LLVM 22.0.0git
R600ISelLowering.cpp
Go to the documentation of this file.
1//===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Custom DAG lowering for R600
11//
12//===----------------------------------------------------------------------===//
13
14#include "R600ISelLowering.h"
15#include "AMDGPU.h"
17#include "R600Defines.h"
19#include "R600Subtarget.h"
20#include "R600TargetMachine.h"
22#include "llvm/IR/IntrinsicsAMDGPU.h"
23#include "llvm/IR/IntrinsicsR600.h"
25
26using namespace llvm;
27
28#include "R600GenCallingConv.inc"
29
31 const R600Subtarget &STI)
32 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
33 addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
34 addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
35 addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
36 addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
37 addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
38 addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
39
42
43 computeRegisterProperties(Subtarget->getRegisterInfo());
44
45 // Legalize loads and stores to the private address space.
46 setOperationAction(ISD::LOAD, {MVT::i32, MVT::v2i32, MVT::v4i32}, Custom);
47
48 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
49 // spaces, so it is custom lowered to handle those where it isn't.
51 for (MVT VT : MVT::integer_valuetypes()) {
52 setLoadExtAction(Op, VT, MVT::i1, Promote);
53 setLoadExtAction(Op, VT, MVT::i8, Custom);
54 setLoadExtAction(Op, VT, MVT::i16, Custom);
55 }
56
57 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
59 MVT::v2i1, Expand);
60
62 MVT::v4i1, Expand);
63
64 setOperationAction(ISD::STORE, {MVT::i8, MVT::i32, MVT::v2i32, MVT::v4i32},
65 Custom);
66
67 setTruncStoreAction(MVT::i32, MVT::i8, Custom);
68 setTruncStoreAction(MVT::i32, MVT::i16, Custom);
69 // We need to include these since trunc STORES to PRIVATE need
70 // special handling to accommodate RMW
71 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
72 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
73 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
74 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
75 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
76 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
77 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
78 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
79 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
80 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
81
82 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
83 setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
84 setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
85
86 // Set condition code actions
90 MVT::f32, Expand);
91
93 MVT::i32, Expand);
94
95 setOperationAction({ISD::FCOS, ISD::FSIN}, MVT::f32, Custom);
96
97 setOperationAction(ISD::SETCC, {MVT::v4i32, MVT::v2i32}, Expand);
98
99 setOperationAction(ISD::BR_CC, {MVT::i32, MVT::f32}, Expand);
100 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
101
103
105 {MVT::f32, MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
106 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32},
107 Expand);
108
109 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR},
110 MVT::f64, Custom);
111
112 setOperationAction(ISD::SELECT_CC, {MVT::f32, MVT::i32}, Custom);
113
114 setOperationAction(ISD::SETCC, {MVT::i32, MVT::f32}, Expand);
115 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT}, {MVT::i1, MVT::i64},
116 Custom);
117
118 setOperationAction(ISD::SELECT, {MVT::i32, MVT::f32, MVT::v2i32, MVT::v4i32},
119 Expand);
120
121 // ADD, SUB overflow.
122 // TODO: turn these into Legal?
123 if (Subtarget->hasCARRY())
125
126 if (Subtarget->hasBORROW())
128
129 // Expand sign extension of vectors
130 if (!Subtarget->hasBFE())
132
133 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i1, MVT::v4i1}, Expand);
134
135 if (!Subtarget->hasBFE())
137 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i8, MVT::v4i8}, Expand);
138
139 if (!Subtarget->hasBFE())
141 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i16, MVT::v4i16}, Expand);
142
144 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i32, MVT::v4i32}, Expand);
145
147
149
151 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom);
152
154 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom);
155
156 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
157 // to be Legal/Custom in order to avoid library calls.
159 Custom);
160
161 if (!Subtarget->hasFMA())
162 setOperationAction(ISD::FMA, {MVT::f32, MVT::f64}, Expand);
163
164 // FIXME: May need no denormals check
166
167 if (!Subtarget->hasBFI())
168 // fcopysign can be done in a single instruction with BFI.
169 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
170
171 if (!Subtarget->hasBCNT(32))
173
174 if (!Subtarget->hasBCNT(64))
176
177 if (Subtarget->hasFFBH())
179
180 if (Subtarget->hasFFBL())
182
183 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
184 // need it for R600.
185 if (Subtarget->hasBFE())
187
189 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
190
191 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
192 for (MVT VT : ScalarIntVTs)
194 Expand);
195
196 // LLVM will expand these to atomic_cmp_swap(0)
197 // and atomic_swap, respectively.
198 setOperationAction({ISD::ATOMIC_LOAD, ISD::ATOMIC_STORE}, MVT::i32, Expand);
199
200 // We need to custom lower some of the intrinsics
202 Custom);
203
205
208}
209
211 if (std::next(I) == I->getParent()->end())
212 return false;
213 return std::next(I)->getOpcode() == R600::RETURN;
214}
215
218 MachineBasicBlock *BB) const {
219 MachineFunction *MF = BB->getParent();
222 const R600InstrInfo *TII = Subtarget->getInstrInfo();
223
224 switch (MI.getOpcode()) {
225 default:
226 // Replace LDS_*_RET instruction that don't have any uses with the
227 // equivalent LDS_*_NORET instruction.
228 if (TII->isLDSRetInstr(MI.getOpcode())) {
229 int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
230 assert(DstIdx != -1);
232 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
233 // LDS_1A2D support and remove this special case.
234 if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
235 MI.getOpcode() == R600::LDS_CMPST_RET)
236 return BB;
237
238 NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
239 TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
240 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
241 NewMI.add(MO);
242 } else {
244 }
245 break;
246
247 case R600::FABS_R600: {
248 MachineInstr *NewMI = TII->buildDefaultInstruction(
249 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
250 MI.getOperand(1).getReg());
251 TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
252 break;
253 }
254
255 case R600::FNEG_R600: {
256 MachineInstr *NewMI = TII->buildDefaultInstruction(
257 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
258 MI.getOperand(1).getReg());
259 TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
260 break;
261 }
262
263 case R600::MASK_WRITE: {
264 Register maskedRegister = MI.getOperand(0).getReg();
265 assert(maskedRegister.isVirtual());
266 MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
267 TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
268 break;
269 }
270
271 case R600::MOV_IMM_F32:
272 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
273 .getFPImm()
274 ->getValueAPF()
275 .bitcastToAPInt()
276 .getZExtValue());
277 break;
278
279 case R600::MOV_IMM_I32:
280 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
281 MI.getOperand(1).getImm());
282 break;
283
284 case R600::MOV_IMM_GLOBAL_ADDR: {
285 //TODO: Perhaps combine this instruction with the next if possible
286 auto MIB = TII->buildDefaultInstruction(
287 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
288 int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
289 //TODO: Ugh this is rather ugly
290 const MachineOperand &MO = MI.getOperand(1);
291 MIB->getOperand(Idx).ChangeToGA(MO.getGlobal(), MO.getOffset(),
292 MO.getTargetFlags());
293 break;
294 }
295
296 case R600::CONST_COPY: {
297 MachineInstr *NewMI = TII->buildDefaultInstruction(
298 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
299 TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
300 MI.getOperand(1).getImm());
301 break;
302 }
303
304 case R600::RAT_WRITE_CACHELESS_32_eg:
305 case R600::RAT_WRITE_CACHELESS_64_eg:
306 case R600::RAT_WRITE_CACHELESS_128_eg:
307 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
308 .add(MI.getOperand(0))
309 .add(MI.getOperand(1))
310 .addImm(isEOP(I)); // Set End of program bit
311 break;
312
313 case R600::RAT_STORE_TYPED_eg:
314 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
315 .add(MI.getOperand(0))
316 .add(MI.getOperand(1))
317 .add(MI.getOperand(2))
318 .addImm(isEOP(I)); // Set End of program bit
319 break;
320
321 case R600::BRANCH:
322 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
323 .add(MI.getOperand(0));
324 break;
325
326 case R600::BRANCH_COND_f32: {
327 MachineInstr *NewMI =
328 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
329 R600::PREDICATE_BIT)
330 .add(MI.getOperand(1))
331 .addImm(R600::PRED_SETNE)
332 .addImm(0); // Flags
333 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
334 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
335 .add(MI.getOperand(0))
336 .addReg(R600::PREDICATE_BIT, RegState::Kill);
337 break;
338 }
339
340 case R600::BRANCH_COND_i32: {
341 MachineInstr *NewMI =
342 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
343 R600::PREDICATE_BIT)
344 .add(MI.getOperand(1))
345 .addImm(R600::PRED_SETNE_INT)
346 .addImm(0); // Flags
347 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
348 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
349 .add(MI.getOperand(0))
350 .addReg(R600::PREDICATE_BIT, RegState::Kill);
351 break;
352 }
353
354 case R600::EG_ExportSwz:
355 case R600::R600_ExportSwz: {
356 // Instruction is left unmodified if its not the last one of its type
357 bool isLastInstructionOfItsType = true;
358 unsigned InstExportType = MI.getOperand(1).getImm();
359 for (MachineBasicBlock::iterator NextExportInst = std::next(I),
360 EndBlock = BB->end(); NextExportInst != EndBlock;
361 NextExportInst = std::next(NextExportInst)) {
362 if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
363 NextExportInst->getOpcode() == R600::R600_ExportSwz) {
364 unsigned CurrentInstExportType = NextExportInst->getOperand(1)
365 .getImm();
366 if (CurrentInstExportType == InstExportType) {
367 isLastInstructionOfItsType = false;
368 break;
369 }
370 }
371 }
372 bool EOP = isEOP(I);
373 if (!EOP && !isLastInstructionOfItsType)
374 return BB;
375 unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
376 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
377 .add(MI.getOperand(0))
378 .add(MI.getOperand(1))
379 .add(MI.getOperand(2))
380 .add(MI.getOperand(3))
381 .add(MI.getOperand(4))
382 .add(MI.getOperand(5))
383 .add(MI.getOperand(6))
384 .addImm(CfInst)
385 .addImm(EOP);
386 break;
387 }
388 case R600::RETURN: {
389 return BB;
390 }
391 }
392
393 MI.eraseFromParent();
394 return BB;
395}
396
397//===----------------------------------------------------------------------===//
398// Custom DAG Lowering Operations
399//===----------------------------------------------------------------------===//
400
404 switch (Op.getOpcode()) {
405 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
406 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
407 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
408 case ISD::SHL_PARTS:
409 case ISD::SRA_PARTS:
410 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
411 case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
412 case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
413 case ISD::FCOS:
414 case ISD::FSIN: return LowerTrig(Op, DAG);
415 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
416 case ISD::STORE: return LowerSTORE(Op, DAG);
417 case ISD::LOAD: {
418 SDValue Result = LowerLOAD(Op, DAG);
419 assert((!Result.getNode() ||
420 Result.getNode()->getNumValues() == 2) &&
421 "Load should return a value and a chain");
422 return Result;
423 }
424
425 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
426 case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
427 case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
428 case ISD::ADDRSPACECAST:
429 return lowerADDRSPACECAST(Op, DAG);
430 case ISD::INTRINSIC_VOID: {
431 SDValue Chain = Op.getOperand(0);
432 unsigned IntrinsicID = Op.getConstantOperandVal(1);
433 switch (IntrinsicID) {
434 case Intrinsic::r600_store_swizzle: {
435 SDLoc DL(Op);
436 const SDValue Args[8] = {
437 Chain,
438 Op.getOperand(2), // Export Value
439 Op.getOperand(3), // ArrayBase
440 Op.getOperand(4), // Type
441 DAG.getConstant(0, DL, MVT::i32), // SWZ_X
442 DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
443 DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
444 DAG.getConstant(3, DL, MVT::i32) // SWZ_W
445 };
446 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
447 }
448
449 // default for switch(IntrinsicID)
450 default: break;
451 }
452 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
453 break;
454 }
456 unsigned IntrinsicID = Op.getConstantOperandVal(0);
457 EVT VT = Op.getValueType();
458 SDLoc DL(Op);
459 switch (IntrinsicID) {
460 case Intrinsic::r600_tex:
461 case Intrinsic::r600_texc: {
462 unsigned TextureOp;
463 switch (IntrinsicID) {
464 case Intrinsic::r600_tex:
465 TextureOp = 0;
466 break;
467 case Intrinsic::r600_texc:
468 TextureOp = 1;
469 break;
470 default:
471 llvm_unreachable("unhandled texture operation");
472 }
473
474 SDValue TexArgs[19] = {
475 DAG.getConstant(TextureOp, DL, MVT::i32),
476 Op.getOperand(1),
477 DAG.getConstant(0, DL, MVT::i32),
478 DAG.getConstant(1, DL, MVT::i32),
479 DAG.getConstant(2, DL, MVT::i32),
480 DAG.getConstant(3, DL, MVT::i32),
481 Op.getOperand(2),
482 Op.getOperand(3),
483 Op.getOperand(4),
484 DAG.getConstant(0, DL, MVT::i32),
485 DAG.getConstant(1, DL, MVT::i32),
486 DAG.getConstant(2, DL, MVT::i32),
487 DAG.getConstant(3, DL, MVT::i32),
488 Op.getOperand(5),
489 Op.getOperand(6),
490 Op.getOperand(7),
491 Op.getOperand(8),
492 Op.getOperand(9),
493 Op.getOperand(10)
494 };
495 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
496 }
497 case Intrinsic::r600_dot4: {
498 SDValue Args[8] = {
499 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
500 DAG.getConstant(0, DL, MVT::i32)),
501 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
502 DAG.getConstant(0, DL, MVT::i32)),
503 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
504 DAG.getConstant(1, DL, MVT::i32)),
505 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
506 DAG.getConstant(1, DL, MVT::i32)),
507 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
508 DAG.getConstant(2, DL, MVT::i32)),
509 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
510 DAG.getConstant(2, DL, MVT::i32)),
511 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
512 DAG.getConstant(3, DL, MVT::i32)),
513 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
514 DAG.getConstant(3, DL, MVT::i32))
515 };
516 return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
517 }
518
519 case Intrinsic::r600_implicitarg_ptr: {
522 return DAG.getConstant(ByteOffset, DL, PtrVT);
523 }
524 case Intrinsic::r600_read_ngroups_x:
525 return LowerImplicitParameter(DAG, VT, DL, 0);
526 case Intrinsic::r600_read_ngroups_y:
527 return LowerImplicitParameter(DAG, VT, DL, 1);
528 case Intrinsic::r600_read_ngroups_z:
529 return LowerImplicitParameter(DAG, VT, DL, 2);
530 case Intrinsic::r600_read_global_size_x:
531 return LowerImplicitParameter(DAG, VT, DL, 3);
532 case Intrinsic::r600_read_global_size_y:
533 return LowerImplicitParameter(DAG, VT, DL, 4);
534 case Intrinsic::r600_read_global_size_z:
535 return LowerImplicitParameter(DAG, VT, DL, 5);
536 case Intrinsic::r600_read_local_size_x:
537 return LowerImplicitParameter(DAG, VT, DL, 6);
538 case Intrinsic::r600_read_local_size_y:
539 return LowerImplicitParameter(DAG, VT, DL, 7);
540 case Intrinsic::r600_read_local_size_z:
541 return LowerImplicitParameter(DAG, VT, DL, 8);
542
543 case Intrinsic::r600_read_tgid_x:
544 case Intrinsic::amdgcn_workgroup_id_x:
545 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
546 R600::T1_X, VT);
547 case Intrinsic::r600_read_tgid_y:
548 case Intrinsic::amdgcn_workgroup_id_y:
549 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
550 R600::T1_Y, VT);
551 case Intrinsic::r600_read_tgid_z:
552 case Intrinsic::amdgcn_workgroup_id_z:
553 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
554 R600::T1_Z, VT);
555 case Intrinsic::r600_read_tidig_x:
556 case Intrinsic::amdgcn_workitem_id_x:
557 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
558 R600::T0_X, VT);
559 case Intrinsic::r600_read_tidig_y:
560 case Intrinsic::amdgcn_workitem_id_y:
561 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
562 R600::T0_Y, VT);
563 case Intrinsic::r600_read_tidig_z:
564 case Intrinsic::amdgcn_workitem_id_z:
565 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
566 R600::T0_Z, VT);
567
568 case Intrinsic::r600_recipsqrt_ieee:
569 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
570
571 case Intrinsic::r600_recipsqrt_clamped:
572 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
573 default:
574 return Op;
575 }
576
577 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
578 break;
579 }
580 } // end switch(Op.getOpcode())
581 return SDValue();
582}
583
586 SelectionDAG &DAG) const {
587 switch (N->getOpcode()) {
588 default:
590 return;
591 case ISD::FP_TO_UINT:
592 if (N->getValueType(0) == MVT::i1) {
593 Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
594 return;
595 }
596 // Since we don't care about out of bounds values we can use FP_TO_SINT for
597 // uints too. The DAGLegalizer code for uint considers some extra cases
598 // which are not necessary here.
599 [[fallthrough]];
600 case ISD::FP_TO_SINT: {
601 if (N->getValueType(0) == MVT::i1) {
602 Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
603 return;
604 }
605
606 SDValue Result;
607 if (expandFP_TO_SINT(N, Result, DAG))
608 Results.push_back(Result);
609 return;
610 }
611 case ISD::SDIVREM: {
612 SDValue Op = SDValue(N, 1);
613 SDValue RES = LowerSDIVREM(Op, DAG);
614 Results.push_back(RES);
615 Results.push_back(RES.getValue(1));
616 break;
617 }
618 case ISD::UDIVREM: {
619 SDValue Op = SDValue(N, 0);
621 break;
622 }
623 }
624}
625
626SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
627 SDValue Vector) const {
628 SDLoc DL(Vector);
629 EVT VecVT = Vector.getValueType();
630 EVT EltVT = VecVT.getVectorElementType();
632
633 for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
634 Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
635 DAG.getVectorIdxConstant(i, DL)));
636 }
637
638 return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
639}
640
641SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
642 SelectionDAG &DAG) const {
643 SDLoc DL(Op);
644 SDValue Vector = Op.getOperand(0);
645 SDValue Index = Op.getOperand(1);
646
647 if (isa<ConstantSDNode>(Index) ||
649 return Op;
650
651 Vector = vectorToVerticalVector(DAG, Vector);
652 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
653 Vector, Index);
654}
655
656SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
657 SelectionDAG &DAG) const {
658 SDLoc DL(Op);
659 SDValue Vector = Op.getOperand(0);
660 SDValue Value = Op.getOperand(1);
661 SDValue Index = Op.getOperand(2);
662
663 if (isa<ConstantSDNode>(Index) ||
665 return Op;
666
667 Vector = vectorToVerticalVector(DAG, Vector);
668 SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
669 Vector, Value, Index);
670 return vectorToVerticalVector(DAG, Insert);
671}
672
673SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
674 SDValue Op,
675 SelectionDAG &DAG) const {
676 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
679
680 const DataLayout &DL = DAG.getDataLayout();
681 const GlobalValue *GV = GSD->getGlobal();
682 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
683
684 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
685 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
686}
687
688SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
689 // On hw >= R700, COS/SIN input must be between -1. and 1.
690 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
691 EVT VT = Op.getValueType();
692 SDValue Arg = Op.getOperand(0);
693 SDLoc DL(Op);
694
695 // TODO: Should this propagate fast-math-flags?
696 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
697 DAG.getNode(ISD::FADD, DL, VT,
698 DAG.getNode(ISD::FMUL, DL, VT, Arg,
699 DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
700 DAG.getConstantFP(0.5, DL, MVT::f32)));
701 unsigned TrigNode;
702 switch (Op.getOpcode()) {
703 case ISD::FCOS:
704 TrigNode = AMDGPUISD::COS_HW;
705 break;
706 case ISD::FSIN:
707 TrigNode = AMDGPUISD::SIN_HW;
708 break;
709 default:
710 llvm_unreachable("Wrong trig opcode");
711 }
712 SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
713 DAG.getNode(ISD::FADD, DL, VT, FractPart,
714 DAG.getConstantFP(-0.5, DL, MVT::f32)));
715 if (Gen >= AMDGPUSubtarget::R700)
716 return TrigVal;
717 // On R600 hw, COS/SIN input must be between -Pi and Pi.
718 return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
719 DAG.getConstantFP(numbers::pif, DL, MVT::f32));
720}
721
722SDValue R600TargetLowering::LowerShiftParts(SDValue Op,
723 SelectionDAG &DAG) const {
724 SDValue Lo, Hi;
725 expandShiftParts(Op.getNode(), Lo, Hi, DAG);
726 return DAG.getMergeValues({Lo, Hi}, SDLoc(Op));
727}
728
729SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
730 unsigned mainop, unsigned ovf) const {
731 SDLoc DL(Op);
732 EVT VT = Op.getValueType();
733
734 SDValue Lo = Op.getOperand(0);
735 SDValue Hi = Op.getOperand(1);
736
737 SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
738 // Extend sign.
739 OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
740 DAG.getValueType(MVT::i1));
741
742 SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
743
744 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
745}
746
747SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
748 SDLoc DL(Op);
749 return DAG.getNode(
751 DL,
752 MVT::i1,
753 Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
755}
756
757SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
758 SDLoc DL(Op);
759 return DAG.getNode(
761 DL,
762 MVT::i1,
763 Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
765}
766
767SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
768 const SDLoc &DL,
769 unsigned DwordOffset) const {
770 unsigned ByteOffset = DwordOffset * 4;
771 PointerType *PtrType =
773
774 // We shouldn't be using an offset wider than 16-bits for implicit parameters.
775 assert(isInt<16>(ByteOffset));
776
777 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
778 DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
779 MachinePointerInfo(ConstantPointerNull::get(PtrType)));
780}
781
782bool R600TargetLowering::isZero(SDValue Op) const {
783 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op))
784 return Cst->isZero();
785 if (ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op))
786 return CstFP->isZero();
787 return false;
788}
789
790bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
791 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
792 return CFP->isExactlyValue(1.0);
793 }
794 return isAllOnesConstant(Op);
795}
796
797bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
798 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
799 return CFP->getValueAPF().isZero();
800 }
801 return isNullConstant(Op);
802}
803
804SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
805 SDLoc DL(Op);
806 EVT VT = Op.getValueType();
807
808 SDValue LHS = Op.getOperand(0);
809 SDValue RHS = Op.getOperand(1);
810 SDValue True = Op.getOperand(2);
811 SDValue False = Op.getOperand(3);
812 SDValue CC = Op.getOperand(4);
813 SDValue Temp;
814
815 if (VT == MVT::f32) {
816 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
817 SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
818 if (MinMax)
819 return MinMax;
820 }
821
822 // LHS and RHS are guaranteed to be the same value type
823 EVT CompareVT = LHS.getValueType();
824
825 // Check if we can lower this to a native operation.
826
827 // Try to lower to a SET* instruction:
828 //
829 // SET* can match the following patterns:
830 //
831 // select_cc f32, f32, -1, 0, cc_supported
832 // select_cc f32, f32, 1.0f, 0.0f, cc_supported
833 // select_cc i32, i32, -1, 0, cc_supported
834 //
835
836 // Move hardware True/False values to the correct operand.
837 if (isHWTrueValue(False) && isHWFalseValue(True)) {
838 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
839 ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
840 if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
841 std::swap(False, True);
842 CC = DAG.getCondCode(InverseCC);
843 } else {
844 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
845 if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
846 std::swap(False, True);
847 std::swap(LHS, RHS);
848 CC = DAG.getCondCode(SwapInvCC);
849 }
850 }
851 }
852
853 if (isHWTrueValue(True) && isHWFalseValue(False) &&
854 (CompareVT == VT || VT == MVT::i32)) {
855 // This can be matched by a SET* instruction.
856 return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
857 }
858
859 // Try to lower to a CND* instruction:
860 //
861 // CND* can match the following patterns:
862 //
863 // select_cc f32, 0.0, f32, f32, cc_supported
864 // select_cc f32, 0.0, i32, i32, cc_supported
865 // select_cc i32, 0, f32, f32, cc_supported
866 // select_cc i32, 0, i32, i32, cc_supported
867 //
868
869 // Try to move the zero value to the RHS
870 if (isZero(LHS)) {
871 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
872 // Try swapping the operands
873 ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
874 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
875 std::swap(LHS, RHS);
876 CC = DAG.getCondCode(CCSwapped);
877 } else {
878 // Try inverting the condition and then swapping the operands
879 ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
880 CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
881 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
882 std::swap(True, False);
883 std::swap(LHS, RHS);
884 CC = DAG.getCondCode(CCSwapped);
885 }
886 }
887 }
888 if (isZero(RHS)) {
889 SDValue Cond = LHS;
890 SDValue Zero = RHS;
891 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
892 if (CompareVT != VT) {
893 // Bitcast True / False to the correct types. This will end up being
894 // a nop, but it allows us to define only a single pattern in the
895 // .TD files for each CND* instruction rather than having to have
896 // one pattern for integer True/False and one for fp True/False
897 True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
898 False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
899 }
900
901 switch (CCOpcode) {
902 case ISD::SETONE:
903 case ISD::SETUNE:
904 case ISD::SETNE:
905 CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
906 Temp = True;
907 True = False;
908 False = Temp;
909 break;
910 default:
911 break;
912 }
913 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
914 Cond, Zero,
915 True, False,
916 DAG.getCondCode(CCOpcode));
917 return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
918 }
919
920 // If we make it this for it means we have no native instructions to handle
921 // this SELECT_CC, so we must lower it.
922 SDValue HWTrue, HWFalse;
923
924 if (CompareVT == MVT::f32) {
925 HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
926 HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
927 } else if (CompareVT == MVT::i32) {
928 HWTrue = DAG.getAllOnesConstant(DL, CompareVT);
929 HWFalse = DAG.getConstant(0, DL, CompareVT);
930 }
931 else {
932 llvm_unreachable("Unhandled value type in LowerSELECT_CC");
933 }
934
935 // Lower this unsupported SELECT_CC into a combination of two supported
936 // SELECT_CC operations.
937 SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
938
939 return DAG.getNode(ISD::SELECT_CC, DL, VT,
940 Cond, HWFalse,
941 True, False,
943}
944
945SDValue R600TargetLowering::lowerADDRSPACECAST(SDValue Op,
946 SelectionDAG &DAG) const {
947 SDLoc SL(Op);
948 EVT VT = Op.getValueType();
949
950 const R600TargetMachine &TM =
951 static_cast<const R600TargetMachine &>(getTargetMachine());
952
953 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
954 unsigned SrcAS = ASC->getSrcAddressSpace();
955 unsigned DestAS = ASC->getDestAddressSpace();
956
957 if (isNullConstant(Op.getOperand(0)) && SrcAS == AMDGPUAS::FLAT_ADDRESS)
958 return DAG.getSignedConstant(TM.getNullPointerValue(DestAS), SL, VT);
959
960 return Op;
961}
962
963/// LLVM generates byte-addressed pointers. For indirect addressing, we need to
964/// convert these pointers to a register index. Each register holds
965/// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
966/// \p StackWidth, which tells us how many of the 4 sub-registers will be used
967/// for indirect addressing.
968SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
969 unsigned StackWidth,
970 SelectionDAG &DAG) const {
971 unsigned SRLPad;
972 switch(StackWidth) {
973 case 1:
974 SRLPad = 2;
975 break;
976 case 2:
977 SRLPad = 3;
978 break;
979 case 4:
980 SRLPad = 4;
981 break;
982 default: llvm_unreachable("Invalid stack width");
983 }
984
985 SDLoc DL(Ptr);
986 return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
987 DAG.getConstant(SRLPad, DL, MVT::i32));
988}
989
990void R600TargetLowering::getStackAddress(unsigned StackWidth,
991 unsigned ElemIdx,
992 unsigned &Channel,
993 unsigned &PtrIncr) const {
994 switch (StackWidth) {
995 default:
996 case 1:
997 Channel = 0;
998 if (ElemIdx > 0) {
999 PtrIncr = 1;
1000 } else {
1001 PtrIncr = 0;
1002 }
1003 break;
1004 case 2:
1005 Channel = ElemIdx % 2;
1006 if (ElemIdx == 2) {
1007 PtrIncr = 1;
1008 } else {
1009 PtrIncr = 0;
1010 }
1011 break;
1012 case 4:
1013 Channel = ElemIdx;
1014 PtrIncr = 0;
1015 break;
1016 }
1017}
1018
1019SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1020 SelectionDAG &DAG) const {
1021 SDLoc DL(Store);
1022 //TODO: Who creates the i8 stores?
1023 assert(Store->isTruncatingStore()
1024 || Store->getValue().getValueType() == MVT::i8);
1025 assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1026
1027 SDValue Mask;
1028 if (Store->getMemoryVT() == MVT::i8) {
1029 assert(Store->getAlign() >= 1);
1030 Mask = DAG.getConstant(0xff, DL, MVT::i32);
1031 } else if (Store->getMemoryVT() == MVT::i16) {
1032 assert(Store->getAlign() >= 2);
1033 Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1034 } else {
1035 llvm_unreachable("Unsupported private trunc store");
1036 }
1037
1038 SDValue OldChain = Store->getChain();
1039 bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1040 // Skip dummy
1041 SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1042 SDValue BasePtr = Store->getBasePtr();
1043 SDValue Offset = Store->getOffset();
1044 EVT MemVT = Store->getMemoryVT();
1045
1046 SDValue LoadPtr = BasePtr;
1047 if (!Offset.isUndef()) {
1048 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1049 }
1050
1051 // Get dword location
1052 // TODO: this should be eliminated by the future SHR ptr, 2
1053 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1054 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1055
1056 // Load dword
1057 // TODO: can we be smarter about machine pointer info?
1058 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1059 SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1060
1061 Chain = Dst.getValue(1);
1062
1063 // Get offset in dword
1064 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1065 DAG.getConstant(0x3, DL, MVT::i32));
1066
1067 // Convert byte offset to bit shift
1068 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1069 DAG.getConstant(3, DL, MVT::i32));
1070
1071 // TODO: Contrary to the name of the function,
1072 // it also handles sub i32 non-truncating stores (like i1)
1073 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1074 Store->getValue());
1075
1076 // Mask the value to the right type
1077 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1078
1079 // Shift the value in place
1080 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1081 MaskedValue, ShiftAmt);
1082
1083 // Shift the mask in place
1084 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1085
1086 // Invert the mask. NOTE: if we had native ROL instructions we could
1087 // use inverted mask
1088 DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1089
1090 // Cleanup the target bits
1091 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1092
1093 // Add the new bits
1094 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1095
1096 // Store dword
1097 // TODO: Can we be smarter about MachinePointerInfo?
1098 SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1099
1100 // If we are part of expanded vector, make our neighbors depend on this store
1101 if (VectorTrunc) {
1102 // Make all other vector elements depend on this store
1103 Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1104 DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1105 }
1106 return NewStore;
1107}
1108
1109SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1110 StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1111 unsigned AS = StoreNode->getAddressSpace();
1112
1113 SDValue Chain = StoreNode->getChain();
1114 SDValue Ptr = StoreNode->getBasePtr();
1115 SDValue Value = StoreNode->getValue();
1116
1117 EVT VT = Value.getValueType();
1118 EVT MemVT = StoreNode->getMemoryVT();
1119 EVT PtrVT = Ptr.getValueType();
1120
1121 SDLoc DL(Op);
1122
1123 const bool TruncatingStore = StoreNode->isTruncatingStore();
1124
1125 // Neither LOCAL nor PRIVATE can do vectors at the moment
1127 TruncatingStore) &&
1128 VT.isVector()) {
1129 if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1130 // Add an extra level of chain to isolate this vector
1131 SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1132 SmallVector<SDValue, 4> NewOps(StoreNode->ops());
1133 NewOps[0] = NewChain;
1134 StoreNode = cast<StoreSDNode>(DAG.UpdateNodeOperands(StoreNode, NewOps));
1135 }
1136
1137 return scalarizeVectorStore(StoreNode, DAG);
1138 }
1139
1140 Align Alignment = StoreNode->getAlign();
1141 if (Alignment < MemVT.getStoreSize() &&
1142 !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment,
1143 StoreNode->getMemOperand()->getFlags(),
1144 nullptr)) {
1145 return expandUnalignedStore(StoreNode, DAG);
1146 }
1147
1148 SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1149 DAG.getConstant(2, DL, PtrVT));
1150
1151 if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1152 // It is beneficial to create MSKOR here instead of combiner to avoid
1153 // artificial dependencies introduced by RMW
1154 if (TruncatingStore) {
1155 assert(VT.bitsLE(MVT::i32));
1156 SDValue MaskConstant;
1157 if (MemVT == MVT::i8) {
1158 MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1159 } else {
1160 assert(MemVT == MVT::i16);
1161 assert(StoreNode->getAlign() >= 2);
1162 MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1163 }
1164
1165 SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1166 DAG.getConstant(0x00000003, DL, PtrVT));
1167 SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1168 DAG.getConstant(3, DL, VT));
1169
1170 // Put the mask in correct place
1171 SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1172
1173 // Put the value bits in correct place
1174 SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1175 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1176
1177 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1178 // vector instead.
1179 SDValue Src[4] = {
1180 ShiftedValue,
1181 DAG.getConstant(0, DL, MVT::i32),
1182 DAG.getConstant(0, DL, MVT::i32),
1183 Mask
1184 };
1185 SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1186 SDValue Args[3] = { Chain, Input, DWordAddr };
1188 Op->getVTList(), Args, MemVT,
1189 StoreNode->getMemOperand());
1190 }
1191 if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1192 // Convert pointer from byte address to dword address.
1193 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1194
1195 if (StoreNode->isIndexed()) {
1196 llvm_unreachable("Indexed stores not supported yet");
1197 } else {
1198 Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1199 }
1200 return Chain;
1201 }
1202 }
1203
1204 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1205 if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1206 return SDValue();
1207
1208 if (MemVT.bitsLT(MVT::i32))
1209 return lowerPrivateTruncStore(StoreNode, DAG);
1210
1211 // Standard i32+ store, tag it with DWORDADDR to note that the address
1212 // has been shifted
1213 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1214 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1215 return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1216 }
1217
1218 // Tagged i32+ stores will be matched by patterns
1219 return SDValue();
1220}
1221
1222// return (512 + (kc_bank << 12)
1223static int
1225 switch (AddressSpace) {
1227 return 512;
1229 return 512 + 4096;
1231 return 512 + 4096 * 2;
1233 return 512 + 4096 * 3;
1235 return 512 + 4096 * 4;
1237 return 512 + 4096 * 5;
1239 return 512 + 4096 * 6;
1241 return 512 + 4096 * 7;
1243 return 512 + 4096 * 8;
1245 return 512 + 4096 * 9;
1247 return 512 + 4096 * 10;
1249 return 512 + 4096 * 11;
1251 return 512 + 4096 * 12;
1253 return 512 + 4096 * 13;
1255 return 512 + 4096 * 14;
1257 return 512 + 4096 * 15;
1258 default:
1259 return -1;
1260 }
1261}
1262
1263SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1264 SelectionDAG &DAG) const {
1265 SDLoc DL(Op);
1266 LoadSDNode *Load = cast<LoadSDNode>(Op);
1267 ISD::LoadExtType ExtType = Load->getExtensionType();
1268 EVT MemVT = Load->getMemoryVT();
1269 assert(Load->getAlign() >= MemVT.getStoreSize());
1270
1271 SDValue BasePtr = Load->getBasePtr();
1272 SDValue Chain = Load->getChain();
1273 SDValue Offset = Load->getOffset();
1274
1275 SDValue LoadPtr = BasePtr;
1276 if (!Offset.isUndef()) {
1277 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1278 }
1279
1280 // Get dword location
1281 // NOTE: this should be eliminated by the future SHR ptr, 2
1282 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1283 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1284
1285 // Load dword
1286 // TODO: can we be smarter about machine pointer info?
1287 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1288 SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1289
1290 // Get offset within the register.
1291 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1292 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1293
1294 // Bit offset of target byte (byteIdx * 8).
1295 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1296 DAG.getConstant(3, DL, MVT::i32));
1297
1298 // Shift to the right.
1299 SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1300
1301 // Eliminate the upper bits by setting them to ...
1302 EVT MemEltVT = MemVT.getScalarType();
1303
1304 if (ExtType == ISD::SEXTLOAD) { // ... ones.
1305 SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1306 Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1307 } else { // ... or zeros.
1308 Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1309 }
1310
1311 SDValue Ops[] = {
1312 Ret,
1313 Read.getValue(1) // This should be our output chain
1314 };
1315
1316 return DAG.getMergeValues(Ops, DL);
1317}
1318
1319SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1320 LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1321 unsigned AS = LoadNode->getAddressSpace();
1322 EVT MemVT = LoadNode->getMemoryVT();
1323 ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1324
1325 if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1326 ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1327 return lowerPrivateExtLoad(Op, DAG);
1328 }
1329
1330 SDLoc DL(Op);
1331 EVT VT = Op.getValueType();
1332 SDValue Chain = LoadNode->getChain();
1333 SDValue Ptr = LoadNode->getBasePtr();
1334
1335 if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1337 VT.isVector()) {
1338 SDValue Ops[2];
1339 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1340 return DAG.getMergeValues(Ops, DL);
1341 }
1342
1343 // This is still used for explicit load from addrspace(8)
1344 int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1345 if (ConstantBlock > -1 &&
1346 ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1347 (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1349 if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1351 return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1352 }
1353 // TODO: Does this even work?
1354 // non-constant ptr can't be folded, keeps it as a v4f32 load
1355 Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1356 DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1357 DAG.getConstant(4, DL, MVT::i32)),
1358 DAG.getConstant(LoadNode->getAddressSpace() -
1360 DL, MVT::i32));
1361
1362 if (!VT.isVector()) {
1363 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1364 DAG.getConstant(0, DL, MVT::i32));
1365 }
1366
1367 SDValue MergedValues[2] = {
1368 Result,
1369 Chain
1370 };
1371 return DAG.getMergeValues(MergedValues, DL);
1372 }
1373
1374 // For most operations returning SDValue() will result in the node being
1375 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1376 // need to manually expand loads that may be legal in some address spaces and
1377 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1378 // compute shaders, since the data is sign extended when it is uploaded to the
1379 // buffer. However SEXT loads from other address spaces are not supported, so
1380 // we need to expand them here.
1381 if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1382 assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1383 SDValue NewLoad = DAG.getExtLoad(
1384 ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1385 LoadNode->getAlign(), LoadNode->getMemOperand()->getFlags());
1386 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1387 DAG.getValueType(MemVT));
1388
1389 SDValue MergedValues[2] = { Res, Chain };
1390 return DAG.getMergeValues(MergedValues, DL);
1391 }
1392
1393 if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1394 return SDValue();
1395 }
1396
1397 // DWORDADDR ISD marks already shifted address
1398 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1399 assert(VT == MVT::i32);
1400 Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1401 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1402 return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1403 }
1404 return SDValue();
1405}
1406
1407SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1408 SDValue Chain = Op.getOperand(0);
1409 SDValue Cond = Op.getOperand(1);
1410 SDValue Jump = Op.getOperand(2);
1411
1412 return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1413 Chain, Jump, Cond);
1414}
1415
1416SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1417 SelectionDAG &DAG) const {
1418 MachineFunction &MF = DAG.getMachineFunction();
1419 const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1420
1421 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1422
1423 unsigned FrameIndex = FIN->getIndex();
1424 Register IgnoredFrameReg;
1425 StackOffset Offset =
1426 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1427 return DAG.getConstant(Offset.getFixed() * 4 * TFL->getStackWidth(MF),
1428 SDLoc(Op), Op.getValueType());
1429}
1430
1432 bool IsVarArg) const {
1433 switch (CC) {
1436 case CallingConv::C:
1437 case CallingConv::Fast:
1438 case CallingConv::Cold:
1439 llvm_unreachable("kernels should not be handled here");
1447 return CC_R600;
1448 default:
1449 reportFatalUsageError("unsupported calling convention");
1450 }
1451}
1452
1453/// XXX Only kernel functions are supported, so we can assume for now that
1454/// every function is a kernel function, but in the future we should use
1455/// separate calling conventions for kernel and non-kernel functions.
1457 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1458 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1459 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1461 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1462 *DAG.getContext());
1464
1465 if (AMDGPU::isShader(CallConv)) {
1466 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1467 } else {
1468 analyzeFormalArgumentsCompute(CCInfo, Ins);
1469 }
1470
1471 for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1472 CCValAssign &VA = ArgLocs[i];
1473 const ISD::InputArg &In = Ins[i];
1474 EVT VT = In.VT;
1475 EVT MemVT = VA.getLocVT();
1476 if (!VT.isVector() && MemVT.isVector()) {
1477 // Get load source type if scalarized.
1478 MemVT = MemVT.getVectorElementType();
1479 }
1480
1481 if (AMDGPU::isShader(CallConv)) {
1482 Register Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1483 SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1484 InVals.push_back(Register);
1485 continue;
1486 }
1487
1488 // i64 isn't a legal type, so the register type used ends up as i32, which
1489 // isn't expected here. It attempts to create this sextload, but it ends up
1490 // being invalid. Somehow this seems to work with i64 arguments, but breaks
1491 // for <1 x i64>.
1492
1493 // The first 36 bytes of the input buffer contains information about
1494 // thread group and global sizes.
1496 if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1497 // FIXME: This should really check the extload type, but the handling of
1498 // extload vector parameters seems to be broken.
1499
1500 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1501 Ext = ISD::SEXTLOAD;
1502 }
1503
1504 // Compute the offset from the value.
1505 // XXX - I think PartOffset should give you this, but it seems to give the
1506 // size of the register which isn't useful.
1507
1508 unsigned PartOffset = VA.getLocMemOffset();
1509 Align Alignment = commonAlignment(Align(VT.getStoreSize()), PartOffset);
1510
1512 SDValue Arg = DAG.getLoad(
1513 ISD::UNINDEXED, Ext, VT, DL, Chain,
1514 DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1515 PtrInfo,
1516 MemVT, Alignment, MachineMemOperand::MONonTemporal |
1519
1520 InVals.push_back(Arg);
1521 }
1522 return Chain;
1523}
1524
1526 EVT VT) const {
1527 if (!VT.isVector())
1528 return MVT::i32;
1530}
1531
1533 const MachineFunction &MF) const {
1534 // Local and Private addresses do not handle vectors. Limit to i32
1536 return (MemVT.getSizeInBits() <= 32);
1537 }
1538 return true;
1539}
1540
1542 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1543 unsigned *IsFast) const {
1544 if (IsFast)
1545 *IsFast = 0;
1546
1547 if (!VT.isSimple() || VT == MVT::Other)
1548 return false;
1549
1550 if (VT.bitsLT(MVT::i32))
1551 return false;
1552
1553 // TODO: This is a rough estimate.
1554 if (IsFast)
1555 *IsFast = 1;
1556
1557 return VT.bitsGT(MVT::i32) && Alignment >= Align(4);
1558}
1559
1561 SelectionDAG &DAG, SDValue VectorEntry,
1562 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1563 assert(RemapSwizzle.empty());
1564
1565 SDLoc DL(VectorEntry);
1566 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1567
1568 SDValue NewBldVec[4];
1569 for (unsigned i = 0; i < 4; i++)
1570 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1571 DAG.getIntPtrConstant(i, DL));
1572
1573 for (unsigned i = 0; i < 4; i++) {
1574 if (NewBldVec[i].isUndef())
1575 // We mask write here to teach later passes that the ith element of this
1576 // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1577 // break false dependencies and additionally make assembly easier to read.
1578 RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1579 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1580 if (C->isZero()) {
1581 RemapSwizzle[i] = 4; // SEL_0
1582 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1583 } else if (C->isExactlyValue(1.0)) {
1584 RemapSwizzle[i] = 5; // SEL_1
1585 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1586 }
1587 }
1588
1589 if (NewBldVec[i].isUndef())
1590 continue;
1591
1592 for (unsigned j = 0; j < i; j++) {
1593 if (NewBldVec[i] == NewBldVec[j]) {
1594 NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1595 RemapSwizzle[i] = j;
1596 break;
1597 }
1598 }
1599 }
1600
1601 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1602 NewBldVec);
1603}
1604
1606 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1607 assert(RemapSwizzle.empty());
1608
1609 SDLoc DL(VectorEntry);
1610 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1611
1612 SDValue NewBldVec[4];
1613 bool isUnmovable[4] = {false, false, false, false};
1614 for (unsigned i = 0; i < 4; i++)
1615 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1616 DAG.getIntPtrConstant(i, DL));
1617
1618 for (unsigned i = 0; i < 4; i++) {
1619 RemapSwizzle[i] = i;
1620 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1621 unsigned Idx = NewBldVec[i].getConstantOperandVal(1);
1622 if (i == Idx)
1623 isUnmovable[Idx] = true;
1624 }
1625 }
1626
1627 for (unsigned i = 0; i < 4; i++) {
1628 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1629 unsigned Idx = NewBldVec[i].getConstantOperandVal(1);
1630 if (isUnmovable[Idx])
1631 continue;
1632 // Swap i and Idx
1633 std::swap(NewBldVec[Idx], NewBldVec[i]);
1634 std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1635 break;
1636 }
1637 }
1638
1639 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1640 NewBldVec);
1641}
1642
1643SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[],
1644 SelectionDAG &DAG,
1645 const SDLoc &DL) const {
1646 // Old -> New swizzle values
1647 DenseMap<unsigned, unsigned> SwizzleRemap;
1648
1649 BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1650 for (unsigned i = 0; i < 4; i++) {
1651 unsigned Idx = Swz[i]->getAsZExtVal();
1652 auto It = SwizzleRemap.find(Idx);
1653 if (It != SwizzleRemap.end())
1654 Swz[i] = DAG.getConstant(It->second, DL, MVT::i32);
1655 }
1656
1657 SwizzleRemap.clear();
1658 BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1659 for (unsigned i = 0; i < 4; i++) {
1660 unsigned Idx = Swz[i]->getAsZExtVal();
1661 auto It = SwizzleRemap.find(Idx);
1662 if (It != SwizzleRemap.end())
1663 Swz[i] = DAG.getConstant(It->second, DL, MVT::i32);
1664 }
1665
1666 return BuildVector;
1667}
1668
1669SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1670 SelectionDAG &DAG) const {
1671 SDLoc DL(LoadNode);
1672 EVT VT = LoadNode->getValueType(0);
1673 SDValue Chain = LoadNode->getChain();
1674 SDValue Ptr = LoadNode->getBasePtr();
1676
1677 //TODO: Support smaller loads
1678 if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1679 return SDValue();
1680
1681 if (LoadNode->getAlign() < Align(4))
1682 return SDValue();
1683
1684 int ConstantBlock = ConstantAddressBlock(Block);
1685
1686 SDValue Slots[4];
1687 for (unsigned i = 0; i < 4; i++) {
1688 // We want Const position encoded with the following formula :
1689 // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1690 // const_index is Ptr computed by llvm using an alignment of 16.
1691 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1692 // then div by 4 at the ISel step
1693 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1694 DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1695 Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1696 }
1697 EVT NewVT = MVT::v4i32;
1698 unsigned NumElements = 4;
1699 if (VT.isVector()) {
1700 NewVT = VT;
1701 NumElements = VT.getVectorNumElements();
1702 }
1703 SDValue Result = DAG.getBuildVector(NewVT, DL, ArrayRef(Slots, NumElements));
1704 if (!VT.isVector()) {
1705 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1706 DAG.getConstant(0, DL, MVT::i32));
1707 }
1708 SDValue MergedValues[2] = {
1709 Result,
1710 Chain
1711 };
1712 return DAG.getMergeValues(MergedValues, DL);
1713}
1714
1715//===----------------------------------------------------------------------===//
1716// Custom DAG Optimizations
1717//===----------------------------------------------------------------------===//
1718
1720 DAGCombinerInfo &DCI) const {
1721 SelectionDAG &DAG = DCI.DAG;
1722 SDLoc DL(N);
1723
1724 switch (N->getOpcode()) {
1725 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1726 case ISD::FP_ROUND: {
1727 SDValue Arg = N->getOperand(0);
1728 if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1729 return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1730 Arg.getOperand(0));
1731 }
1732 break;
1733 }
1734
1735 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1736 // (i32 select_cc f32, f32, -1, 0 cc)
1737 //
1738 // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1739 // this to one of the SET*_DX10 instructions.
1740 case ISD::FP_TO_SINT: {
1741 SDValue FNeg = N->getOperand(0);
1742 if (FNeg.getOpcode() != ISD::FNEG) {
1743 return SDValue();
1744 }
1745 SDValue SelectCC = FNeg.getOperand(0);
1746 if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1747 SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1748 SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1749 !isHWTrueValue(SelectCC.getOperand(2)) ||
1750 !isHWFalseValue(SelectCC.getOperand(3))) {
1751 return SDValue();
1752 }
1753
1754 return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1755 SelectCC.getOperand(0), // LHS
1756 SelectCC.getOperand(1), // RHS
1757 DAG.getAllOnesConstant(DL, MVT::i32), // True
1758 DAG.getConstant(0, DL, MVT::i32), // False
1759 SelectCC.getOperand(4)); // CC
1760 }
1761
1762 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1763 // => build_vector elt0, ... , NewEltIdx, ... , eltN
1765 SDValue InVec = N->getOperand(0);
1766 SDValue InVal = N->getOperand(1);
1767 SDValue EltNo = N->getOperand(2);
1768
1769 // If the inserted element is an UNDEF, just use the input vector.
1770 if (InVal.isUndef())
1771 return InVec;
1772
1773 EVT VT = InVec.getValueType();
1774
1775 // If we can't generate a legal BUILD_VECTOR, exit
1777 return SDValue();
1778
1779 // Check that we know which element is being inserted
1780 if (!isa<ConstantSDNode>(EltNo))
1781 return SDValue();
1782 unsigned Elt = EltNo->getAsZExtVal();
1783
1784 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1785 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
1786 // vector elements.
1788 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1789 Ops.append(InVec.getNode()->op_begin(),
1790 InVec.getNode()->op_end());
1791 } else if (InVec.isUndef()) {
1792 unsigned NElts = VT.getVectorNumElements();
1793 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1794 } else {
1795 return SDValue();
1796 }
1797
1798 // Insert the element
1799 if (Elt < Ops.size()) {
1800 // All the operands of BUILD_VECTOR must have the same type;
1801 // we enforce that here.
1802 EVT OpVT = Ops[0].getValueType();
1803 if (InVal.getValueType() != OpVT)
1804 InVal = OpVT.bitsGT(InVal.getValueType()) ?
1805 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1806 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1807 Ops[Elt] = InVal;
1808 }
1809
1810 // Return the new vector
1811 return DAG.getBuildVector(VT, DL, Ops);
1812 }
1813
1814 // Extract_vec (Build_vector) generated by custom lowering
1815 // also needs to be customly combined
1817 SDValue Arg = N->getOperand(0);
1818 if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1819 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1820 unsigned Element = Const->getZExtValue();
1821 return Arg->getOperand(Element);
1822 }
1823 }
1824 if (Arg.getOpcode() == ISD::BITCAST &&
1828 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1829 unsigned Element = Const->getZExtValue();
1830 return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1831 Arg->getOperand(0).getOperand(Element));
1832 }
1833 }
1834 break;
1835 }
1836
1837 case ISD::SELECT_CC: {
1838 // Try common optimizations
1840 return Ret;
1841
1842 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1843 // selectcc x, y, a, b, inv(cc)
1844 //
1845 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1846 // selectcc x, y, a, b, cc
1847 SDValue LHS = N->getOperand(0);
1848 if (LHS.getOpcode() != ISD::SELECT_CC) {
1849 return SDValue();
1850 }
1851
1852 SDValue RHS = N->getOperand(1);
1853 SDValue True = N->getOperand(2);
1854 SDValue False = N->getOperand(3);
1855 ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1856
1857 if (LHS.getOperand(2).getNode() != True.getNode() ||
1858 LHS.getOperand(3).getNode() != False.getNode() ||
1859 RHS.getNode() != False.getNode()) {
1860 return SDValue();
1861 }
1862
1863 switch (NCC) {
1864 default: return SDValue();
1865 case ISD::SETNE: return LHS;
1866 case ISD::SETEQ: {
1867 ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1868 LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1869 if (DCI.isBeforeLegalizeOps() ||
1870 isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1871 return DAG.getSelectCC(DL,
1872 LHS.getOperand(0),
1873 LHS.getOperand(1),
1874 LHS.getOperand(2),
1875 LHS.getOperand(3),
1876 LHSCC);
1877 break;
1878 }
1879 }
1880 return SDValue();
1881 }
1882
1884 SDValue Arg = N->getOperand(1);
1885 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1886 break;
1887
1888 SDValue NewArgs[8] = {
1889 N->getOperand(0), // Chain
1890 SDValue(),
1891 N->getOperand(2), // ArrayBase
1892 N->getOperand(3), // Type
1893 N->getOperand(4), // SWZ_X
1894 N->getOperand(5), // SWZ_Y
1895 N->getOperand(6), // SWZ_Z
1896 N->getOperand(7) // SWZ_W
1897 };
1898 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
1899 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
1900 }
1902 SDValue Arg = N->getOperand(1);
1903 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1904 break;
1905
1906 SDValue NewArgs[19] = {
1907 N->getOperand(0),
1908 N->getOperand(1),
1909 N->getOperand(2),
1910 N->getOperand(3),
1911 N->getOperand(4),
1912 N->getOperand(5),
1913 N->getOperand(6),
1914 N->getOperand(7),
1915 N->getOperand(8),
1916 N->getOperand(9),
1917 N->getOperand(10),
1918 N->getOperand(11),
1919 N->getOperand(12),
1920 N->getOperand(13),
1921 N->getOperand(14),
1922 N->getOperand(15),
1923 N->getOperand(16),
1924 N->getOperand(17),
1925 N->getOperand(18),
1926 };
1927 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
1928 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
1929 }
1930
1931 case ISD::LOAD: {
1932 LoadSDNode *LoadNode = cast<LoadSDNode>(N);
1933 SDValue Ptr = LoadNode->getBasePtr();
1934 if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
1936 return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
1937 break;
1938 }
1939
1940 default: break;
1941 }
1942
1944}
1945
1946bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
1947 SDValue &Src, SDValue &Neg, SDValue &Abs,
1948 SDValue &Sel, SDValue &Imm,
1949 SelectionDAG &DAG) const {
1950 const R600InstrInfo *TII = Subtarget->getInstrInfo();
1951 if (!Src.isMachineOpcode())
1952 return false;
1953
1954 switch (Src.getMachineOpcode()) {
1955 case R600::FNEG_R600:
1956 if (!Neg.getNode())
1957 return false;
1958 Src = Src.getOperand(0);
1959 Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1960 return true;
1961 case R600::FABS_R600:
1962 if (!Abs.getNode())
1963 return false;
1964 Src = Src.getOperand(0);
1965 Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1966 return true;
1967 case R600::CONST_COPY: {
1968 unsigned Opcode = ParentNode->getMachineOpcode();
1969 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
1970
1971 if (!Sel.getNode())
1972 return false;
1973
1974 SDValue CstOffset = Src.getOperand(0);
1975 if (ParentNode->getValueType(0).isVector())
1976 return false;
1977
1978 // Gather constants values
1979 int SrcIndices[] = {
1980 TII->getOperandIdx(Opcode, R600::OpName::src0),
1981 TII->getOperandIdx(Opcode, R600::OpName::src1),
1982 TII->getOperandIdx(Opcode, R600::OpName::src2),
1983 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
1984 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
1985 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
1986 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
1987 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
1988 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
1989 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
1990 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
1991 };
1992 std::vector<unsigned> Consts;
1993 for (int OtherSrcIdx : SrcIndices) {
1994 int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
1995 if (OtherSrcIdx < 0 || OtherSelIdx < 0)
1996 continue;
1997 if (HasDst) {
1998 OtherSrcIdx--;
1999 OtherSelIdx--;
2000 }
2001 if (RegisterSDNode *Reg =
2002 dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2003 if (Reg->getReg() == R600::ALU_CONST) {
2004 Consts.push_back(ParentNode->getConstantOperandVal(OtherSelIdx));
2005 }
2006 }
2007 }
2008
2009 ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2010 Consts.push_back(Cst->getZExtValue());
2011 if (!TII->fitsConstReadLimitations(Consts)) {
2012 return false;
2013 }
2014
2015 Sel = CstOffset;
2016 Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2017 return true;
2018 }
2019 case R600::MOV_IMM_GLOBAL_ADDR:
2020 // Check if the Imm slot is used. Taken from below.
2021 if (Imm->getAsZExtVal())
2022 return false;
2023 Imm = Src.getOperand(0);
2024 Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2025 return true;
2026 case R600::MOV_IMM_I32:
2027 case R600::MOV_IMM_F32: {
2028 unsigned ImmReg = R600::ALU_LITERAL_X;
2029 uint64_t ImmValue = 0;
2030
2031 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2032 ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Src.getOperand(0));
2033 float FloatValue = FPC->getValueAPF().convertToFloat();
2034 if (FloatValue == 0.0) {
2035 ImmReg = R600::ZERO;
2036 } else if (FloatValue == 0.5) {
2037 ImmReg = R600::HALF;
2038 } else if (FloatValue == 1.0) {
2039 ImmReg = R600::ONE;
2040 } else {
2041 ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2042 }
2043 } else {
2044 uint64_t Value = Src.getConstantOperandVal(0);
2045 if (Value == 0) {
2046 ImmReg = R600::ZERO;
2047 } else if (Value == 1) {
2048 ImmReg = R600::ONE_INT;
2049 } else {
2050 ImmValue = Value;
2051 }
2052 }
2053
2054 // Check that we aren't already using an immediate.
2055 // XXX: It's possible for an instruction to have more than one
2056 // immediate operand, but this is not supported yet.
2057 if (ImmReg == R600::ALU_LITERAL_X) {
2058 if (!Imm.getNode())
2059 return false;
2060 ConstantSDNode *C = cast<ConstantSDNode>(Imm);
2061 if (C->getZExtValue())
2062 return false;
2063 Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2064 }
2065 Src = DAG.getRegister(ImmReg, MVT::i32);
2066 return true;
2067 }
2068 default:
2069 return false;
2070 }
2071}
2072
2073/// Fold the instructions after selecting them
2074SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2075 SelectionDAG &DAG) const {
2076 const R600InstrInfo *TII = Subtarget->getInstrInfo();
2077 if (!Node->isMachineOpcode())
2078 return Node;
2079
2080 unsigned Opcode = Node->getMachineOpcode();
2081 SDValue FakeOp;
2082
2083 std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2084
2085 if (Opcode == R600::DOT_4) {
2086 int OperandIdx[] = {
2087 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2088 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2089 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2090 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2091 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2092 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2093 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2094 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2095 };
2096 int NegIdx[] = {
2097 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2098 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2099 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2100 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2101 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2102 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2103 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2104 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2105 };
2106 int AbsIdx[] = {
2107 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2108 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2109 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2110 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2111 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2112 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2113 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2114 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2115 };
2116 for (unsigned i = 0; i < 8; i++) {
2117 if (OperandIdx[i] < 0)
2118 return Node;
2119 SDValue &Src = Ops[OperandIdx[i] - 1];
2120 SDValue &Neg = Ops[NegIdx[i] - 1];
2121 SDValue &Abs = Ops[AbsIdx[i] - 1];
2122 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2123 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2124 if (HasDst)
2125 SelIdx--;
2126 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2127 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2128 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2129 }
2130 } else if (Opcode == R600::REG_SEQUENCE) {
2131 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2132 SDValue &Src = Ops[i];
2133 if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2134 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2135 }
2136 } else {
2137 if (!TII->hasInstrModifiers(Opcode))
2138 return Node;
2139 int OperandIdx[] = {
2140 TII->getOperandIdx(Opcode, R600::OpName::src0),
2141 TII->getOperandIdx(Opcode, R600::OpName::src1),
2142 TII->getOperandIdx(Opcode, R600::OpName::src2)
2143 };
2144 int NegIdx[] = {
2145 TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2146 TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2147 TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2148 };
2149 int AbsIdx[] = {
2150 TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2151 TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2152 -1
2153 };
2154 for (unsigned i = 0; i < 3; i++) {
2155 if (OperandIdx[i] < 0)
2156 return Node;
2157 SDValue &Src = Ops[OperandIdx[i] - 1];
2158 SDValue &Neg = Ops[NegIdx[i] - 1];
2159 SDValue FakeAbs;
2160 SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2161 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2162 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2163 int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2164 if (HasDst) {
2165 SelIdx--;
2166 ImmIdx--;
2167 }
2168 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2169 SDValue &Imm = Ops[ImmIdx];
2170 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2171 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2172 }
2173 }
2174
2175 return Node;
2176}
2177
2179R600TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
2180 switch (RMW->getOperation()) {
2189 // FIXME: Cayman at least appears to have instructions for this, but the
2190 // instruction defintions appear to be missing.
2192 case AtomicRMWInst::Xchg: {
2193 const DataLayout &DL = RMW->getFunction()->getDataLayout();
2194 unsigned ValSize = DL.getTypeSizeInBits(RMW->getType());
2195 if (ValSize == 32 || ValSize == 64)
2198 }
2199 default:
2200 if (auto *IntTy = dyn_cast<IntegerType>(RMW->getType())) {
2201 unsigned Size = IntTy->getBitWidth();
2202 if (Size == 32 || Size == 64)
2204 }
2205
2207 }
2208
2209 llvm_unreachable("covered atomicrmw op switch");
2210}
unsigned const MachineRegisterInfo * MRI
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
Interfaces for producing common pass manager configurations.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define I(x, y, z)
Definition MD5.cpp:58
static bool isUndef(const MachineInstr &MI)
Register Reg
Promote Memory to Register
Definition Mem2Reg.cpp:110
#define MO_FLAG_NEG
Definition R600Defines.h:15
#define MO_FLAG_ABS
Definition R600Defines.h:16
#define MO_FLAG_MASK
Definition R600Defines.h:17
#define MO_FLAG_PUSH
Definition R600Defines.h:18
static bool isEOP(MachineBasicBlock::iterator I)
static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry, DenseMap< unsigned, unsigned > &RemapSwizzle)
static int ConstantAddressBlock(unsigned AddressSpace)
static SDValue CompactSwizzlableVector(SelectionDAG &DAG, SDValue VectorEntry, DenseMap< unsigned, unsigned > &RemapSwizzle)
R600 DAG Lowering interface definition.
Provides R600 specific target descriptions.
AMDGPU R600 specific subclass of TargetSubtarget.
The AMDGPU TargetMachine interface definition for hw codegen targets.
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
Value * RHS
Value * LHS
unsigned getStackWidth(const MachineFunction &MF) const
SDValue combineFMinMaxLegacy(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, SDValue CC, DAGCombinerInfo &DCI) const
Generate Min/Max node.
void analyzeFormalArgumentsCompute(CCState &State, const SmallVectorImpl< ISD::InputArg > &Ins) const
The SelectionDAGBuilder will automatically promote function arguments with illegal types.
SDValue LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
uint32_t getImplicitParameterOffset(const MachineFunction &MF, const ImplicitParameter Param) const
Helper function that returns the byte offset of the given type of implicit parameter.
virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const
SDValue CreateLiveInRegisterRaw(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT) const
AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI)
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
void LowerUDIVREM64(SDValue Op, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results) const
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition APFloat.cpp:6143
APInt bitcastToAPInt() const
Definition APFloat.h:1335
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
an instruction that atomically reads a memory location, combines it with another value,...
@ FAdd
*p = old + v
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
BinOp getOperation() const
CCState - This class holds information needed while lowering arguments and return values.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
int64_t getLocMemOffset() const
const APFloat & getValueAPF() const
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
uint64_t getZExtValue() const
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
bool empty() const
Definition DenseMap.h:109
iterator end()
Definition DenseMap.h:81
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Definition Function.cpp:363
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
Machine Value Type.
static auto integer_valuetypes()
LLVM_ABI DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Flags
Flags values. These may be or'd together.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
Flags getFlags() const
Return the raw flags of the source value,.
const Value * getValue() const
Return the base address of the memory access.
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
unsigned getTargetFlags() const
int64_t getOffset() const
Return the offset from the symbol in this operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
An SDNode that represents everything that will be needed to construct a MachineInstr.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
Align getAlign() const
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
StackOffset getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const override
const R600InstrInfo * getInstrInfo() const override
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const override
Returns if it's reasonable to merge stores to MemVT size.
R600TargetLowering(const TargetMachine &TM, const R600Subtarget &STI)
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const override
Return the ValueType of the result of SETCC operations.
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const override
Determine if the target supports unaligned memory accesses.
CCAssignFn * CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
XXX Only kernel functions are supported, so we can assume for now that every function is a kernel fun...
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:79
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
op_iterator op_end() const
op_iterator op_begin() const
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVMContext * getContext() const
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
const SDValue & getBasePtr() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
const TargetMachine & getTargetMachine() const
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
Primary interface to the complete machine description for the target machine.
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ LOCAL_ADDRESS
Address space for local memory.
@ PARAM_I_ADDRESS
Address space for indirect addressable parameter memory (VTX1).
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUILD_VERTICAL_VECTOR
This node is for VLIW targets and it is used to represent a vector that is stored in consecutive regi...
@ CONST_DATA_PTR
Pointer to the start of the shader's constant data.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
LLVM_READNONE constexpr bool isShader(CallingConv::ID CC)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
Definition CallingConv.h:47
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:541
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:799
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:821
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:549
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
int getLDSNoRetOp(uint16_t Opcode)
@ Kill
The last use of a register.
constexpr float pif
Definition MathExtras.h:53
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:165
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
@ AfterLegalizeVectorOps
Definition DAGCombine.h:18
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
Definition ValueTypes.h:94
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
InputArg - This struct carries flags and type information about a single incoming (formal) argument o...
This class contains a discriminated union of information about pointers in memory operands,...