22#include "llvm/IR/IntrinsicsAMDGPU.h"
23#include "llvm/IR/IntrinsicsR600.h"
28#include "R600GenCallingConv.inc"
105 {MVT::f32, MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
106 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32},
123 if (Subtarget->hasCARRY())
126 if (Subtarget->hasBORROW())
130 if (!Subtarget->hasBFE())
135 if (!Subtarget->hasBFE())
139 if (!Subtarget->hasBFE())
151 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32},
Custom);
154 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32},
Custom);
161 if (!Subtarget->hasFMA())
167 if (!Subtarget->hasBFI())
171 if (!Subtarget->hasBCNT(32))
174 if (!Subtarget->hasBCNT(64))
177 if (Subtarget->hasFFBH())
180 if (Subtarget->hasFFBL())
185 if (Subtarget->hasBFE())
191 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
192 for (
MVT VT : ScalarIntVTs)
211 if (std::next(
I) ==
I->getParent()->end())
213 return std::next(
I)->getOpcode() == R600::RETURN;
224 switch (
MI.getOpcode()) {
228 if (
TII->isLDSRetInstr(
MI.getOpcode())) {
229 int DstIdx =
TII->getOperandIdx(
MI.getOpcode(), R600::OpName::dst);
234 if (!
MRI.use_empty(
MI.getOperand(DstIdx).getReg()) ||
235 MI.getOpcode() == R600::LDS_CMPST_RET)
247 case R600::FABS_R600: {
249 *BB,
I, R600::MOV,
MI.getOperand(0).getReg(),
250 MI.getOperand(1).getReg());
255 case R600::FNEG_R600: {
257 *BB,
I, R600::MOV,
MI.getOperand(0).getReg(),
258 MI.getOperand(1).getReg());
263 case R600::MASK_WRITE: {
264 Register maskedRegister =
MI.getOperand(0).getReg();
271 case R600::MOV_IMM_F32:
272 TII->buildMovImm(*BB,
I,
MI.getOperand(0).getReg(),
MI.getOperand(1)
279 case R600::MOV_IMM_I32:
280 TII->buildMovImm(*BB,
I,
MI.getOperand(0).getReg(),
281 MI.getOperand(1).getImm());
284 case R600::MOV_IMM_GLOBAL_ADDR: {
286 auto MIB =
TII->buildDefaultInstruction(
287 *BB,
MI, R600::MOV,
MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
288 int Idx =
TII->getOperandIdx(*MIB, R600::OpName::literal);
296 case R600::CONST_COPY: {
298 *BB,
MI, R600::MOV,
MI.getOperand(0).getReg(), R600::ALU_CONST);
299 TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
300 MI.getOperand(1).getImm());
304 case R600::RAT_WRITE_CACHELESS_32_eg:
305 case R600::RAT_WRITE_CACHELESS_64_eg:
306 case R600::RAT_WRITE_CACHELESS_128_eg:
308 .
add(
MI.getOperand(0))
309 .
add(
MI.getOperand(1))
313 case R600::RAT_STORE_TYPED_eg:
315 .
add(
MI.getOperand(0))
316 .
add(
MI.getOperand(1))
317 .
add(
MI.getOperand(2))
323 .
add(
MI.getOperand(0));
326 case R600::BRANCH_COND_f32: {
330 .
add(
MI.getOperand(1))
335 .
add(
MI.getOperand(0))
340 case R600::BRANCH_COND_i32: {
344 .
add(
MI.getOperand(1))
345 .
addImm(R600::PRED_SETNE_INT)
349 .
add(
MI.getOperand(0))
354 case R600::EG_ExportSwz:
355 case R600::R600_ExportSwz: {
357 bool isLastInstructionOfItsType =
true;
358 unsigned InstExportType =
MI.getOperand(1).getImm();
360 EndBlock = BB->
end(); NextExportInst != EndBlock;
361 NextExportInst = std::next(NextExportInst)) {
362 if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
363 NextExportInst->getOpcode() == R600::R600_ExportSwz) {
364 unsigned CurrentInstExportType = NextExportInst->getOperand(1)
366 if (CurrentInstExportType == InstExportType) {
367 isLastInstructionOfItsType =
false;
373 if (!EOP && !isLastInstructionOfItsType)
375 unsigned CfInst = (
MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
377 .
add(
MI.getOperand(0))
378 .
add(
MI.getOperand(1))
379 .
add(
MI.getOperand(2))
380 .
add(
MI.getOperand(3))
381 .
add(
MI.getOperand(4))
382 .
add(
MI.getOperand(5))
383 .
add(
MI.getOperand(6))
393 MI.eraseFromParent();
404 switch (
Op.getOpcode()) {
414 case ISD::FSIN:
return LowerTrig(
Op, DAG);
416 case ISD::STORE:
return LowerSTORE(
Op, DAG);
419 assert((!Result.getNode() ||
420 Result.getNode()->getNumValues() == 2) &&
421 "Load should return a value and a chain");
425 case ISD::BRCOND:
return LowerBRCOND(
Op, DAG);
428 case ISD::ADDRSPACECAST:
429 return lowerADDRSPACECAST(
Op, DAG);
432 unsigned IntrinsicID =
Op.getConstantOperandVal(1);
433 switch (IntrinsicID) {
434 case Intrinsic::r600_store_swizzle: {
456 unsigned IntrinsicID =
Op.getConstantOperandVal(0);
457 EVT VT =
Op.getValueType();
459 switch (IntrinsicID) {
460 case Intrinsic::r600_tex:
461 case Intrinsic::r600_texc: {
463 switch (IntrinsicID) {
464 case Intrinsic::r600_tex:
467 case Intrinsic::r600_texc:
497 case Intrinsic::r600_dot4: {
519 case Intrinsic::r600_implicitarg_ptr: {
524 case Intrinsic::r600_read_ngroups_x:
525 return LowerImplicitParameter(DAG, VT,
DL, 0);
526 case Intrinsic::r600_read_ngroups_y:
527 return LowerImplicitParameter(DAG, VT,
DL, 1);
528 case Intrinsic::r600_read_ngroups_z:
529 return LowerImplicitParameter(DAG, VT,
DL, 2);
530 case Intrinsic::r600_read_global_size_x:
531 return LowerImplicitParameter(DAG, VT,
DL, 3);
532 case Intrinsic::r600_read_global_size_y:
533 return LowerImplicitParameter(DAG, VT,
DL, 4);
534 case Intrinsic::r600_read_global_size_z:
535 return LowerImplicitParameter(DAG, VT,
DL, 5);
536 case Intrinsic::r600_read_local_size_x:
537 return LowerImplicitParameter(DAG, VT,
DL, 6);
538 case Intrinsic::r600_read_local_size_y:
539 return LowerImplicitParameter(DAG, VT,
DL, 7);
540 case Intrinsic::r600_read_local_size_z:
541 return LowerImplicitParameter(DAG, VT,
DL, 8);
543 case Intrinsic::r600_read_tgid_x:
544 case Intrinsic::amdgcn_workgroup_id_x:
547 case Intrinsic::r600_read_tgid_y:
548 case Intrinsic::amdgcn_workgroup_id_y:
551 case Intrinsic::r600_read_tgid_z:
552 case Intrinsic::amdgcn_workgroup_id_z:
555 case Intrinsic::r600_read_tidig_x:
556 case Intrinsic::amdgcn_workitem_id_x:
559 case Intrinsic::r600_read_tidig_y:
560 case Intrinsic::amdgcn_workitem_id_y:
563 case Intrinsic::r600_read_tidig_z:
564 case Intrinsic::amdgcn_workitem_id_z:
568 case Intrinsic::r600_recipsqrt_ieee:
571 case Intrinsic::r600_recipsqrt_clamped:
587 switch (
N->getOpcode()) {
592 if (
N->getValueType(0) == MVT::i1) {
593 Results.push_back(lowerFP_TO_UINT(
N->getOperand(0), DAG));
601 if (
N->getValueType(0) == MVT::i1) {
602 Results.push_back(lowerFP_TO_SINT(
N->getOperand(0), DAG));
670 return vectorToVerticalVector(DAG, Insert);
681 const GlobalValue *GV = GSD->
getGlobal();
691 EVT VT =
Op.getValueType();
702 switch (
Op.getOpcode()) {
730 unsigned mainop,
unsigned ovf)
const {
732 EVT VT =
Op.getValueType();
769 unsigned DwordOffset)
const {
770 unsigned ByteOffset = DwordOffset * 4;
782bool R600TargetLowering::isZero(
SDValue Op)
const {
784 return Cst->isZero();
786 return CstFP->isZero();
790bool R600TargetLowering::isHWTrueValue(
SDValue Op)
const {
792 return CFP->isExactlyValue(1.0);
797bool R600TargetLowering::isHWFalseValue(
SDValue Op)
const {
799 return CFP->getValueAPF().isZero();
806 EVT VT =
Op.getValueType();
815 if (VT == MVT::f32) {
823 EVT CompareVT =
LHS.getValueType();
837 if (isHWTrueValue(False) && isHWFalseValue(True)) {
853 if (isHWTrueValue(True) && isHWFalseValue(False) &&
854 (CompareVT == VT || VT == MVT::i32)) {
892 if (CompareVT != VT) {
897 True = DAG.
getNode(ISD::BITCAST,
DL, CompareVT, True);
898 False = DAG.
getNode(ISD::BITCAST,
DL, CompareVT, False);
917 return DAG.
getNode(ISD::BITCAST,
DL, VT, SelectNode);
924 if (CompareVT == MVT::f32) {
927 }
else if (CompareVT == MVT::i32) {
948 EVT VT =
Op.getValueType();
950 const R600TargetMachine &TM =
990void R600TargetLowering::getStackAddress(
unsigned StackWidth,
993 unsigned &PtrIncr)
const {
994 switch (StackWidth) {
1005 Channel = ElemIdx % 2;
1024 ||
Store->getValue().getValueType() == MVT::i8);
1028 if (
Store->getMemoryVT() == MVT::i8) {
1031 }
else if (
Store->getMemoryVT() == MVT::i16) {
1044 EVT MemVT =
Store->getMemoryVT();
1061 Chain = Dst.getValue(1);
1081 MaskedValue, ShiftAmt);
1088 DstMask = DAG.
getNOT(
DL, DstMask, MVT::i32);
1117 EVT VT =
Value.getValueType();
1119 EVT PtrVT =
Ptr.getValueType();
1133 NewOps[0] = NewChain;
1154 if (TruncatingStore) {
1157 if (MemVT == MVT::i8) {
1160 assert(MemVT == MVT::i16);
1188 Op->getVTList(), Args, MemVT,
1208 if (MemVT.
bitsLT(MVT::i32))
1209 return lowerPrivateTruncStore(StoreNode, DAG);
1231 return 512 + 4096 * 2;
1233 return 512 + 4096 * 3;
1235 return 512 + 4096 * 4;
1237 return 512 + 4096 * 5;
1239 return 512 + 4096 * 6;
1241 return 512 + 4096 * 7;
1243 return 512 + 4096 * 8;
1245 return 512 + 4096 * 9;
1247 return 512 + 4096 * 10;
1249 return 512 + 4096 * 11;
1251 return 512 + 4096 * 12;
1253 return 512 + 4096 * 13;
1255 return 512 + 4096 * 14;
1257 return 512 + 4096 * 15;
1268 EVT MemVT =
Load->getMemoryVT();
1327 return lowerPrivateExtLoad(
Op, DAG);
1331 EVT VT =
Op.getValueType();
1345 if (ConstantBlock > -1 &&
1382 assert(!MemVT.
isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1389 SDValue MergedValues[2] = { Res, Chain };
1419 const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1428 SDLoc(
Op),
Op.getValueType());
1432 bool IsVarArg)
const {
1471 for (
unsigned i = 0, e = Ins.size(); i < e; ++i) {
1543 unsigned *IsFast)
const {
1547 if (!VT.
isSimple() || VT == MVT::Other)
1557 return VT.
bitsGT(MVT::i32) && Alignment >=
Align(4);
1569 for (
unsigned i = 0; i < 4; i++)
1573 for (
unsigned i = 0; i < 4; i++) {
1578 RemapSwizzle[i] = 7;
1581 RemapSwizzle[i] = 4;
1582 NewBldVec[i] = DAG.
getUNDEF(MVT::f32);
1583 }
else if (
C->isExactlyValue(1.0)) {
1584 RemapSwizzle[i] = 5;
1585 NewBldVec[i] = DAG.
getUNDEF(MVT::f32);
1592 for (
unsigned j = 0; j < i; j++) {
1593 if (NewBldVec[i] == NewBldVec[j]) {
1595 RemapSwizzle[i] = j;
1613 bool isUnmovable[4] = {
false,
false,
false,
false};
1614 for (
unsigned i = 0; i < 4; i++)
1618 for (
unsigned i = 0; i < 4; i++) {
1619 RemapSwizzle[i] = i;
1623 isUnmovable[Idx] =
true;
1627 for (
unsigned i = 0; i < 4; i++) {
1630 if (isUnmovable[Idx])
1633 std::swap(NewBldVec[Idx], NewBldVec[i]);
1634 std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1647 DenseMap<unsigned, unsigned> SwizzleRemap;
1650 for (
unsigned i = 0; i < 4; i++) {
1652 auto It = SwizzleRemap.
find(Idx);
1653 if (It != SwizzleRemap.
end())
1657 SwizzleRemap.
clear();
1659 for (
unsigned i = 0; i < 4; i++) {
1661 auto It = SwizzleRemap.
find(Idx);
1662 if (It != SwizzleRemap.
end())
1687 for (
unsigned i = 0; i < 4; i++) {
1697 EVT NewVT = MVT::v4i32;
1698 unsigned NumElements = 4;
1724 switch (
N->getOpcode()) {
1799 if (Elt <
Ops.size()) {
1802 EVT OpVT =
Ops[0].getValueType();
1820 unsigned Element = Const->getZExtValue();
1829 unsigned Element = Const->getZExtValue();
1830 return DAG.
getNode(ISD::BITCAST,
DL,
N->getVTList(),
1857 if (LHS.getOperand(2).getNode() != True.
getNode() ||
1859 RHS.getNode() != False.
getNode()) {
1898 NewArgs[1] = OptimizeSwizzle(
N->getOperand(1), &NewArgs[4], DAG,
DL);
1927 NewArgs[1] = OptimizeSwizzle(
N->getOperand(1), &NewArgs[2], DAG,
DL);
1946bool R600TargetLowering::FoldOperand(
SDNode *ParentNode,
unsigned SrcIdx,
1951 if (!Src.isMachineOpcode())
1954 switch (Src.getMachineOpcode()) {
1955 case R600::FNEG_R600:
1958 Src = Src.getOperand(0);
1961 case R600::FABS_R600:
1967 case R600::CONST_COPY: {
1969 bool HasDst =
TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
1979 int SrcIndices[] = {
1980 TII->getOperandIdx(Opcode, R600::OpName::src0),
1981 TII->getOperandIdx(Opcode, R600::OpName::src1),
1982 TII->getOperandIdx(Opcode, R600::OpName::src2),
1983 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
1984 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
1985 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
1986 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
1987 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
1988 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
1989 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
1990 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
1992 std::vector<unsigned> Consts;
1993 for (
int OtherSrcIdx : SrcIndices) {
1994 int OtherSelIdx =
TII->getSelIdx(Opcode, OtherSrcIdx);
1995 if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2001 if (RegisterSDNode *
Reg =
2003 if (
Reg->getReg() == R600::ALU_CONST) {
2011 if (!
TII->fitsConstReadLimitations(Consts)) {
2019 case R600::MOV_IMM_GLOBAL_ADDR:
2021 if (
Imm->getAsZExtVal())
2023 Imm = Src.getOperand(0);
2024 Src = DAG.
getRegister(R600::ALU_LITERAL_X, MVT::i32);
2026 case R600::MOV_IMM_I32:
2027 case R600::MOV_IMM_F32: {
2028 unsigned ImmReg = R600::ALU_LITERAL_X;
2029 uint64_t ImmValue = 0;
2031 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2034 if (FloatValue == 0.0) {
2035 ImmReg = R600::ZERO;
2036 }
else if (FloatValue == 0.5) {
2037 ImmReg = R600::HALF;
2038 }
else if (FloatValue == 1.0) {
2044 uint64_t
Value = Src.getConstantOperandVal(0);
2046 ImmReg = R600::ZERO;
2047 }
else if (
Value == 1) {
2048 ImmReg = R600::ONE_INT;
2057 if (ImmReg == R600::ALU_LITERAL_X) {
2061 if (
C->getZExtValue())
2076 const R600InstrInfo *
TII = Subtarget->getInstrInfo();
2077 if (!
Node->isMachineOpcode())
2080 unsigned Opcode =
Node->getMachineOpcode();
2083 std::vector<SDValue>
Ops(
Node->op_begin(),
Node->op_end());
2085 if (Opcode == R600::DOT_4) {
2086 int OperandIdx[] = {
2087 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2088 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2089 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2090 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2091 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2092 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2093 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2094 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2097 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2098 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2099 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2100 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2101 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2102 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2103 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2104 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2107 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2108 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2109 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2110 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2111 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2112 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2113 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2114 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2116 for (
unsigned i = 0; i < 8; i++) {
2117 if (OperandIdx[i] < 0)
2122 bool HasDst =
TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2123 int SelIdx =
TII->getSelIdx(Opcode, OperandIdx[i]);
2126 SDValue &Sel = (SelIdx > -1) ?
Ops[SelIdx] : FakeOp;
2127 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2130 }
else if (Opcode == R600::REG_SEQUENCE) {
2131 for (
unsigned i = 1, e =
Node->getNumOperands(); i < e; i += 2) {
2133 if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2137 if (!
TII->hasInstrModifiers(Opcode))
2139 int OperandIdx[] = {
2140 TII->getOperandIdx(Opcode, R600::OpName::src0),
2141 TII->getOperandIdx(Opcode, R600::OpName::src1),
2142 TII->getOperandIdx(Opcode, R600::OpName::src2)
2145 TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2146 TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2147 TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2150 TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2151 TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2154 for (
unsigned i = 0; i < 3; i++) {
2155 if (OperandIdx[i] < 0)
2160 SDValue &Abs = (AbsIdx[i] > -1) ?
Ops[AbsIdx[i] - 1] : FakeAbs;
2161 bool HasDst =
TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2162 int SelIdx =
TII->getSelIdx(Opcode, OperandIdx[i]);
2163 int ImmIdx =
TII->getOperandIdx(Opcode, R600::OpName::literal);
2168 SDValue &Sel = (SelIdx > -1) ?
Ops[SelIdx] : FakeOp;
2170 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2179R600TargetLowering::shouldExpandAtomicRMWInIR(
AtomicRMWInst *RMW)
const {
2194 unsigned ValSize =
DL.getTypeSizeInBits(RMW->
getType());
2195 if (ValSize == 32 || ValSize == 64)
2201 unsigned Size = IntTy->getBitWidth();
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
Interfaces for producing common pass manager configurations.
const HexagonInstrInfo * TII
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isUndef(const MachineInstr &MI)
Promote Memory to Register
static bool isEOP(MachineBasicBlock::iterator I)
static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry, DenseMap< unsigned, unsigned > &RemapSwizzle)
static int ConstantAddressBlock(unsigned AddressSpace)
static SDValue CompactSwizzlableVector(SelectionDAG &DAG, SDValue VectorEntry, DenseMap< unsigned, unsigned > &RemapSwizzle)
R600 DAG Lowering interface definition.
Provides R600 specific target descriptions.
AMDGPU R600 specific subclass of TargetSubtarget.
The AMDGPU TargetMachine interface definition for hw codegen targets.
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
unsigned getStackWidth(const MachineFunction &MF) const
SDValue combineFMinMaxLegacy(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, SDValue CC, DAGCombinerInfo &DCI) const
Generate Min/Max node.
void analyzeFormalArgumentsCompute(CCState &State, const SmallVectorImpl< ISD::InputArg > &Ins) const
The SelectionDAGBuilder will automatically promote function arguments with illegal types.
SDValue LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
uint32_t getImplicitParameterOffset(const MachineFunction &MF, const ImplicitParameter Param) const
Helper function that returns the byte offset of the given type of implicit parameter.
virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const
SDValue CreateLiveInRegisterRaw(SelectionDAG &DAG, const TargetRegisterClass *RC, Register Reg, EVT VT) const
AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI)
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
void LowerUDIVREM64(SDValue Op, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results) const
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
APInt bitcastToAPInt() const
uint64_t getZExtValue() const
Get zero extended value.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
an instruction that atomically reads a memory location, combines it with another value,...
@ UIncWrap
Increment one up to a maximum value.
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
BinOp getOperation() const
CCState - This class holds information needed while lowering arguments and return values.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
int64_t getLocMemOffset() const
const APFloat & getValueAPF() const
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
uint64_t getZExtValue() const
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
This is an important class for using LLVM in a threaded context.
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
static auto integer_valuetypes()
LLVM_ABI DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Flags
Flags values. These may be or'd together.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
Flags getFlags() const
Return the raw flags of the source value,.
const Value * getValue() const
Return the base address of the memory access.
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
unsigned getTargetFlags() const
int64_t getOffset() const
Return the offset from the symbol in this operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
An SDNode that represents everything that will be needed to construct a MachineInstr.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
StackOffset getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const override
const R600InstrInfo * getInstrInfo() const override
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const override
Returns if it's reasonable to merge stores to MemVT size.
R600TargetLowering(const TargetMachine &TM, const R600Subtarget &STI)
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const override
Return the ValueType of the result of SETCC operations.
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const override
Determine if the target supports unaligned memory accesses.
CCAssignFn * CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
XXX Only kernel functions are supported, so we can assume for now that every function is a kernel fun...
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
op_iterator op_end() const
op_iterator op_begin() const
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVMContext * getContext() const
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
const SDValue & getBasePtr() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
const TargetMachine & getTargetMachine() const
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrNegativeOneBooleanContent
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
Primary interface to the complete machine description for the target machine.
Type * getType() const
All values are typed, get the type of this value.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ LOCAL_ADDRESS
Address space for local memory.
@ PARAM_I_ADDRESS
Address space for indirect addressable parameter memory (VTX1).
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUILD_VERTICAL_VECTOR
This node is for VLIW targets and it is used to represent a vector that is stored in consecutive regi...
@ CONST_DATA_PTR
Pointer to the start of the shader's constant data.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
LLVM_READNONE constexpr bool isShader(CallingConv::ID CC)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ C
The default llvm calling convention, compatible with C.
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ FADD
Simple binary floating point operators.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ SIGN_EXTEND
Conversion operators.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SHL
Shift and rotation operations.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
int getLDSNoRetOp(uint16_t Opcode)
@ Kill
The last use of a register.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
FunctionAddr VTableAddr Value
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
This class contains a discriminated union of information about pointers in memory operands,...
bool isBeforeLegalizeOps() const