 return GetUndefBooleanConstant();
2853 return GetUndefBooleanConstant();
2858 return GetUndefBooleanConstant();
2864 return GetUndefBooleanConstant();
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2909 return GetUndefBooleanConstant();
2920 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2928 unsigned Depth)
const {
2936 const APInt &DemandedElts,
2937 unsigned Depth)
const {
2944 unsigned Depth )
const {
2950 unsigned Depth)
const {
2955 const APInt &DemandedElts,
2956 unsigned Depth)
const {
2957 EVT VT =
Op.getValueType();
2964 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2969 KnownZeroElements.
setBit(EltIdx);
2971 return KnownZeroElements;
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2985 "scalable demanded bits are ignored");
2997 UndefElts = V.getOperand(0).isUndef()
3006 APInt UndefLHS, UndefRHS;
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
3046 for (
unsigned i = 0; i != NumElts; ++i) {
3052 if (!DemandedElts[i])
3054 if (Scl && Scl !=
Op)
3065 for (
int i = 0; i != (int)NumElts; ++i) {
3071 if (!DemandedElts[i])
3073 if (M < (
int)NumElts)
3076 DemandedRHS.
setBit(M - NumElts);
3088 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
3090 return (SrcElts.popcount() == 1) ||
3092 (SrcElts & SrcUndefs).
isZero());
3094 if (!DemandedLHS.
isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3102 if (Src.getValueType().isScalableVector())
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3107 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3109 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
3120 if (Src.getValueType().isScalableVector())
3124 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3126 UndefElts = UndefSrcElts.
trunc(NumElts);
3131 case ISD::BITCAST: {
3133 EVT SrcVT = Src.getValueType();
3143 if ((
BitWidth % SrcBitWidth) == 0) {
3145 unsigned Scale =
BitWidth / SrcBitWidth;
3147 APInt ScaledDemandedElts =
3149 for (
unsigned I = 0;
I != Scale; ++
I) {
3153 SubDemandedElts &= ScaledDemandedElts;
3157 if (!SubUndefElts.
isZero())
3171 EVT VT = V.getValueType();
3181 (AllowUndefs || !UndefElts);
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3209 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3224 if (!SVN->isSplat())
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3244 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3245 if (LegalSVT.
bitsLT(SVT))
3253std::optional<ConstantRange>
3255 unsigned Depth)
const {
3258 "Unknown shift node");
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3263 const APInt &ShAmt = Cst->getAPIntValue();
3265 return std::nullopt;
3270 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3271 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3276 MinAmt = MaxAmt =
nullptr;
3279 const APInt &ShAmt = SA->getAPIntValue();
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->
ugt(ShAmt))
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3299 return std::nullopt;
3302std::optional<unsigned>
3304 unsigned Depth)
const {
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3310 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3324std::optional<unsigned>
3326 unsigned Depth)
const {
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3345std::optional<unsigned>
3347 unsigned Depth)
const {
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3370 EVT VT =
Op.getValueType();
3385 unsigned Depth)
const {
3386 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3390 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3400 assert((!
Op.getValueType().isFixedLengthVector() ||
3401 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3407 unsigned Opcode =
Op.getOpcode();
3415 "Expected SPLAT_VECTOR implicit truncation");
3422 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3431 const APInt &Step =
Op.getConstantOperandAPInt(0);
3440 const APInt MinNumElts =
3446 .
umul_ov(MinNumElts, Overflow);
3450 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3458 assert(!
Op.getValueType().isScalableVector());
3461 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3471 "Expected BUILD_VECTOR implicit truncation");
3495 assert(!
Op.getValueType().isScalableVector());
3498 APInt DemandedLHS, DemandedRHS;
3502 DemandedLHS, DemandedRHS))
3507 if (!!DemandedLHS) {
3515 if (!!DemandedRHS) {
3524 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3529 if (
Op.getValueType().isScalableVector())
3533 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3535 unsigned NumSubVectors =
Op.getNumOperands();
3536 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3538 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3539 if (!!DemandedSub) {
3551 if (
Op.getValueType().isScalableVector())
3558 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3560 APInt DemandedSrcElts = DemandedElts;
3561 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3564 if (!!DemandedSubElts) {
3569 if (!!DemandedSrcElts) {
3579 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3582 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3583 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3588 if (
Op.getValueType().isScalableVector())
3592 if (DemandedElts != 1)
3602 case ISD::BITCAST: {
3603 if (
Op.getValueType().isScalableVector())
3623 if ((
BitWidth % SubBitWidth) == 0) {
3630 unsigned SubScale =
BitWidth / SubBitWidth;
3631 APInt SubDemandedElts(NumElts * SubScale, 0);
3632 for (
unsigned i = 0; i != NumElts; ++i)
3633 if (DemandedElts[i])
3634 SubDemandedElts.
setBit(i * SubScale);
3636 for (
unsigned i = 0; i != SubScale; ++i) {
3639 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3640 Known.
insertBits(Known2, SubBitWidth * Shifts);
3645 if ((SubBitWidth %
BitWidth) == 0) {
3646 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3651 unsigned SubScale = SubBitWidth /
BitWidth;
3652 APInt SubDemandedElts =
3657 for (
unsigned i = 0; i != NumElts; ++i)
3658 if (DemandedElts[i]) {
3659 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3690 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3694 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3700 if (
Op->getFlags().hasNoSignedWrap() &&
3701 Op.getOperand(0) ==
Op.getOperand(1) &&
3728 unsigned SignBits1 =
3732 unsigned SignBits0 =
3738 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3741 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3742 if (
Op.getResNo() == 0)
3749 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3752 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3753 if (
Op.getResNo() == 0)
3806 if (
Op.getResNo() != 1)
3812 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3821 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3823 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3833 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3834 bool NSW =
Op->getFlags().hasNoSignedWrap();
3841 if (std::optional<unsigned> ShMinAmt =
3850 Op->getFlags().hasExact());
3853 if (std::optional<unsigned> ShMinAmt =
3861 Op->getFlags().hasExact());
3867 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3882 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3888 DemandedElts,
Depth + 1);
3909 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3912 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3913 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3916 Known = Known2.
concat(Known);
3930 if (
Op.getResNo() == 0)
3975 (Opcode == ISD::MGATHER)
3987 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3992 !
Op.getValueType().isScalableVector()) {
4005 for (
unsigned i = 0; i != NumElts; ++i) {
4006 if (!DemandedElts[i])
4016 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4035 }
else if (
Op.getResNo() == 0) {
4036 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4037 KnownBits KnownScalarMemory(ScalarMemorySize);
4038 if (
const MDNode *MD = LD->getRanges())
4049 Known = KnownScalarMemory;
4056 if (
Op.getValueType().isScalableVector())
4058 EVT InVT =
Op.getOperand(0).getValueType();
4070 if (
Op.getValueType().isScalableVector())
4072 EVT InVT =
Op.getOperand(0).getValueType();
4088 if (
Op.getValueType().isScalableVector())
4090 EVT InVT =
Op.getOperand(0).getValueType();
4110 Known.
Zero |= (~InMask);
4111 Known.
One &= (~Known.Zero);
4135 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4136 Flags.hasNoUnsignedWrap(), Known, Known2);
4143 if (
Op.getResNo() == 1) {
4145 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4154 "We only compute knownbits for the difference here.");
4161 Borrow = Borrow.
trunc(1);
4175 if (
Op.getResNo() == 1) {
4177 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4186 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4196 Carry = Carry.
trunc(1);
4232 const unsigned Index =
Op.getConstantOperandVal(1);
4233 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4240 Known = Known.
trunc(EltBitWidth);
4256 Known = Known.
trunc(EltBitWidth);
4262 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4272 if (
Op.getValueType().isScalableVector())
4281 bool DemandedVal =
true;
4282 APInt DemandedVecElts = DemandedElts;
4284 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4285 unsigned EltIdx = CEltNo->getZExtValue();
4286 DemandedVal = !!DemandedElts[EltIdx];
4294 if (!!DemandedVecElts) {
4312 Known = Known2.
abs();
4345 if (CstLow && CstHigh) {
4350 const APInt &ValueHigh = CstHigh->getAPIntValue();
4351 if (ValueLow.
sle(ValueHigh)) {
4354 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4377 if (IsMax && CstLow) {
4405 case ISD::ATOMIC_LOAD: {
4407 if (
Op.getResNo() == 0) {
4409 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4410 KnownBits KnownScalarMemory(ScalarMemorySize);
4411 if (
const MDNode *MD = AT->getRanges())
4414 switch (AT->getExtensionType()) {
4422 switch (TLI->getExtendForAtomicOps()) {
4435 Known = KnownScalarMemory;
4442 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4443 if (
Op.getResNo() == 1) {
4448 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4455 case ISD::ATOMIC_CMP_SWAP:
4456 case ISD::ATOMIC_SWAP:
4457 case ISD::ATOMIC_LOAD_ADD:
4458 case ISD::ATOMIC_LOAD_SUB:
4459 case ISD::ATOMIC_LOAD_AND:
4460 case ISD::ATOMIC_LOAD_CLR:
4461 case ISD::ATOMIC_LOAD_OR:
4462 case ISD::ATOMIC_LOAD_XOR:
4463 case ISD::ATOMIC_LOAD_NAND:
4464 case ISD::ATOMIC_LOAD_MIN:
4465 case ISD::ATOMIC_LOAD_MAX:
4466 case ISD::ATOMIC_LOAD_UMIN:
4467 case ISD::ATOMIC_LOAD_UMAX: {
4469 if (
Op.getResNo() == 0) {
4471 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4493 if (
Op.getValueType().isScalableVector())
4497 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4639 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4647 if (
C &&
C->getAPIntValue() == 1)
4657 if (
C &&
C->getAPIntValue().isSignMask())
4669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4670 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4678 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4716 return C1->getValueAPF().getExactLog2Abs() >= 0;
4725 EVT VT =
Op.getValueType();
4737 unsigned Depth)
const {
4738 EVT VT =
Op.getValueType();
4743 unsigned FirstAnswer = 1;
4746 const APInt &Val =
C->getAPIntValue();
4756 unsigned Opcode =
Op.getOpcode();
4761 return VTBits-Tmp+1;
4775 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4777 if (NumSrcSignBits > (NumSrcBits - VTBits))
4778 return NumSrcSignBits - (NumSrcBits - VTBits);
4784 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4785 if (!DemandedElts[i])
4792 APInt T =
C->getAPIntValue().trunc(VTBits);
4793 Tmp2 =
T.getNumSignBits();
4797 if (
SrcOp.getValueSizeInBits() != VTBits) {
4799 "Expected BUILD_VECTOR implicit truncation");
4800 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4801 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4804 Tmp = std::min(Tmp, Tmp2);
4815 Tmp = std::min(Tmp, Tmp2);
4822 APInt DemandedLHS, DemandedRHS;
4826 DemandedLHS, DemandedRHS))
4829 Tmp = std::numeric_limits<unsigned>::max();
4832 if (!!DemandedRHS) {
4834 Tmp = std::min(Tmp, Tmp2);
4839 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4843 case ISD::BITCAST: {
4855 if (VTBits == SrcBits)
4861 if ((SrcBits % VTBits) == 0) {
4864 unsigned Scale = SrcBits / VTBits;
4865 APInt SrcDemandedElts =
4875 for (
unsigned i = 0; i != NumElts; ++i)
4876 if (DemandedElts[i]) {
4877 unsigned SubOffset = i % Scale;
4878 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4879 SubOffset = SubOffset * VTBits;
4880 if (Tmp <= SubOffset)
4882 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4892 return VTBits - Tmp + 1;
4894 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4901 return std::max(Tmp, Tmp2);
4906 EVT SrcVT = Src.getValueType();
4914 if (std::optional<unsigned> ShAmt =
4916 Tmp = std::min(Tmp + *ShAmt, VTBits);
4919 if (std::optional<ConstantRange> ShAmtRange =
4921 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4922 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4930 EVT ExtVT = Ext.getValueType();
4931 SDValue Extendee = Ext.getOperand(0);
4933 unsigned SizeDifference =
4935 if (SizeDifference <= MinShAmt) {
4936 Tmp = SizeDifference +
4939 return Tmp - MaxShAmt;
4945 return Tmp - MaxShAmt;
4955 FirstAnswer = std::min(Tmp, Tmp2);
4965 if (Tmp == 1)
return 1;
4967 return std::min(Tmp, Tmp2);
4970 if (Tmp == 1)
return 1;
4972 return std::min(Tmp, Tmp2);
4984 if (CstLow && CstHigh) {
4989 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4990 return std::min(Tmp, Tmp2);
4999 return std::min(Tmp, Tmp2);
5007 return std::min(Tmp, Tmp2);
5011 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
5022 if (
Op.getResNo() != 1)
5028 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
5036 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
5038 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
5053 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
5057 RotAmt = (VTBits - RotAmt) % VTBits;
5061 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
5068 if (Tmp == 1)
return 1;
5073 if (CRHS->isAllOnes()) {
5079 if ((Known.
Zero | 1).isAllOnes())
5089 if (Tmp2 == 1)
return 1;
5093 return std::min(Tmp, Tmp2) - 1;
5096 if (Tmp2 == 1)
return 1;
5101 if (CLHS->isZero()) {
5106 if ((Known.
Zero | 1).isAllOnes())
5120 if (Tmp == 1)
return 1;
5121 return std::min(Tmp, Tmp2) - 1;
5125 if (SignBitsOp0 == 1)
5128 if (SignBitsOp1 == 1)
5130 unsigned OutValidBits =
5131 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5132 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5140 return std::min(Tmp, Tmp2);
5149 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5151 if (NumSrcSignBits > (NumSrcBits - VTBits))
5152 return NumSrcSignBits - (NumSrcBits - VTBits);
5159 const int BitWidth =
Op.getValueSizeInBits();
5160 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5164 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5179 bool DemandedVal =
true;
5180 APInt DemandedVecElts = DemandedElts;
5182 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5183 unsigned EltIdx = CEltNo->getZExtValue();
5184 DemandedVal = !!DemandedElts[EltIdx];
5187 Tmp = std::numeric_limits<unsigned>::max();
5193 Tmp = std::min(Tmp, Tmp2);
5195 if (!!DemandedVecElts) {
5197 Tmp = std::min(Tmp, Tmp2);
5199 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5210 const unsigned BitWidth =
Op.getValueSizeInBits();
5211 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5224 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5234 if (Src.getValueType().isScalableVector())
5237 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5238 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5246 Tmp = std::numeric_limits<unsigned>::max();
5247 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5249 unsigned NumSubVectors =
Op.getNumOperands();
5250 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5252 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5256 Tmp = std::min(Tmp, Tmp2);
5258 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5269 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5271 APInt DemandedSrcElts = DemandedElts;
5272 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5274 Tmp = std::numeric_limits<unsigned>::max();
5275 if (!!DemandedSubElts) {
5280 if (!!DemandedSrcElts) {
5282 Tmp = std::min(Tmp, Tmp2);
5284 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5289 if (
const MDNode *Ranges = LD->getRanges()) {
5290 if (DemandedElts != 1)
5295 switch (LD->getExtensionType()) {
5315 case ISD::ATOMIC_CMP_SWAP:
5316 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5317 case ISD::ATOMIC_SWAP:
5318 case ISD::ATOMIC_LOAD_ADD:
5319 case ISD::ATOMIC_LOAD_SUB:
5320 case ISD::ATOMIC_LOAD_AND:
5321 case ISD::ATOMIC_LOAD_CLR:
5322 case ISD::ATOMIC_LOAD_OR:
5323 case ISD::ATOMIC_LOAD_XOR:
5324 case ISD::ATOMIC_LOAD_NAND:
5325 case ISD::ATOMIC_LOAD_MIN:
5326 case ISD::ATOMIC_LOAD_MAX:
5327 case ISD::ATOMIC_LOAD_UMIN:
5328 case ISD::ATOMIC_LOAD_UMAX:
5329 case ISD::ATOMIC_LOAD: {
5332 if (
Op.getResNo() == 0) {
5333 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5338 if (
Op->getOpcode() == ISD::ATOMIC_LOAD) {
5339 switch (AT->getExtensionType()) {
5343 return VTBits - Tmp + 1;
5345 return VTBits - Tmp;
5350 return VTBits - Tmp + 1;
5352 return VTBits - Tmp;
5359 if (
Op.getResNo() == 0) {
5362 unsigned ExtType = LD->getExtensionType();
5366 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5367 return VTBits - Tmp + 1;
5369 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5370 return VTBits - Tmp;
5372 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5375 Type *CstTy = Cst->getType();
5380 for (
unsigned i = 0; i != NumElts; ++i) {
5381 if (!DemandedElts[i])
5386 Tmp = std::min(Tmp,
Value.getNumSignBits());
5390 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5391 Tmp = std::min(Tmp,
Value.getNumSignBits());
5415 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5417 FirstAnswer = std::max(FirstAnswer, NumBits);
5428 unsigned Depth)
const {
5430 return Op.getScalarValueSizeInBits() - SignBits + 1;
5434 const APInt &DemandedElts,
5435 unsigned Depth)
const {
5437 return Op.getScalarValueSizeInBits() - SignBits + 1;
5441 unsigned Depth)
const {
5446 EVT VT =
Op.getValueType();
5454 const APInt &DemandedElts,
5456 unsigned Depth)
const {
5457 unsigned Opcode =
Op.getOpcode();
5486 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5487 if (!DemandedElts[i])
5497 if (Src.getValueType().isScalableVector())
5500 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5501 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5507 if (
Op.getValueType().isScalableVector())
5512 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5514 APInt DemandedSrcElts = DemandedElts;
5515 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5529 EVT SrcVT = Src.getValueType();
5533 IndexC->getZExtValue());
5548 if (DemandedElts[IndexC->getZExtValue()] &&
5551 APInt InVecDemandedElts = DemandedElts;
5552 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5553 if (!!InVecDemandedElts &&
5578 APInt DemandedLHS, DemandedRHS;
5581 DemandedElts, DemandedLHS, DemandedRHS,
5584 if (!DemandedLHS.
isZero() &&
5588 if (!DemandedRHS.
isZero() &&
5636 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5637 PoisonOnly, Depth + 1);
5649 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5662 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5668 unsigned Depth)
const {
5669 EVT VT =
Op.getValueType();
5679 unsigned Depth)
const {
5680 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5683 unsigned Opcode =
Op.getOpcode();
5763 if (
Op.getOperand(0).getValueType().isInteger())
5770 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5772 return (
unsigned)CCCode & 0x10U;
5792 case ISD::FP_EXTEND:
5818 EVT VecVT =
Op.getOperand(0).getValueType();
5827 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5828 if (Elt < 0 && DemandedElts[Idx])
5837 return TLI->canCreateUndefOrPoisonForTargetNode(
5847 unsigned Opcode =
Op.getOpcode();
5849 return Op->getFlags().hasDisjoint() ||
5862 unsigned Depth)
const {
5863 EVT VT =
Op.getValueType();
5876 bool SNaN,
unsigned Depth)
const {
5877 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5888 return !
C->getValueAPF().isNaN() ||
5889 (SNaN && !
C->getValueAPF().isSignaling());
5892 unsigned Opcode =
Op.getOpcode();
5925 case ISD::FROUNDEVEN:
5931 case ISD::FNEARBYINT:
5945 case ISD::FP_EXTEND:
5967 case ISD::FMINIMUMNUM:
5968 case ISD::FMAXIMUMNUM: {
5974 case ISD::FMINNUM_IEEE:
5975 case ISD::FMAXNUM_IEEE: {
5986 case ISD::FMAXIMUM: {
5994 EVT SrcVT = Src.getValueType();
5998 Idx->getZExtValue());
6005 if (Src.getValueType().isFixedLengthVector()) {
6006 unsigned Idx =
Op.getConstantOperandVal(1);
6007 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
6008 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
6018 unsigned Idx =
Op.getConstantOperandVal(2);
6024 APInt DemandedMask =
6026 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6029 bool NeverNaN =
true;
6030 if (!DemandedSrcElts.
isZero())
6033 if (NeverNaN && !DemandedSubElts.
isZero())
6042 unsigned NumElts =
Op.getNumOperands();
6043 for (
unsigned I = 0;
I != NumElts; ++
I)
6044 if (DemandedElts[
I] &&
6061 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
6070 assert(
Op.getValueType().isFloatingPoint() &&
6071 "Floating point type expected");
6082 assert(!
Op.getValueType().isFloatingPoint() &&
6083 "Floating point types unsupported - use isKnownNeverZeroFloat");
6092 switch (
Op.getOpcode()) {
6106 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6110 if (ValKnown.
One[0])
6170 if (
Op->getFlags().hasExact())
6186 if (
Op->getFlags().hasExact())
6191 if (
Op->getFlags().hasNoUnsignedWrap())
6202 std::optional<bool> ne =
6209 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6220 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6234 return !C1->isNegative();
6236 return Op.getOpcode() == ISD::FABS;
6241 if (
A ==
B)
return true;
6246 if (CA->isZero() && CB->isZero())
return true;
6281 NotOperand = NotOperand->getOperand(0);
6283 if (
Other == NotOperand)
6286 return NotOperand ==
Other->getOperand(0) ||
6287 NotOperand ==
Other->getOperand(1);
6293 A =
A->getOperand(0);
6296 B =
B->getOperand(0);
6299 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6300 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6306 assert(
A.getValueType() ==
B.getValueType() &&
6307 "Values must have the same type");
6329 "BUILD_VECTOR cannot be used with scalable types");
6331 "Incorrect element count in BUILD_VECTOR!");
6339 bool IsIdentity =
true;
6340 for (
int i = 0; i !=
NumOps; ++i) {
6343 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6345 Ops[i].getConstantOperandAPInt(1) != i) {
6349 IdentitySrc =
Ops[i].getOperand(0);
6362 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6365 return Ops[0].getValueType() ==
Op.getValueType();
6367 "Concatenation of vectors with inconsistent value types!");
6370 "Incorrect element count in vector concatenation!");
6372 if (
Ops.size() == 1)
6383 bool IsIdentity =
true;
6384 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6386 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6388 Op.getOperand(0).getValueType() != VT ||
6389 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6390 Op.getConstantOperandVal(1) != IdentityIndex) {
6394 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6395 "Unexpected identity source vector for concat of extracts");
6396 IdentitySrc =
Op.getOperand(0);
6399 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6415 EVT OpVT =
Op.getValueType();
6431 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6455 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6458 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6459 CSEMap.InsertNode(
N, IP);
6471 Flags = Inserter->getFlags();
6472 return getNode(Opcode,
DL, VT, N1, Flags);
6490 case ISD::FP_EXTEND:
6493 case ISD::FP_TO_FP16:
6494 case ISD::FP_TO_BF16:
6501 case ISD::FP16_TO_FP:
6502 case ISD::BF16_TO_FP:
6523 "STEP_VECTOR can only be used with scalable types");
6526 "Unexpected step operand");
6545 case ISD::FP_EXTEND:
6547 "Invalid FP cast!");
6551 "Vector element count mismatch!");
6569 "Invalid SIGN_EXTEND!");
6571 "SIGN_EXTEND result type type should be vector iff the operand "
6576 "Vector element count mismatch!");
6599 unsigned NumSignExtBits =
6610 "Invalid ZERO_EXTEND!");
6612 "ZERO_EXTEND result type type should be vector iff the operand "
6617 "Vector element count mismatch!");
6655 "Invalid ANY_EXTEND!");
6657 "ANY_EXTEND result type type should be vector iff the operand "
6662 "Vector element count mismatch!");
6687 "Invalid TRUNCATE!");
6689 "TRUNCATE result type type should be vector iff the operand "
6694 "Vector element count mismatch!");
6721 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6723 "The input must be the same size or smaller than the result.");
6726 "The destination vector type must have fewer lanes than the input.");
6736 "BSWAP types must be a multiple of 16 bits!");
6750 "Cannot BITCAST between types of different sizes!");
6752 if (OpOpcode == ISD::BITCAST)
6763 "Illegal SCALAR_TO_VECTOR node!");
6778 if (OpOpcode == ISD::FNEG)
6782 if (OpOpcode == ISD::FNEG)
6797 case ISD::VECREDUCE_ADD:
6799 return getNode(ISD::VECREDUCE_XOR,
DL, VT, N1);
6801 case ISD::VECREDUCE_SMIN:
6802 case ISD::VECREDUCE_UMAX:
6804 return getNode(ISD::VECREDUCE_OR,
DL, VT, N1);
6806 case ISD::VECREDUCE_SMAX:
6807 case ISD::VECREDUCE_UMIN:
6809 return getNode(ISD::VECREDUCE_AND,
DL, VT, N1);
6820 "Wrong operand type!");
6827 if (VT != MVT::Glue) {
6831 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6832 E->intersectFlagsWith(Flags);
6836 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6838 createOperands(
N,
Ops);
6839 CSEMap.InsertNode(
N, IP);
6841 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6842 createOperands(
N,
Ops);
6876 if (!C2.getBoolValue())
6880 if (!C2.getBoolValue())
6884 if (!C2.getBoolValue())
6888 if (!C2.getBoolValue())
6908 return std::nullopt;
6913 bool IsUndef1,
const APInt &C2,
6915 if (!(IsUndef1 || IsUndef2))
6923 return std::nullopt;
6931 if (!TLI->isOffsetFoldingLegal(GA))
6936 int64_t
Offset = C2->getSExtValue();
6956 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
6963 [](
SDValue V) { return V.isUndef() ||
6964 isNullConstant(V); });
7002 const APInt &Val =
C->getAPIntValue();
7006 C->isTargetOpcode(),
C->isOpaque());
7013 C->isTargetOpcode(),
C->isOpaque());
7018 C->isTargetOpcode(),
C->isOpaque());
7020 C->isTargetOpcode(),
C->isOpaque());
7048 case ISD::FP16_TO_FP:
7049 case ISD::BF16_TO_FP: {
7066 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
7068 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
7070 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
7072 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
7106 case ISD::FP_EXTEND: {
7125 case ISD::FP_TO_FP16:
7126 case ISD::FP_TO_BF16: {
7133 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7136 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7139 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7142 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7145 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7146 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7152 if (Opcode == ISD::BITCAST)
7163 if (C1->isOpaque() || C2->isOpaque())
7166 std::optional<APInt> FoldAttempt =
7167 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7173 "Can't fold vectors ops with scalar operands");
7181 if (TLI->isCommutativeBinOp(Opcode))
7197 const APInt &Val = C1->getAPIntValue();
7198 return SignExtendInReg(Val, VT);
7211 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7219 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7230 if (C1 && C2 && C3) {
7231 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7233 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7234 &V3 = C3->getAPIntValue();
7250 if (C1 && C2 && C3) {
7271 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7272 (
Ops[0].getOpcode() == ISD::BITCAST ||
7273 Ops[1].getOpcode() == ISD::BITCAST)) {
7284 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7285 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7289 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7300 BVEltVT = BV1->getOperand(0).getValueType();
7303 BVEltVT = BV2->getOperand(0).getValueType();
7309 DstBits, RawBits, DstUndefs,
7312 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7330 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7331 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7336 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7337 return !
Op.getValueType().isVector() ||
7338 Op.getValueType().getVectorElementCount() == NumElts;
7341 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7367 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7379 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7382 EVT InSVT =
Op.getValueType().getScalarType();
7425 if (LegalSVT != SVT)
7426 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7440 if (
Ops.size() != 2)
7451 if (N1CFP && N2CFP) {
7481 case ISD::FMINIMUMNUM:
7483 case ISD::FMAXIMUMNUM:
7502 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7525 if (SrcEltVT == DstEltVT)
7533 if (SrcBitSize == DstBitSize) {
7538 if (
Op.getValueType() != SrcEltVT)
7581 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7582 if (UndefElements[
I])
7603 ID.AddInteger(
A.value());
7606 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7610 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7611 createOperands(
N, {Val});
7613 CSEMap.InsertNode(
N, IP);
7625 Flags = Inserter->getFlags();
7626 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7631 if (!TLI->isCommutativeBinOp(Opcode))
7640 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7654 "Operand is DELETED_NODE!");
7670 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7674 if (N1 == N2)
return N1;
7690 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7692 N1.
getValueType() == VT &&
"Binary operator types must match!");
7695 if (N2CV && N2CV->
isZero())
7705 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7707 N1.
getValueType() == VT &&
"Binary operator types must match!");
7717 if (N2CV && N2CV->
isZero())
7731 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7733 N1.
getValueType() == VT &&
"Binary operator types must match!");
7736 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7738 const APInt &N2CImm = N2C->getAPIntValue();
7752 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7754 N1.
getValueType() == VT &&
"Binary operator types must match!");
7767 "Types of operands of UCMP/SCMP must match");
7769 "Operands and return type of must both be scalars or vectors");
7773 "Result and operands must have the same number of elements");
7779 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7781 N1.
getValueType() == VT &&
"Binary operator types must match!");
7785 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7787 N1.
getValueType() == VT &&
"Binary operator types must match!");
7793 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7795 N1.
getValueType() == VT &&
"Binary operator types must match!");
7801 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7803 N1.
getValueType() == VT &&
"Binary operator types must match!");
7814 N1.
getValueType() == VT &&
"Binary operator types must match!");
7822 "Invalid FCOPYSIGN!");
7825 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7827 const APInt &ShiftImm = N2C->getAPIntValue();
7839 "Shift operators return type must be the same as their first arg");
7841 "Shifts only work on integers");
7843 "Vector shift amounts must be in the same as their first arg");
7850 "Invalid use of small shift amount with oversized value!");
7857 if (N2CV && N2CV->
isZero())
7863 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7869 "AssertNoFPClass is used for a non-floating type");
7874 "FPClassTest value too large");
7883 "Cannot *_EXTEND_INREG FP types");
7885 "AssertSExt/AssertZExt type should be the vector element type "
7886 "rather than the vector type!");
7895 "Cannot *_EXTEND_INREG FP types");
7897 "SIGN_EXTEND_INREG type should be vector iff the operand "
7901 "Vector element counts must match in SIGN_EXTEND_INREG");
7903 if (
EVT == VT)
return N1;
7911 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7915 "Vector element counts must match in FP_TO_*INT_SAT");
7917 "Type to saturate to must be a scalar.");
7924 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7925 element type of the vector.");
7947 N2C->getZExtValue() % Factor);
7956 "BUILD_VECTOR used for scalable vectors");
7979 if (N1Op2C && N2C) {
8009 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
8013 "Wrong types for EXTRACT_ELEMENT!");
8024 unsigned Shift = ElementSize * N2C->getZExtValue();
8025 const APInt &Val = N1C->getAPIntValue();
8032 "Extract subvector VTs must be vectors!");
8034 "Extract subvector VTs must have the same element type!");
8036 "Cannot extract a scalable vector from a fixed length vector!");
8039 "Extract subvector must be from larger vector to smaller vector!");
8040 assert(N2C &&
"Extract subvector index must be a constant");
8044 "Extract subvector overflow!");
8045 assert(N2C->getAPIntValue().getBitWidth() ==
8047 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8049 "Extract index is not a multiple of the output vector length");
8064 return N1.
getOperand(N2C->getZExtValue() / Factor);
8105 if (TLI->isCommutativeBinOp(Opcode)) {
8184 if (VT != MVT::Glue) {
8188 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8189 E->intersectFlagsWith(Flags);
8193 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8195 createOperands(
N,
Ops);
8196 CSEMap.InsertNode(
N, IP);
8198 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8199 createOperands(
N,
Ops);
8212 Flags = Inserter->getFlags();
8213 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8222 "Operand is DELETED_NODE!");
8241 "SETCC operands must have the same type!");
8243 "SETCC type should be vector iff the operand type is vector!");
8246 "SETCC vector element counts must match!");
8266 "INSERT_VECTOR_ELT vector type mismatch");
8268 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8271 "INSERT_VECTOR_ELT fp scalar type mismatch");
8274 "INSERT_VECTOR_ELT int scalar size mismatch");
8320 "Dest and insert subvector source types must match!");
8322 "Insert subvector VTs must be vectors!");
8324 "Insert subvector VTs must have the same element type!");
8326 "Cannot insert a scalable vector into a fixed length vector!");
8329 "Insert subvector must be from smaller vector to larger vector!");
8331 "Insert subvector index must be constant");
8335 "Insert subvector overflow!");
8338 "Constant index for INSERT_SUBVECTOR has an invalid size");
8382 case ISD::VP_TRUNCATE:
8383 case ISD::VP_SIGN_EXTEND:
8384 case ISD::VP_ZERO_EXTEND:
8393 assert(VT == VecVT &&
"Vector and result type don't match.");
8395 "All inputs must be vectors.");
8396 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8398 "Vector and mask must have same number of elements.");
8405 case ISD::PARTIAL_REDUCE_UMLA:
8406 case ISD::PARTIAL_REDUCE_SMLA:
8407 case ISD::PARTIAL_REDUCE_SUMLA:
8408 case ISD::PARTIAL_REDUCE_FMLA: {
8413 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8414 "node to have the same type!");
8416 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8417 "the same type as its result!");
8420 "Expected the element count of the second and third operands of the "
8421 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8422 "element count of the first operand and the result!");
8424 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8425 "node to have an element type which is the same as or smaller than "
8426 "the element type of the first operand and result!");
8448 if (VT != MVT::Glue) {
8452 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8453 E->intersectFlagsWith(Flags);
8457 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8459 createOperands(
N,
Ops);
8460 CSEMap.InsertNode(
N, IP);
8462 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8463 createOperands(
N,
Ops);
8483 Flags = Inserter->getFlags();
8484 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8499 Flags = Inserter->getFlags();
8500 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8517 if (FI->getIndex() < 0)
8532 assert(
C->getAPIntValue().getBitWidth() == 8);
8537 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8542 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8558 if (VT !=
Value.getValueType())
8571 if (Slice.Array ==
nullptr) {
8574 return DAG.
getNode(ISD::BITCAST, dl, VT,
8580 unsigned NumVTBytes = NumVTBits / 8;
8581 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8583 APInt Val(NumVTBits, 0);
8585 for (
unsigned i = 0; i != NumBytes; ++i)
8588 for (
unsigned i = 0; i != NumBytes; ++i)
8589 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8608 APInt(
Base.getValueSizeInBits().getFixedValue(),
8609 Offset.getKnownMinValue()));
8620 EVT BasePtrVT =
Ptr.getValueType();
8621 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8636 else if (Src->isAnyAdd() &&
8640 SrcDelta = Src.getConstantOperandVal(1);
8646 SrcDelta +
G->getOffset());
8662 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8663 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8665 for (
unsigned i = From; i < To; ++i) {
8667 GluedLoadChains.
push_back(OutLoadChains[i]);
8674 for (
unsigned i = From; i < To; ++i) {
8677 ST->getBasePtr(), ST->getMemoryVT(),
8678 ST->getMemOperand());
8700 std::vector<EVT> MemOps;
8701 bool DstAlignCanChange =
false;
8707 DstAlignCanChange =
true;
8709 if (!SrcAlign || Alignment > *SrcAlign)
8710 SrcAlign = Alignment;
8711 assert(SrcAlign &&
"SrcAlign must be set");
8715 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8717 const MemOp Op = isZeroConstant
8721 *SrcAlign, isVol, CopyFromConstant);
8727 if (DstAlignCanChange) {
8728 Type *Ty = MemOps[0].getTypeForEVT(
C);
8729 Align NewAlign =
DL.getABITypeAlign(Ty);
8735 if (!
TRI->hasStackRealignment(MF))
8737 NewAlign = std::min(NewAlign, *StackAlign);
8739 if (NewAlign > Alignment) {
8743 Alignment = NewAlign;
8753 BatchAA && SrcVal &&
8761 unsigned NumMemOps = MemOps.size();
8763 for (
unsigned i = 0; i != NumMemOps; ++i) {
8768 if (VTSize >
Size) {
8771 assert(i == NumMemOps-1 && i != 0);
8772 SrcOff -= VTSize -
Size;
8773 DstOff -= VTSize -
Size;
8776 if (CopyFromConstant &&
8784 if (SrcOff < Slice.Length) {
8786 SubSlice.
move(SrcOff);
8789 SubSlice.
Array =
nullptr;
8791 SubSlice.
Length = VTSize;
8794 if (
Value.getNode()) {
8798 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8803 if (!Store.getNode()) {
8812 bool isDereferenceable =
8815 if (isDereferenceable)
8830 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8840 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8842 if (NumLdStInMemcpy) {
8848 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8854 if (NumLdStInMemcpy <= GluedLdStLimit) {
8856 NumLdStInMemcpy, OutLoadChains,
8859 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8860 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8861 unsigned GlueIter = 0;
8863 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8864 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8865 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8868 OutLoadChains, OutStoreChains);
8869 GlueIter += GluedLdStLimit;
8873 if (RemainingLdStInMemcpy) {
8875 RemainingLdStInMemcpy, OutLoadChains,
8887 bool isVol,
bool AlwaysInline,
8901 std::vector<EVT> MemOps;
8902 bool DstAlignCanChange =
false;
8908 DstAlignCanChange =
true;
8910 if (!SrcAlign || Alignment > *SrcAlign)
8911 SrcAlign = Alignment;
8912 assert(SrcAlign &&
"SrcAlign must be set");
8922 if (DstAlignCanChange) {
8923 Type *Ty = MemOps[0].getTypeForEVT(
C);
8924 Align NewAlign =
DL.getABITypeAlign(Ty);
8930 if (!
TRI->hasStackRealignment(MF))
8932 NewAlign = std::min(NewAlign, *StackAlign);
8934 if (NewAlign > Alignment) {
8938 Alignment = NewAlign;
8952 unsigned NumMemOps = MemOps.size();
8953 for (
unsigned i = 0; i < NumMemOps; i++) {
8958 bool isDereferenceable =
8961 if (isDereferenceable)
8967 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8974 for (
unsigned i = 0; i < NumMemOps; i++) {
8980 Chain, dl, LoadValues[i],
8982 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
9022 std::vector<EVT> MemOps;
9023 bool DstAlignCanChange =
false;
9030 DstAlignCanChange =
true;
9036 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9040 if (DstAlignCanChange) {
9043 Align NewAlign =
DL.getABITypeAlign(Ty);
9049 if (!
TRI->hasStackRealignment(MF))
9051 NewAlign = std::min(NewAlign, *StackAlign);
9053 if (NewAlign > Alignment) {
9057 Alignment = NewAlign;
9063 unsigned NumMemOps = MemOps.size();
9066 EVT LargestVT = MemOps[0];
9067 for (
unsigned i = 1; i < NumMemOps; i++)
9068 if (MemOps[i].bitsGT(LargestVT))
9069 LargestVT = MemOps[i];
9076 for (
unsigned i = 0; i < NumMemOps; i++) {
9079 if (VTSize >
Size) {
9082 assert(i == NumMemOps-1 && i != 0);
9083 DstOff -= VTSize -
Size;
9090 if (VT.
bitsLT(LargestVT)) {
9105 SDValue TailValue = DAG.
getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9110 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9137 bool AllowReturnsFirstArg) {
9143 AllowReturnsFirstArg &&
9147std::pair<SDValue, SDValue>
9150 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9167 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9173 return TLI->LowerCallTo(CLI);
9180 const char *LibCallName = TLI->getLibcallName(RTLIB::STRLEN);
9200 return TLI->LowerCallTo(CLI);
9205 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9214 if (ConstantSize->
isZero())
9218 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9219 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9220 if (Result.getNode())
9227 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9228 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9229 DstPtrInfo, SrcPtrInfo);
9230 if (Result.getNode())
9237 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9239 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9240 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9255 Args.emplace_back(Dst, PtrTy);
9256 Args.emplace_back(Src, PtrTy);
9260 bool IsTailCall =
false;
9261 RTLIB::LibcallImpl MemCpyImpl = TLI->getMemcpyImpl();
9263 if (OverrideTailCall.has_value()) {
9264 IsTailCall = *OverrideTailCall;
9266 bool LowersToMemcpy = MemCpyImpl == RTLIB::impl_memcpy;
9273 TLI->getLibcallImplCallingConv(MemCpyImpl),
9274 Dst.getValueType().getTypeForEVT(*
getContext()),
9281 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9282 return CallResult.second;
9287 Type *SizeTy,
unsigned ElemSz,
9294 Args.emplace_back(Dst, ArgTy);
9295 Args.emplace_back(Src, ArgTy);
9296 Args.emplace_back(
Size, SizeTy);
9298 RTLIB::Libcall LibraryCall =
9300 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9314 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9315 return CallResult.second;
9321 std::optional<bool> OverrideTailCall,
9331 if (ConstantSize->
isZero())
9335 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9336 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9337 if (Result.getNode())
9345 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9346 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9347 if (Result.getNode())
9360 Args.emplace_back(Dst, PtrTy);
9361 Args.emplace_back(Src, PtrTy);
9366 RTLIB::LibcallImpl MemmoveImpl = TLI->getLibcallImpl(RTLIB::MEMMOVE);
9368 bool IsTailCall =
false;
9369 if (OverrideTailCall.has_value()) {
9370 IsTailCall = *OverrideTailCall;
9372 bool LowersToMemmove = MemmoveImpl == RTLIB::impl_memmove;
9379 TLI->getLibcallImplCallingConv(MemmoveImpl),
9380 Dst.getValueType().getTypeForEVT(*
getContext()),
9387 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9388 return CallResult.second;
9393 Type *SizeTy,
unsigned ElemSz,
9400 Args.emplace_back(Dst, IntPtrTy);
9401 Args.emplace_back(Src, IntPtrTy);
9402 Args.emplace_back(
Size, SizeTy);
9404 RTLIB::Libcall LibraryCall =
9406 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9420 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9421 return CallResult.second;
9426 bool isVol,
bool AlwaysInline,
9435 if (ConstantSize->
isZero())
9440 isVol,
false, DstPtrInfo, AAInfo);
9442 if (Result.getNode())
9449 SDValue Result = TSI->EmitTargetCodeForMemset(
9450 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9451 if (Result.getNode())
9458 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9461 isVol,
true, DstPtrInfo, AAInfo);
9463 "getMemsetStores must return a valid sequence when AlwaysInline");
9484 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9491 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9492 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9493 CLI.
setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9494 Dst.getValueType().getTypeForEVT(Ctx),
9496 TLI->getPointerTy(
DL)),
9500 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9501 bool LowersToMemset = MemsetImpl == RTLIB::impl_memset;
9512 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9513 return CallResult.second;
9518 Type *SizeTy,
unsigned ElemSz,
9525 Args.emplace_back(
Size, SizeTy);
9527 RTLIB::Libcall LibraryCall =
9529 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9543 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9544 return CallResult.second;
9554 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9555 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9560 E->refineAlignment(MMO);
9561 E->refineRanges(MMO);
9566 VTList, MemVT, MMO, ExtType);
9567 createOperands(
N,
Ops);
9569 CSEMap.InsertNode(
N, IP);
9580 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9581 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9591 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9592 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9593 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9594 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9595 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9596 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9597 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9598 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9599 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9600 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9601 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9602 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9603 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9604 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9605 Opcode == ISD::ATOMIC_STORE) &&
9606 "Invalid Atomic Op");
9621 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs,
Ops, MMO, ExtType);
9626 if (
Ops.size() == 1)
9641 if (
Size.hasValue() && !
Size.getValue())
9646 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9657 Opcode == ISD::PREFETCH ||
9658 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9660 "Opcode is not a memory-accessing opcode!");
9664 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9667 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9668 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9673 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9679 VTList, MemVT, MMO);
9680 createOperands(
N,
Ops);
9682 CSEMap.InsertNode(
N, IP);
9685 VTList, MemVT, MMO);
9686 createOperands(
N,
Ops);
9695 SDValue Chain,
int FrameIndex) {
9696 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9706 ID.AddInteger(FrameIndex);
9708 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9713 createOperands(
N,
Ops);
9714 CSEMap.InsertNode(
N, IP);
9724 const unsigned Opcode = ISD::PSEUDO_PROBE;
9730 ID.AddInteger(Index);
9732 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9735 auto *
N = newSDNode<PseudoProbeSDNode>(
9737 createOperands(
N,
Ops);
9738 CSEMap.InsertNode(
N, IP);
9792 "Invalid chain type");
9804 Alignment, AAInfo, Ranges);
9815 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9819 "Should only be an extending load, not truncating!");
9821 "Cannot convert from FP to Int or Int -> FP!");
9823 "Cannot use an ext load to convert to or from a vector!");
9826 "Cannot use an ext load to change the number of vector elements!");
9833 "Range metadata and load type must match!");
9844 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9845 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9850 E->refineAlignment(MMO);
9851 E->refineRanges(MMO);
9855 ExtType, MemVT, MMO);
9856 createOperands(
N,
Ops);
9858 CSEMap.InsertNode(
N, IP);
9872 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9890 MemVT, Alignment, MMOFlags, AAInfo);
9905 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
9908 LD->getMemOperand()->getFlags() &
9911 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
9912 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9931 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
9945 bool IsTruncating) {
9949 IsTruncating =
false;
9950 }
else if (!IsTruncating) {
9951 assert(VT == SVT &&
"No-truncating store from different memory type!");
9954 "Should only be a truncating store, not extending!");
9957 "Cannot use trunc store to convert to or from a vector!");
9960 "Cannot use trunc store to change the number of vector elements!");
9971 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9972 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9976 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9981 IsTruncating, SVT, MMO);
9982 createOperands(
N,
Ops);
9984 CSEMap.InsertNode(
N, IP);
9997 "Invalid chain type");
10007 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10022 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
10024 ST->getMemoryVT(), ST->getMemOperand(), AM,
10025 ST->isTruncatingStore());
10033 const MDNode *Ranges,
bool IsExpanding) {
10046 Alignment, AAInfo, Ranges);
10047 return getLoadVP(AM, ExtType, VT, dl, Chain,
Ptr,
Offset, Mask, EVL, MemVT,
10056 bool IsExpanding) {
10066 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10067 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10070 void *IP =
nullptr;
10072 E->refineAlignment(MMO);
10073 E->refineRanges(MMO);
10077 ExtType, IsExpanding, MemVT, MMO);
10078 createOperands(
N,
Ops);
10080 CSEMap.InsertNode(
N, IP);
10093 bool IsExpanding) {
10096 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10105 Mask, EVL, VT, MMO, IsExpanding);
10114 const AAMDNodes &AAInfo,
bool IsExpanding) {
10117 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10127 EVL, MemVT, MMO, IsExpanding);
10134 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10137 LD->getMemOperand()->getFlags() &
10140 LD->getChain(),
Base,
Offset, LD->getMask(),
10141 LD->getVectorLength(), LD->getPointerInfo(),
10142 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10143 nullptr, LD->isExpandingLoad());
10150 bool IsCompressing) {
10160 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10161 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10164 void *IP =
nullptr;
10165 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10170 IsTruncating, IsCompressing, MemVT, MMO);
10171 createOperands(
N,
Ops);
10173 CSEMap.InsertNode(
N, IP);
10186 bool IsCompressing) {
10197 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10206 bool IsCompressing) {
10213 false, IsCompressing);
10216 "Should only be a truncating store, not extending!");
10219 "Cannot use trunc store to convert to or from a vector!");
10222 "Cannot use trunc store to change the number of vector elements!");
10230 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10234 void *IP =
nullptr;
10235 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10242 createOperands(
N,
Ops);
10244 CSEMap.InsertNode(
N, IP);
10255 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10258 Offset, ST->getMask(), ST->getVectorLength()};
10261 ID.AddInteger(ST->getMemoryVT().getRawBits());
10262 ID.AddInteger(ST->getRawSubclassData());
10263 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10264 ID.AddInteger(ST->getMemOperand()->getFlags());
10265 void *IP =
nullptr;
10266 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10269 auto *
N = newSDNode<VPStoreSDNode>(
10271 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10272 createOperands(
N,
Ops);
10274 CSEMap.InsertNode(
N, IP);
10294 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10295 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10298 void *IP =
nullptr;
10299 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10305 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10306 ExtType, IsExpanding, MemVT, MMO);
10307 createOperands(
N,
Ops);
10308 CSEMap.InsertNode(
N, IP);
10319 bool IsExpanding) {
10322 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10331 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10340 bool IsTruncating,
bool IsCompressing) {
10350 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10351 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10353 void *IP =
nullptr;
10354 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10358 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10359 VTs, AM, IsTruncating,
10360 IsCompressing, MemVT, MMO);
10361 createOperands(
N,
Ops);
10363 CSEMap.InsertNode(
N, IP);
10375 bool IsCompressing) {
10382 false, IsCompressing);
10385 "Should only be a truncating store, not extending!");
10388 "Cannot use trunc store to convert to or from a vector!");
10391 "Cannot use trunc store to change the number of vector elements!");
10395 SDValue Ops[] = {Chain, Val,
Ptr, Undef, Stride, Mask, EVL};
10399 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10402 void *IP =
nullptr;
10403 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10407 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10409 IsCompressing, SVT, MMO);
10410 createOperands(
N,
Ops);
10412 CSEMap.InsertNode(
N, IP);
10422 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10427 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10431 void *IP =
nullptr;
10432 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10438 VT, MMO, IndexType);
10439 createOperands(
N,
Ops);
10441 assert(
N->getMask().getValueType().getVectorElementCount() ==
10442 N->getValueType(0).getVectorElementCount() &&
10443 "Vector width mismatch between mask and data");
10444 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10445 N->getValueType(0).getVectorElementCount().isScalable() &&
10446 "Scalable flags of index and data do not match");
10448 N->getIndex().getValueType().getVectorElementCount(),
10449 N->getValueType(0).getVectorElementCount()) &&
10450 "Vector width mismatch between index and data");
10452 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10453 "Scale should be a constant power of 2");
10455 CSEMap.InsertNode(
N, IP);
10466 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10471 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10475 void *IP =
nullptr;
10476 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10481 VT, MMO, IndexType);
10482 createOperands(
N,
Ops);
10484 assert(
N->getMask().getValueType().getVectorElementCount() ==
10485 N->getValue().getValueType().getVectorElementCount() &&
10486 "Vector width mismatch between mask and data");
10488 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10489 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10490 "Scalable flags of index and data do not match");
10492 N->getIndex().getValueType().getVectorElementCount(),
10493 N->getValue().getValueType().getVectorElementCount()) &&
10494 "Vector width mismatch between index and data");
10496 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10497 "Scale should be a constant power of 2");
10499 CSEMap.InsertNode(
N, IP);
10514 "Unindexed masked load with an offset!");
10521 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10522 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10525 void *IP =
nullptr;
10526 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10531 AM, ExtTy, isExpanding, MemVT, MMO);
10532 createOperands(
N,
Ops);
10534 CSEMap.InsertNode(
N, IP);
10545 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10547 Offset, LD->getMask(), LD->getPassThru(),
10548 LD->getMemoryVT(), LD->getMemOperand(), AM,
10549 LD->getExtensionType(), LD->isExpandingLoad());
10557 bool IsCompressing) {
10559 "Invalid chain type");
10562 "Unindexed masked store with an offset!");
10569 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10570 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10573 void *IP =
nullptr;
10574 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10580 IsTruncating, IsCompressing, MemVT, MMO);
10581 createOperands(
N,
Ops);
10583 CSEMap.InsertNode(
N, IP);
10594 assert(ST->getOffset().isUndef() &&
10595 "Masked store is already a indexed store!");
10597 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10598 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10606 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10611 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10612 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10615 void *IP =
nullptr;
10616 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10622 VTs, MemVT, MMO, IndexType, ExtTy);
10623 createOperands(
N,
Ops);
10625 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10626 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10627 assert(
N->getMask().getValueType().getVectorElementCount() ==
10628 N->getValueType(0).getVectorElementCount() &&
10629 "Vector width mismatch between mask and data");
10630 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10631 N->getValueType(0).getVectorElementCount().isScalable() &&
10632 "Scalable flags of index and data do not match");
10634 N->getIndex().getValueType().getVectorElementCount(),
10635 N->getValueType(0).getVectorElementCount()) &&
10636 "Vector width mismatch between index and data");
10638 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10639 "Scale should be a constant power of 2");
10641 CSEMap.InsertNode(
N, IP);
10653 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10658 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10659 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10662 void *IP =
nullptr;
10663 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10669 VTs, MemVT, MMO, IndexType, IsTrunc);
10670 createOperands(
N,
Ops);
10672 assert(
N->getMask().getValueType().getVectorElementCount() ==
10673 N->getValue().getValueType().getVectorElementCount() &&
10674 "Vector width mismatch between mask and data");
10676 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10677 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10678 "Scalable flags of index and data do not match");
10680 N->getIndex().getValueType().getVectorElementCount(),
10681 N->getValue().getValueType().getVectorElementCount()) &&
10682 "Vector width mismatch between index and data");
10684 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10685 "Scale should be a constant power of 2");
10687 CSEMap.InsertNode(
N, IP);
10698 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10703 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10704 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10707 void *IP =
nullptr;
10708 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10714 VTs, MemVT, MMO, IndexType);
10715 createOperands(
N,
Ops);
10717 assert(
N->getMask().getValueType().getVectorElementCount() ==
10718 N->getIndex().getValueType().getVectorElementCount() &&
10719 "Vector width mismatch between mask and data");
10721 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10722 "Scale should be a constant power of 2");
10723 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10725 CSEMap.InsertNode(
N, IP);
10740 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10744 void *IP =
nullptr;
10745 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10749 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10751 createOperands(
N,
Ops);
10753 CSEMap.InsertNode(
N, IP);
10768 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10769 ISD::GET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10772 void *IP =
nullptr;
10773 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10776 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.
getIROrder(),
10778 createOperands(
N,
Ops);
10780 CSEMap.InsertNode(
N, IP);
10795 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10796 ISD::SET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10799 void *IP =
nullptr;
10800 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10803 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.
getIROrder(),
10805 createOperands(
N,
Ops);
10807 CSEMap.InsertNode(
N, IP);
10818 if (
Cond.isUndef())
10853 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10859 if (
X.getValueType().getScalarType() == MVT::i1)
10872 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10874 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10877 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10880 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
10903 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10918 switch (
Ops.size()) {
10919 case 0:
return getNode(Opcode,
DL, VT);
10929 return getNode(Opcode,
DL, VT, NewOps);
10936 Flags = Inserter->getFlags();
10944 case 0:
return getNode(Opcode,
DL, VT);
10945 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
10952 for (
const auto &
Op :
Ops)
10954 "Operand is DELETED_NODE!");
10971 "LHS and RHS of condition must have same type!");
10973 "True and False arms of SelectCC must have same type!");
10975 "select_cc node must be of same type as true and false value!");
10979 "Expected select_cc with vector result to have the same sized "
10980 "comparison type!");
10985 "LHS/RHS of comparison should match types!");
10991 Opcode = ISD::VP_XOR;
10996 Opcode = ISD::VP_AND;
10998 case ISD::VP_REDUCE_MUL:
11001 Opcode = ISD::VP_REDUCE_AND;
11003 case ISD::VP_REDUCE_ADD:
11006 Opcode = ISD::VP_REDUCE_XOR;
11008 case ISD::VP_REDUCE_SMAX:
11009 case ISD::VP_REDUCE_UMIN:
11013 Opcode = ISD::VP_REDUCE_AND;
11015 case ISD::VP_REDUCE_SMIN:
11016 case ISD::VP_REDUCE_UMAX:
11020 Opcode = ISD::VP_REDUCE_OR;
11028 if (VT != MVT::Glue) {
11031 void *IP =
nullptr;
11033 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11034 E->intersectFlagsWith(Flags);
11038 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11039 createOperands(
N,
Ops);
11041 CSEMap.InsertNode(
N, IP);
11043 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11044 createOperands(
N,
Ops);
11047 N->setFlags(Flags);
11058 Flags = Inserter->getFlags();
11072 Flags = Inserter->getFlags();
11082 for (
const auto &
Op :
Ops)
11084 "Operand is DELETED_NODE!");
11093 "Invalid add/sub overflow op!");
11095 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11096 Ops[0].getValueType() == VTList.
VTs[0] &&
11097 "Binary operator types must match!");
11104 if (N2CV && N2CV->
isZero()) {
11135 "Invalid add/sub overflow op!");
11137 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11138 Ops[0].getValueType() == VTList.
VTs[0] &&
11139 Ops[2].getValueType() == VTList.
VTs[1] &&
11140 "Binary operator types must match!");
11144 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11146 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11147 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11148 "Binary operator types must match!");
11154 unsigned OutWidth = Width * 2;
11155 APInt Val = LHS->getAPIntValue();
11158 Val = Val.
sext(OutWidth);
11159 Mul =
Mul.sext(OutWidth);
11161 Val = Val.
zext(OutWidth);
11162 Mul =
Mul.zext(OutWidth);
11173 case ISD::FFREXP: {
11174 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11176 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11184 DL, VTList.
VTs[1]);
11192 "Invalid STRICT_FP_EXTEND!");
11194 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11196 "STRICT_FP_EXTEND result type should be vector iff the operand "
11197 "type is vector!");
11200 Ops[1].getValueType().getVectorElementCount()) &&
11201 "Vector element count mismatch!");
11203 "Invalid fpext node, dst <= src!");
11206 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11208 "STRICT_FP_ROUND result type should be vector iff the operand "
11209 "type is vector!");
11212 Ops[1].getValueType().getVectorElementCount()) &&
11213 "Vector element count mismatch!");
11215 Ops[1].getValueType().isFloatingPoint() &&
11218 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11219 "Invalid STRICT_FP_ROUND!");
11225 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11228 void *IP =
nullptr;
11229 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11230 E->intersectFlagsWith(Flags);
11234 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11235 createOperands(
N,
Ops);
11236 CSEMap.InsertNode(
N, IP);
11238 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11239 createOperands(
N,
Ops);
11242 N->setFlags(Flags);
11289 return makeVTList(&(*EVTs.insert(VT).first), 1);
11298 void *IP =
nullptr;
11301 EVT *Array = Allocator.Allocate<
EVT>(2);
11304 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11305 VTListMap.InsertNode(Result, IP);
11307 return Result->getSDVTList();
11317 void *IP =
nullptr;
11320 EVT *Array = Allocator.Allocate<
EVT>(3);
11324 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11325 VTListMap.InsertNode(Result, IP);
11327 return Result->getSDVTList();
11338 void *IP =
nullptr;
11341 EVT *Array = Allocator.Allocate<
EVT>(4);
11346 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11347 VTListMap.InsertNode(Result, IP);
11349 return Result->getSDVTList();
11353 unsigned NumVTs = VTs.
size();
11355 ID.AddInteger(NumVTs);
11356 for (
unsigned index = 0; index < NumVTs; index++) {
11357 ID.AddInteger(VTs[index].getRawBits());
11360 void *IP =
nullptr;
11363 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11365 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11366 VTListMap.InsertNode(Result, IP);
11368 return Result->getSDVTList();
11379 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11382 if (
Op ==
N->getOperand(0))
return N;
11385 void *InsertPos =
nullptr;
11386 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11391 if (!RemoveNodeFromCSEMaps(
N))
11392 InsertPos =
nullptr;
11395 N->OperandList[0].set(
Op);
11399 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11404 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11407 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11411 void *InsertPos =
nullptr;
11412 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11417 if (!RemoveNodeFromCSEMaps(
N))
11418 InsertPos =
nullptr;
11421 if (
N->OperandList[0] != Op1)
11422 N->OperandList[0].set(Op1);
11423 if (
N->OperandList[1] != Op2)
11424 N->OperandList[1].set(Op2);
11428 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11448 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11456 "Update with wrong number of operands");
11459 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11463 void *InsertPos =
nullptr;
11464 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11469 if (!RemoveNodeFromCSEMaps(
N))
11470 InsertPos =
nullptr;
11473 for (
unsigned i = 0; i !=
NumOps; ++i)
11474 if (
N->OperandList[i] !=
Ops[i])
11475 N->OperandList[i].set(
Ops[i]);
11479 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11496 if (NewMemRefs.
empty()) {
11502 if (NewMemRefs.
size() == 1) {
11503 N->MemRefs = NewMemRefs[0];
11509 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11511 N->MemRefs = MemRefsBuffer;
11512 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11584 New->setNodeId(-1);
11604 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11605 N->setIROrder(Order);
11628 void *IP =
nullptr;
11629 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11633 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11636 if (!RemoveNodeFromCSEMaps(
N))
11641 N->ValueList = VTs.
VTs;
11651 if (Used->use_empty())
11652 DeadNodeSet.
insert(Used);
11657 MN->clearMemRefs();
11661 createOperands(
N,
Ops);
11665 if (!DeadNodeSet.
empty()) {
11667 for (
SDNode *
N : DeadNodeSet)
11668 if (
N->use_empty())
11674 CSEMap.InsertNode(
N, IP);
11679 unsigned OrigOpc =
Node->getOpcode();
11684#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11685 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11686#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11687 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11688#include "llvm/IR/ConstrainedOps.def"
11691 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11699 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11700 Ops.push_back(
Node->getOperand(i));
11817 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11819 void *IP =
nullptr;
11825 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11831 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11832 createOperands(
N,
Ops);
11835 CSEMap.InsertNode(
N, IP);
11848 VT, Operand, SRIdxVal);
11858 VT, Operand, Subreg, SRIdxVal);
11866 bool AllowCommute) {
11869 Flags = Inserter->getFlags();
11876 bool AllowCommute) {
11877 if (VTList.
VTs[VTList.
NumVTs - 1] == MVT::Glue)
11883 void *IP =
nullptr;
11884 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP)) {
11885 E->intersectFlagsWith(Flags);
11894 if (AllowCommute && TLI->isCommutativeBinOp(Opcode))
11903 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11906 void *IP =
nullptr;
11907 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
11917 SDNode *
N,
unsigned R,
bool IsIndirect,
11920 "Expected inlined-at fields to agree");
11921 return new (DbgInfo->getAlloc())
11923 {}, IsIndirect,
DL, O,
11933 "Expected inlined-at fields to agree");
11934 return new (DbgInfo->getAlloc())
11947 "Expected inlined-at fields to agree");
11959 "Expected inlined-at fields to agree");
11960 return new (DbgInfo->getAlloc())
11962 Dependencies, IsIndirect,
DL, O,
11971 "Expected inlined-at fields to agree");
11972 return new (DbgInfo->getAlloc())
11974 {}, IsIndirect,
DL, O,
11982 unsigned O,
bool IsVariadic) {
11984 "Expected inlined-at fields to agree");
11985 return new (DbgInfo->getAlloc())
11986 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11987 DL, O, IsVariadic);
11991 unsigned OffsetInBits,
unsigned SizeInBits,
11992 bool InvalidateDbg) {
11995 assert(FromNode && ToNode &&
"Can't modify dbg values");
12000 if (From == To || FromNode == ToNode)
12012 if (Dbg->isInvalidated())
12020 auto NewLocOps = Dbg->copyLocationOps();
12022 NewLocOps.begin(), NewLocOps.end(),
12024 bool Match = Op == FromLocOp;
12034 auto *Expr = Dbg->getExpression();
12040 if (
auto FI = Expr->getFragmentInfo())
12041 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12050 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12053 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12054 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
12055 Dbg->isVariadic());
12058 if (InvalidateDbg) {
12060 Dbg->setIsInvalidated();
12061 Dbg->setIsEmitted();
12067 "Transferred DbgValues should depend on the new SDNode");
12073 if (!
N.getHasDebugValue())
12076 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
12084 if (DV->isInvalidated())
12086 switch (
N.getOpcode()) {
12096 Offset =
N.getConstantOperandVal(1);
12099 if (!RHSConstant && DV->isIndirect())
12106 auto *DIExpr = DV->getExpression();
12107 auto NewLocOps = DV->copyLocationOps();
12109 size_t OrigLocOpsSize = NewLocOps.size();
12110 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
12115 NewLocOps[i].getSDNode() != &
N)
12126 const auto *TmpDIExpr =
12134 NewLocOps.push_back(RHS);
12143 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12145 auto AdditionalDependencies = DV->getAdditionalDependencies();
12147 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12148 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12150 DV->setIsInvalidated();
12151 DV->setIsEmitted();
12153 N0.
getNode()->dumprFull(
this);
12154 dbgs() <<
" into " << *DIExpr <<
'\n');
12161 TypeSize ToSize =
N.getValueSizeInBits(0);
12165 auto NewLocOps = DV->copyLocationOps();
12167 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12169 NewLocOps[i].getSDNode() != &
N)
12181 DV->getAdditionalDependencies(), DV->isIndirect(),
12182 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12185 DV->setIsInvalidated();
12186 DV->setIsEmitted();
12188 dbgs() <<
" into " << *DbgExpression <<
'\n');
12195 assert((!Dbg->getSDNodes().empty() ||
12198 return Op.getKind() == SDDbgOperand::FRAMEIX;
12200 "Salvaged DbgValue should depend on a new SDNode");
12209 "Expected inlined-at fields to agree");
12210 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12225 while (UI != UE &&
N == UI->
getUser())
12233 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12246 "Cannot replace with this method!");
12247 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12262 RAUWUpdateListener Listener(*
this, UI, UE);
12267 RemoveNodeFromCSEMaps(
User);
12282 AddModifiedNodeToCSEMaps(
User);
12298 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12301 "Cannot use this version of ReplaceAllUsesWith!");
12309 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12311 assert((i < To->getNumValues()) &&
"Invalid To location");
12320 RAUWUpdateListener Listener(*
this, UI, UE);
12325 RemoveNodeFromCSEMaps(
User);
12341 AddModifiedNodeToCSEMaps(
User);
12358 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12368 RAUWUpdateListener Listener(*
this, UI, UE);
12373 RemoveNodeFromCSEMaps(
User);
12379 bool To_IsDivergent =
false;
12393 AddModifiedNodeToCSEMaps(
User);
12406 if (From == To)
return;
12422 RAUWUpdateListener Listener(*
this, UI, UE);
12425 bool UserRemovedFromCSEMaps =
false;
12442 if (!UserRemovedFromCSEMaps) {
12443 RemoveNodeFromCSEMaps(
User);
12444 UserRemovedFromCSEMaps =
true;
12454 if (!UserRemovedFromCSEMaps)
12459 AddModifiedNodeToCSEMaps(
User);
12478bool operator<(
const UseMemo &L,
const UseMemo &R) {
12479 return (intptr_t)L.User < (intptr_t)R.User;
12486 SmallVectorImpl<UseMemo> &
Uses;
12488 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12489 for (UseMemo &Memo :
Uses)
12490 if (Memo.User ==
N)
12491 Memo.User =
nullptr;
12495 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12496 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12503 switch (
Node->getOpcode()) {
12515 if (TLI->isSDNodeAlwaysUniform(
N)) {
12516 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12517 "Conflicting divergence information!");
12520 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12522 for (
const auto &
Op :
N->ops()) {
12523 EVT VT =
Op.getValueType();
12526 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12538 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12539 N->SDNodeBits.IsDivergent = IsDivergent;
12542 }
while (!Worklist.
empty());
12545void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12547 Order.reserve(AllNodes.size());
12549 unsigned NOps =
N.getNumOperands();
12552 Order.push_back(&
N);
12554 for (
size_t I = 0;
I != Order.size(); ++
I) {
12556 for (
auto *U :
N->users()) {
12557 unsigned &UnsortedOps = Degree[U];
12558 if (0 == --UnsortedOps)
12559 Order.push_back(U);
12564#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12565void SelectionDAG::VerifyDAGDivergence() {
12566 std::vector<SDNode *> TopoOrder;
12567 CreateTopologicalOrder(TopoOrder);
12568 for (
auto *
N : TopoOrder) {
12570 "Divergence bit inconsistency detected");
12593 for (
unsigned i = 0; i != Num; ++i) {
12594 unsigned FromResNo = From[i].
getResNo();
12597 if (
Use.getResNo() == FromResNo) {
12599 Uses.push_back(Memo);
12606 RAUOVWUpdateListener Listener(*
this,
Uses);
12608 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12609 UseIndex != UseIndexEnd; ) {
12615 if (
User ==
nullptr) {
12621 RemoveNodeFromCSEMaps(
User);
12628 unsigned i =
Uses[UseIndex].Index;
12633 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12637 AddModifiedNodeToCSEMaps(
User);
12645 unsigned DAGSize = 0;
12661 unsigned Degree =
N.getNumOperands();
12664 N.setNodeId(DAGSize++);
12666 if (Q != SortedPos)
12667 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12668 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12672 N.setNodeId(Degree);
12684 unsigned Degree =
P->getNodeId();
12685 assert(Degree != 0 &&
"Invalid node degree");
12689 P->setNodeId(DAGSize++);
12690 if (
P->getIterator() != SortedPos)
12691 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12692 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12696 P->setNodeId(Degree);
12699 if (
Node.getIterator() == SortedPos) {
12703 dbgs() <<
"Overran sorted position:\n";
12705 dbgs() <<
"Checking if this is due to cycles\n";
12712 assert(SortedPos == AllNodes.end() &&
12713 "Topological sort incomplete!");
12715 "First node in topological sort is not the entry token!");
12716 assert(AllNodes.front().getNodeId() == 0 &&
12717 "First node in topological sort has non-zero id!");
12718 assert(AllNodes.front().getNumOperands() == 0 &&
12719 "First node in topological sort has operands!");
12720 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12721 "Last node in topologic sort has unexpected id!");
12722 assert(AllNodes.back().use_empty() &&
12723 "Last node in topologic sort has users!");
12730 SortedNodes.
clear();
12737 unsigned NumOperands =
N.getNumOperands();
12738 if (NumOperands == 0)
12742 RemainingOperands[&
N] = NumOperands;
12747 for (
unsigned i = 0U; i < SortedNodes.
size(); ++i) {
12748 const SDNode *
N = SortedNodes[i];
12749 for (
const SDNode *U :
N->users()) {
12752 if (U->getOpcode() == ISD::HANDLENODE)
12754 unsigned &NumRemOperands = RemainingOperands[U];
12755 assert(NumRemOperands &&
"Invalid number of remaining operands");
12757 if (!NumRemOperands)
12762 assert(SortedNodes.
size() == AllNodes.size() &&
"Node count mismatch");
12764 "First node in topological sort is not the entry token");
12765 assert(SortedNodes.
front()->getNumOperands() == 0 &&
12766 "First node in topological sort has operands");
12772 for (
SDNode *SD : DB->getSDNodes()) {
12775 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12776 SD->setHasDebugValue(
true);
12778 DbgInfo->add(DB, isParameter);
12791 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12792 return NewMemOpChain;
12795 OldChain, NewMemOpChain);
12798 return TokenFactor;
12817 if (OutFunction !=
nullptr)
12825 std::string ErrorStr;
12827 ErrorFormatter <<
"Undefined external symbol ";
12828 ErrorFormatter <<
'"' << Symbol <<
'"';
12838 return Const !=
nullptr && Const->isZero();
12847 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12852 return Const !=
nullptr && Const->isAllOnes();
12857 return Const !=
nullptr && Const->isOne();
12862 return Const !=
nullptr && Const->isMinSignedValue();
12866 unsigned OperandNo) {
12871 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12877 return Const.isZero();
12879 return Const.isOne();
12882 return Const.isAllOnes();
12884 return Const.isMinSignedValue();
12886 return Const.isMaxSignedValue();
12891 return OperandNo == 1 && Const.isZero();
12894 return OperandNo == 1 && Const.isOne();
12899 return ConstFP->isZero() &&
12900 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12902 return OperandNo == 1 && ConstFP->isZero() &&
12903 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12905 return ConstFP->isExactlyValue(1.0);
12907 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12909 case ISD::FMAXNUM: {
12911 EVT VT = V.getValueType();
12913 APFloat NeutralAF = !Flags.hasNoNaNs()
12915 : !Flags.hasNoInfs()
12918 if (Opcode == ISD::FMAXNUM)
12921 return ConstFP->isExactlyValue(NeutralAF);
12929 while (V.getOpcode() == ISD::BITCAST)
12935 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12954 !DemandedElts[IndexC->getZExtValue()]) {
12973 unsigned NumBits = V.getScalarValueSizeInBits();
12976 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
12980 bool AllowTruncation) {
12981 EVT VT =
N.getValueType();
12990 bool AllowTruncation) {
12997 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
12999 EVT CVT = CN->getValueType(0);
13000 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
13001 if (AllowTruncation || CVT == VecEltVT)
13008 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
13013 if (CN && (UndefElements.
none() || AllowUndefs)) {
13015 EVT NSVT =
N.getValueType().getScalarType();
13016 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
13017 if (AllowTruncation || (CVT == NSVT))
13026 EVT VT =
N.getValueType();
13034 const APInt &DemandedElts,
13035 bool AllowUndefs) {
13042 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13044 if (CN && (UndefElements.
none() || AllowUndefs))
13059 return C &&
C->isZero();
13065 return C &&
C->isOne();
13070 return C &&
C->isExactlyValue(1.0);
13075 unsigned BitWidth =
N.getScalarValueSizeInBits();
13077 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
13083 APInt(
C->getAPIntValue().getBitWidth(), 1));
13089 return C &&
C->isZero();
13098 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
13108 (!
MMO->getType().isValid() ||
13122 std::vector<EVT> VTs;
13135const EVT *SDNode::getValueTypeList(
MVT VT) {
13136 static EVTArray SimpleVTArray;
13139 return &SimpleVTArray.VTs[VT.
SimpleTy];
13148 if (U.getResNo() ==
Value)
13186 return any_of(
N->op_values(),
13187 [
this](
SDValue Op) { return this == Op.getNode(); });
13201 unsigned Depth)
const {
13202 if (*
this == Dest)
return true;
13206 if (
Depth == 0)
return false;
13226 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13232 if (Ld->isUnordered())
13233 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13246 this->Flags &= Flags;
13252 bool AllowPartials) {
13267 unsigned CandidateBinOp =
Op.getOpcode();
13268 if (
Op.getValueType().isFloatingPoint()) {
13270 switch (CandidateBinOp) {
13272 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13282 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13283 if (!AllowPartials || !
Op)
13285 EVT OpVT =
Op.getValueType();
13288 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13307 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13309 for (
unsigned i = 0; i < Stages; ++i) {
13310 unsigned MaskEnd = (1 << i);
13312 if (
Op.getOpcode() != CandidateBinOp)
13313 return PartialReduction(PrevOp, MaskEnd);
13329 return PartialReduction(PrevOp, MaskEnd);
13332 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13333 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13334 return PartialReduction(PrevOp, MaskEnd);
13341 while (
Op.getOpcode() == CandidateBinOp) {
13342 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13351 if (NumSrcElts != (2 * NumElts))
13366 EVT VT =
N->getValueType(0);
13375 else if (NE > ResNE)
13378 if (
N->getNumValues() == 2) {
13381 EVT VT1 =
N->getValueType(1);
13385 for (i = 0; i != NE; ++i) {
13386 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13387 SDValue Operand =
N->getOperand(j);
13395 SDValue EltOp =
getNode(
N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13400 for (; i < ResNE; ++i) {
13412 assert(
N->getNumValues() == 1 &&
13413 "Can't unroll a vector with multiple results!");
13419 for (i= 0; i != NE; ++i) {
13420 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13421 SDValue Operand =
N->getOperand(j);
13429 Operands[j] = Operand;
13433 switch (
N->getOpcode()) {
13458 case ISD::ADDRSPACECAST: {
13461 ASC->getSrcAddressSpace(),
13462 ASC->getDestAddressSpace()));
13468 for (; i < ResNE; ++i)
13477 unsigned Opcode =
N->getOpcode();
13481 "Expected an overflow opcode");
13483 EVT ResVT =
N->getValueType(0);
13484 EVT OvVT =
N->getValueType(1);
13493 else if (NE > ResNE)
13505 for (
unsigned i = 0; i < NE; ++i) {
13506 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13529 if (LD->isVolatile() ||
Base->isVolatile())
13532 if (!LD->isSimple())
13534 if (LD->isIndexed() ||
Base->isIndexed())
13536 if (LD->getChain() !=
Base->getChain())
13538 EVT VT = LD->getMemoryVT();
13546 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13547 return (Dist * (int64_t)Bytes ==
Offset);
13556 int64_t GVOffset = 0;
13557 if (TLI->isGAPlusOffset(
Ptr.getNode(), GV, GVOffset)) {
13568 int FrameIdx = INT_MIN;
13569 int64_t FrameOffset = 0;
13571 FrameIdx = FI->getIndex();
13576 FrameOffset =
Ptr.getConstantOperandVal(1);
13579 if (FrameIdx != INT_MIN) {
13584 return std::nullopt;
13594 "Split node must be a scalar type");
13599 return std::make_pair(
Lo,
Hi);
13608 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13612 return std::make_pair(LoVT, HiVT);
13620 bool *HiIsEmpty)
const {
13630 "Mixing fixed width and scalable vectors when enveloping a type");
13635 *HiIsEmpty =
false;
13643 return std::make_pair(LoVT, HiVT);
13648std::pair<SDValue, SDValue>
13653 "Splitting vector with an invalid mixture of fixed and scalable "
13656 N.getValueType().getVectorMinNumElements() &&
13657 "More vector elements requested than available!");
13666 return std::make_pair(
Lo,
Hi);
13673 EVT VT =
N.getValueType();
13675 "Expecting the mask to be an evenly-sized vector");
13683 return std::make_pair(
Lo,
Hi);
13688 EVT VT =
N.getValueType();
13696 unsigned Start,
unsigned Count,
13698 EVT VT =
Op.getValueType();
13701 if (EltVT ==
EVT())
13704 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13716 return Val.MachineCPVal->getType();
13717 return Val.ConstVal->getType();
13721 unsigned &SplatBitSize,
13722 bool &HasAnyUndefs,
13723 unsigned MinSplatBits,
13724 bool IsBigEndian)
const {
13728 if (MinSplatBits > VecWidth)
13733 SplatValue =
APInt(VecWidth, 0);
13734 SplatUndef =
APInt(VecWidth, 0);
13741 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13744 for (
unsigned j = 0; j <
NumOps; ++j) {
13745 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13747 unsigned BitPos = j * EltWidth;
13750 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13752 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13754 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13761 HasAnyUndefs = (SplatUndef != 0);
13764 while (VecWidth > 8) {
13769 unsigned HalfSize = VecWidth / 2;
13776 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13777 MinSplatBits > HalfSize)
13780 SplatValue = HighValue | LowValue;
13781 SplatUndef = HighUndef & LowUndef;
13783 VecWidth = HalfSize;
13792 SplatBitSize = VecWidth;
13799 if (UndefElements) {
13800 UndefElements->
clear();
13807 for (
unsigned i = 0; i !=
NumOps; ++i) {
13808 if (!DemandedElts[i])
13811 if (
Op.isUndef()) {
13813 (*UndefElements)[i] =
true;
13814 }
else if (!Splatted) {
13816 }
else if (Splatted !=
Op) {
13822 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13824 "Can only have a splat without a constant for all undefs.");
13841 if (UndefElements) {
13842 UndefElements->
clear();
13853 (*UndefElements)[
I] =
true;
13856 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13857 Sequence.append(SeqLen,
SDValue());
13858 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13859 if (!DemandedElts[
I])
13861 SDValue &SeqOp = Sequence[
I % SeqLen];
13863 if (
Op.isUndef()) {
13868 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13874 if (!Sequence.empty())
13878 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
13919 const APFloat &APF = CN->getValueAPF();
13925 return IntVal.exactLogBase2();
13931 bool IsLittleEndian,
unsigned DstEltSizeInBits,
13939 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13940 "Invalid bitcast scale");
13945 BitVector SrcUndeElements(NumSrcOps,
false);
13947 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13949 if (
Op.isUndef()) {
13950 SrcUndeElements.
set(
I);
13955 assert((CInt || CFP) &&
"Unknown constant");
13956 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13957 : CFP->getValueAPF().bitcastToAPInt();
13961 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13962 SrcBitElements, UndefElements, SrcUndeElements);
13967 unsigned DstEltSizeInBits,
13972 unsigned NumSrcOps = SrcBitElements.
size();
13973 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13974 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13975 "Invalid bitcast scale");
13976 assert(NumSrcOps == SrcUndefElements.
size() &&
13977 "Vector size mismatch");
13979 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13980 DstUndefElements.
clear();
13981 DstUndefElements.
resize(NumDstOps,
false);
13985 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13986 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13987 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
13988 DstUndefElements.
set(
I);
13989 APInt &DstBits = DstBitElements[
I];
13990 for (
unsigned J = 0; J != Scale; ++J) {
13991 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13992 if (SrcUndefElements[Idx])
13994 DstUndefElements.
reset(
I);
13995 const APInt &SrcBits = SrcBitElements[Idx];
13997 "Illegal constant bitwidths");
13998 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
14005 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
14006 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
14007 if (SrcUndefElements[
I]) {
14008 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
14011 const APInt &SrcBits = SrcBitElements[
I];
14012 for (
unsigned J = 0; J != Scale; ++J) {
14013 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
14014 APInt &DstBits = DstBitElements[Idx];
14015 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
14022 unsigned Opc =
Op.getOpcode();
14029std::optional<std::pair<APInt, APInt>>
14033 return std::nullopt;
14037 return std::nullopt;
14044 return std::nullopt;
14046 for (
unsigned i = 2; i <
NumOps; ++i) {
14048 return std::nullopt;
14051 if (Val != (Start + (Stride * i)))
14052 return std::nullopt;
14055 return std::make_pair(Start, Stride);
14061 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14071 for (
int Idx = Mask[i]; i != e; ++i)
14072 if (Mask[i] >= 0 && Mask[i] != Idx)
14080 SDValue N,
bool AllowOpaques)
const {
14084 return AllowOpaques || !
C->isOpaque();
14093 TLI->isOffsetFoldingLegal(GA))
14121 return std::nullopt;
14123 EVT VT =
N->getValueType(0);
14125 switch (TLI->getBooleanContents(
N.getValueType())) {
14131 return std::nullopt;
14137 return std::nullopt;
14145 assert(!
Node->OperandList &&
"Node already has operands");
14147 "too many operands to fit into SDNode");
14148 SDUse *
Ops = OperandRecycler.allocate(
14151 bool IsDivergent =
false;
14152 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14154 Ops[
I].setInitial(Vals[
I]);
14155 EVT VT =
Ops[
I].getValueType();
14158 if (VT != MVT::Other &&
14161 IsDivergent =
true;
14166 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14167 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14168 Node->SDNodeBits.IsDivergent = IsDivergent;
14176 while (Vals.
size() > Limit) {
14177 unsigned SliceIdx = Vals.
size() - Limit;
14212 case ISD::FMAXNUM: {
14218 if (Opcode == ISD::FMAXNUM)
14223 case ISD::FMINIMUM:
14224 case ISD::FMAXIMUM: {
14229 if (Opcode == ISD::FMAXIMUM)
14253 const SDLoc &DLoc) {
14257 RTLIB::Libcall LC =
static_cast<RTLIB::Libcall
>(
LibFunc);
14264 return TLI->LowerCallTo(CLI).second;
14268 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14269 auto I = SDEI.find(From);
14270 if (
I == SDEI.end())
14275 NodeExtraInfo NEI =
I->second;
14284 SDEI[To] = std::move(NEI);
14301 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14302 if (MaxDepth == 0) {
14308 if (!FromReach.
insert(
N).second)
14311 Self(Self,
Op.getNode(), MaxDepth - 1);
14316 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14319 if (!Visited.
insert(
N).second)
14324 if (
N == To &&
Op.getNode() == EntrySDN) {
14329 if (!Self(Self,
Op.getNode()))
14343 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14344 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14349 for (
const SDNode *
N : StartFrom)
14350 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14354 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14362 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14363 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14365 SDEI[To] = std::move(NEI);
14379 if (!Visited.
insert(
N).second) {
14380 errs() <<
"Detected cycle in SelectionDAG\n";
14381 dbgs() <<
"Offending node:\n";
14382 N->dumprFull(DAG);
dbgs() <<
"\n";
14398 bool check = force;
14399#ifdef EXPENSIVE_CHECKS
14403 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static const fltSemantics & IEEEsingle()
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardZero
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
bool isMachineConstantPoolEntry() const
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
Lower a strlen operation into a target library call and return the resulting chain and call result as...
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
LLVM_ABI std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
Lower a memcmp operation into a target library call and return the resulting chain and call result as...
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
Provides info so a possible vectorization of a function can be computed.
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)