44#define DEBUG_TYPE "instcombine"
50 "Number of aggregate reconstructions turned into reuse of the "
51 "original aggregate");
63 return CEI ||
C->getSplatValue();
102 SmallVector<Instruction *, 2> Extracts;
108 for (
auto *U : PN->
users()) {
114 }
else if (!PHIUser) {
142 if (PHIInVal == PHIUser) {
147 unsigned opId = (B0->
getOperand(0) == PN) ? 1 : 0;
179 for (
auto *
E : Extracts) {
195 ElementCount NumElts =
199 bool IsBigEndian =
DL.isBigEndian();
203 if (
X->getType()->isIntegerTy()) {
205 "Expected fixed vector type for bitcast from scalar integer");
212 unsigned ShiftAmountC = ExtIndexC * DestWidth;
213 if ((!ShiftAmountC ||
214 isDesirableIntType(
X->getType()->getPrimitiveSizeInBits())) &&
217 X =
Builder.CreateLShr(
X, ShiftAmountC,
"extelt.offset");
221 return new BitCastInst(Trunc, DestTy);
223 return new TruncInst(
X, DestTy);
227 if (!
X->getType()->isVectorTy())
234 ElementCount NumSrcElts = SrcTy->getElementCount();
235 if (NumSrcElts == NumElts)
237 return new BitCastInst(Elt, DestTy);
240 "Src and Dst must be the same sort of vector type");
256 unsigned NarrowingRatio =
259 if (ExtIndexC / NarrowingRatio != InsIndexC) {
283 unsigned Chunk = ExtIndexC % NarrowingRatio;
285 Chunk = NarrowingRatio - 1 - Chunk;
290 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
292 if (NeedSrcBitcast && NeedDestBitcast)
295 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
296 unsigned ShAmt = Chunk * DestWidth;
302 if (NeedSrcBitcast || NeedDestBitcast)
305 if (NeedSrcBitcast) {
317 if (NeedDestBitcast) {
319 return new BitCastInst(
Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
321 return new TruncInst(Scalar, DestTy);
330 APInt &UnionUsedElts) {
334 case Instruction::ExtractElement: {
338 if (EEIIndexC && EEIIndexC->
getValue().
ult(VWidth)) {
344 case Instruction::ShuffleVector: {
346 unsigned MaskNumElts =
351 if (MaskVal == -1u || MaskVal >= 2 * VWidth)
353 if (Shuffle->
getOperand(0) == V && (MaskVal < VWidth))
354 UnionUsedElts.
setBit(MaskVal);
356 ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
357 UnionUsedElts.
setBit(MaskVal - VWidth);
375 APInt UnionUsedElts(VWidth, 0);
376 for (
const Use &U : V->
uses()) {
389 return UnionUsedElts;
408 SQ.getWithInstruction(&EI)))
420 if (
SI->getCondition()->getType()->isIntegerTy() &&
428 bool HasKnownValidIndex =
false;
435 unsigned NumElts = EC.getKnownMinValue();
436 HasKnownValidIndex = IndexC->getValue().ult(NumElts);
442 if (IID == Intrinsic::stepvector && IndexC->getValue().ult(NumElts)) {
444 unsigned BitWidth = Ty->getIntegerBitWidth();
449 if (IndexC->getValue().getActiveBits() <=
BitWidth)
450 Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(
BitWidth));
459 if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
468 if (
Instruction *ScalarPHI = scalarizePHI(EI, Phi))
493 (HasKnownValidIndex ||
524 uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
525 if (IndexC && IdxVal < EC.getKnownMinValue() &&
GEP->hasOneUse()) {
536 return isa<VectorType>(V->getType());
538 if (VectorOps == 1) {
539 Value *NewPtr =
GEP->getPointerOperand();
541 NewPtr =
Builder.CreateExtractElement(NewPtr, IndexC);
544 for (
unsigned I = 1;
I !=
GEP->getNumOperands(); ++
I) {
553 GEP->getSourceElementType(), NewPtr, NewOps);
567 std::optional<int> SrcIdx;
569 if (SplatIndex != -1)
572 SrcIdx = SVI->getMaskValue(CI->getZExtValue());
582 if (*SrcIdx < (
int)LHSWidth)
583 Src = SVI->getOperand(0);
586 Src = SVI->getOperand(1);
590 Src, ConstantInt::get(Int64Ty, *SrcIdx,
false));
597 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
598 Value *EE =
Builder.CreateExtractElement(CI->getOperand(0), Index);
609 unsigned NumElts = EC.getKnownMinValue();
613 if (!EC.isScalable() && NumElts != 1) {
617 APInt PoisonElts(NumElts, 0);
618 APInt DemandedElts(NumElts, 0);
619 DemandedElts.
setBit(IndexC->getZExtValue());
628 APInt PoisonElts(NumElts, 0);
630 SrcVec, DemandedElts, PoisonElts, 0 ,
650 "Invalid CollectSingleShuffleElements");
654 Mask.assign(NumElts, -1);
659 for (
unsigned i = 0; i != NumElts; ++i)
665 for (
unsigned i = 0; i != NumElts; ++i)
666 Mask.push_back(i + NumElts);
672 Value *VecOp = IEI->getOperand(0);
673 Value *ScalarOp = IEI->getOperand(1);
674 Value *IdxOp = IEI->getOperand(2);
685 Mask[InsertedIdx] = -1;
690 unsigned ExtractedIdx =
692 unsigned NumLHSElts =
702 Mask[InsertedIdx % NumElts] = ExtractedIdx;
705 Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
725 unsigned NumInsElts = InsVecType->getNumElements();
726 unsigned NumExtElts = ExtVecType->getNumElements();
729 if (InsVecType->getElementType() != ExtVecType->getElementType() ||
730 NumExtElts >= NumInsElts)
743 for (
unsigned i = 0; i < NumExtElts; ++i)
745 for (
unsigned i = NumExtElts; i < NumInsElts; ++i)
762 if (InsertionBlock != InsElt->
getParent())
780 WideVec->insertAfter(ExtVecOpInst->getIterator());
788 if (!OldExt || OldExt->
getParent() != WideVec->getParent())
814 assert(V->getType()->isVectorTy() &&
"Invalid shuffle!");
818 Mask.assign(NumElts, -1);
819 return std::make_pair(
824 Mask.assign(NumElts, 0);
825 return std::make_pair(V,
nullptr);
830 Value *VecOp = IEI->getOperand(0);
831 Value *ScalarOp = IEI->getOperand(1);
832 Value *IdxOp = IEI->getOperand(2);
836 unsigned ExtractedIdx =
842 if (EI->
getOperand(0) == PermittedRHS || PermittedRHS ==
nullptr) {
845 assert(LR.second ==
nullptr || LR.second ==
RHS);
847 if (LR.first->getType() !=
RHS->getType()) {
855 for (
unsigned i = 0; i < NumElts; ++i)
857 return std::make_pair(V,
nullptr);
860 unsigned NumLHSElts =
862 Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
863 return std::make_pair(LR.first,
RHS);
866 if (VecOp == PermittedRHS) {
869 unsigned NumLHSElts =
872 for (
unsigned i = 0; i != NumElts; ++i)
873 Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
874 return std::make_pair(EI->
getOperand(0), PermittedRHS);
882 return std::make_pair(EI->
getOperand(0), PermittedRHS);
888 for (
unsigned i = 0; i != NumElts; ++i)
890 return std::make_pair(V,
nullptr);
916 assert(NumAggElts > 0 &&
"Aggregate should have elements.");
920 static constexpr auto NotFound = std::nullopt;
921 static constexpr auto FoundMismatch =
nullptr;
928 auto KnowAllElts = [&AggElts]() {
936 static const int DepthLimit = 2 * NumAggElts;
941 Depth < DepthLimit && CurrIVI && !KnowAllElts();
944 auto *InsertedValue =
952 if (Indices.
size() != 1)
958 std::optional<Instruction *> &Elt = AggElts[Indices.
front()];
959 Elt = Elt.value_or(InsertedValue);
972 enum class AggregateDescription {
988 auto Describe = [](std::optional<Value *> SourceAggregate) {
989 if (SourceAggregate == NotFound)
990 return AggregateDescription::NotFound;
991 if (*SourceAggregate == FoundMismatch)
992 return AggregateDescription::FoundMismatch;
993 return AggregateDescription::Found;
997 bool EltDefinedInUseBB =
false;
1004 auto FindSourceAggregate =
1005 [&](
Instruction *Elt,
unsigned EltIdx, std::optional<BasicBlock *> UseBB,
1006 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
1008 if (UseBB && PredBB) {
1011 EltDefinedInUseBB =
true;
1020 Value *SourceAggregate = EVI->getAggregateOperand();
1023 if (SourceAggregate->
getType() != AggTy)
1024 return FoundMismatch;
1026 if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
1027 return FoundMismatch;
1029 return SourceAggregate;
1035 auto FindCommonSourceAggregate =
1036 [&](std::optional<BasicBlock *> UseBB,
1037 std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
1038 std::optional<Value *> SourceAggregate;
1041 assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
1042 "We don't store nullptr in SourceAggregate!");
1043 assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
1045 "SourceAggregate should be valid after the first element,");
1050 std::optional<Value *> SourceAggregateForElement =
1051 FindSourceAggregate(*
I.value(),
I.index(), UseBB, PredBB);
1058 if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
1059 return SourceAggregateForElement;
1063 switch (Describe(SourceAggregate)) {
1064 case AggregateDescription::NotFound:
1066 SourceAggregate = SourceAggregateForElement;
1068 case AggregateDescription::Found:
1071 if (*SourceAggregateForElement != *SourceAggregate)
1072 return FoundMismatch;
1074 case AggregateDescription::FoundMismatch:
1079 assert(Describe(SourceAggregate) == AggregateDescription::Found &&
1080 "Must be a valid Value");
1081 return *SourceAggregate;
1084 std::optional<Value *> SourceAggregate;
1087 SourceAggregate = FindCommonSourceAggregate(std::nullopt,
1089 if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1090 if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1092 ++NumAggregateReconstructionsSimplified;
1105 for (
const std::optional<Instruction *> &
I : AggElts) {
1129 static const int PredCountLimit = 64;
1136 if (Preds.
size() >= PredCountLimit)
1145 bool FoundSrcAgg =
false;
1147 std::pair<
decltype(SourceAggregates)
::iterator,
bool>
IV =
1156 SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1157 if (Describe(SourceAggregate) == AggregateDescription::Found) {
1159 IV.first->second = *SourceAggregate;
1164 if (!BI || !BI->isUnconditional())
1174 for (
auto &It : SourceAggregates) {
1175 if (Describe(It.second) == AggregateDescription::Found)
1179 if (EltDefinedInUseBB)
1187 if (UseBB != OrigBB)
1192 bool ConstAgg =
true;
1193 for (
auto Val : AggElts) {
1206 for (
auto &It : SourceAggregates) {
1207 if (Describe(It.second) == AggregateDescription::Found)
1211 Builder.SetInsertPoint(Pred->getTerminator());
1213 for (
auto [Idx, Val] :
enumerate(AggElts)) {
1215 V =
Builder.CreateInsertValue(V, Elt, Idx);
1227 Builder.SetInsertPoint(UseBB, UseBB->getFirstNonPHIIt());
1231 PHI->addIncoming(SourceAggregates[Pred], Pred);
1233 ++NumAggregateReconstructionsSimplified;
1246 I.getAggregateOperand(),
I.getInsertedValueOperand(),
I.getIndices(),
1247 SQ.getWithInstruction(&
I)))
1250 bool IsRedundant =
false;
1259 while (V->hasOneUse() &&
Depth < 10) {
1262 if (!UserInsInst || U->getOperand(0) != V)
1264 if (UserInsInst->getIndices() == FirstIndices) {
1292 if (MaskSize != VecSize)
1297 for (
int i = 0; i != MaskSize; ++i) {
1299 if (Elt != -1 && Elt != i && Elt != i + VecSize)
1324 if (NumElements == 1)
1336 if (!Idx || CurrIE->
getOperand(1) != SplatVal)
1343 if (CurrIE != &InsElt &&
1344 (!CurrIE->
hasOneUse() && (NextIE !=
nullptr || !Idx->isZero())))
1347 ElementPresent[Idx->getZExtValue()] =
true;
1353 if (FirstIE == &InsElt)
1361 if (!ElementPresent.
all())
1367 Constant *Zero = ConstantInt::get(Int64Ty, 0);
1374 for (
unsigned i = 0; i != NumElements; ++i)
1375 if (!ElementPresent[i])
1386 if (!Shuf || !Shuf->isZeroEltSplat())
1401 Value *Op0 = Shuf->getOperand(0);
1409 unsigned NumMaskElts =
1412 for (
unsigned i = 0; i != NumMaskElts; ++i)
1413 NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1424 !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1440 Value *
X = Shuf->getOperand(0);
1448 unsigned NumMaskElts =
1452 for (
unsigned i = 0; i != NumMaskElts; ++i) {
1455 NewMask[i] = OldMask[i];
1456 }
else if (OldMask[i] == (
int)IdxC) {
1462 "Unexpected shuffle mask element for identity shuffle");
1482 if (!InsElt1 || !InsElt1->hasOneUse())
1493 Value *NewInsElt1 = Builder.CreateInsertElement(
X, ScalarC, IdxC2);
1506 if (!Inst || !Inst->hasOneUse())
1511 Constant *ShufConstVec, *InsEltScalar;
1535 unsigned NumElts = Mask.size();
1538 for (
unsigned I = 0;
I != NumElts; ++
I) {
1539 if (
I == InsEltIndex) {
1540 NewShufElts[
I] = InsEltScalar;
1541 NewMaskElts[
I] = InsEltIndex + NumElts;
1545 NewMaskElts[
I] = Mask[
I];
1549 if (!NewShufElts[
I])
1576 auto ValI = std::begin(Val);
1583 Mask[
I] = NumElts +
I;
1588 for (
unsigned I = 0;
I < NumElts; ++
I) {
1620 CastOpcode = Instruction::FPExt;
1622 CastOpcode = Instruction::SExt;
1624 CastOpcode = Instruction::ZExt;
1629 if (
X->getType()->getScalarType() !=
Y->getType())
1657 Value *Scalar0, *BaseVec;
1659 if (!VTy || (VTy->getNumElements() & 1) ||
1668 if (Index0 + 1 != Index1 || Index0 & 1)
1685 Type *SrcTy =
X->getType();
1686 unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
1687 unsigned VecEltWidth = VTy->getScalarSizeInBits();
1688 if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
1693 Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);
1697 uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
1698 Value *NewInsert = Builder.CreateInsertElement(CastBaseVec,
X, NewIndex);
1703 Value *VecOp = IE.getOperand(0);
1704 Value *ScalarOp = IE.getOperand(1);
1705 Value *IdxOp = IE.getOperand(2);
1708 VecOp, ScalarOp, IdxOp,
SQ.getWithInstruction(&IE)))
1716 Value *BaseVec, *OtherScalar;
1721 !
isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
1722 Value *NewIns =
Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
1724 Builder.getInt64(OtherIndexVal));
1742 Value *NewInsElt =
Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1757 Value *NewInsElt =
Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1765 uint64_t InsertedIdx, ExtractedIdx;
1789 if (!Insert.hasOneUse())
1798 if (isShuffleRootCandidate(IE)) {
1809 if (LR.first != &IE && LR.second != &IE) {
1811 if (LR.second ==
nullptr)
1820 unsigned VWidth = VecTy->getNumElements();
1821 APInt PoisonElts(VWidth, 0);
1844 return IdentityShuf;
1858 unsigned Depth = 5) {
1865 if (!
I)
return false;
1868 if (!
I->hasOneUse())
1871 if (
Depth == 0)
return false;
1873 switch (
I->getOpcode()) {
1874 case Instruction::UDiv:
1875 case Instruction::SDiv:
1876 case Instruction::URem:
1877 case Instruction::SRem:
1884 case Instruction::Add:
1885 case Instruction::FAdd:
1886 case Instruction::Sub:
1887 case Instruction::FSub:
1888 case Instruction::Mul:
1889 case Instruction::FMul:
1890 case Instruction::FDiv:
1891 case Instruction::FRem:
1892 case Instruction::Shl:
1893 case Instruction::LShr:
1894 case Instruction::AShr:
1895 case Instruction::And:
1896 case Instruction::Or:
1897 case Instruction::Xor:
1898 case Instruction::ICmp:
1899 case Instruction::FCmp:
1900 case Instruction::Trunc:
1901 case Instruction::ZExt:
1902 case Instruction::SExt:
1903 case Instruction::FPToUI:
1904 case Instruction::FPToSI:
1905 case Instruction::UIToFP:
1906 case Instruction::SIToFP:
1907 case Instruction::FPTrunc:
1908 case Instruction::FPExt:
1909 case Instruction::GetElementPtr: {
1912 Type *ITy =
I->getType();
1916 for (
Value *Operand :
I->operands()) {
1922 case Instruction::InsertElement: {
1924 if (!CI)
return false;
1929 bool SeenOnce =
false;
1930 for (
int I : Mask) {
1931 if (
I == ElementNumber) {
1947 Builder.SetInsertPoint(
I);
1948 switch (
I->getOpcode()) {
1949 case Instruction::Add:
1950 case Instruction::FAdd:
1951 case Instruction::Sub:
1952 case Instruction::FSub:
1953 case Instruction::Mul:
1954 case Instruction::FMul:
1955 case Instruction::UDiv:
1956 case Instruction::SDiv:
1957 case Instruction::FDiv:
1958 case Instruction::URem:
1959 case Instruction::SRem:
1960 case Instruction::FRem:
1961 case Instruction::Shl:
1962 case Instruction::LShr:
1963 case Instruction::AShr:
1964 case Instruction::And:
1965 case Instruction::Or:
1966 case Instruction::Xor: {
1968 assert(NewOps.
size() == 2 &&
"binary operator with #ops != 2");
1970 NewOps[0], NewOps[1]);
1977 NewI->setIsExact(BO->
isExact());
1980 NewI->copyFastMathFlags(
I);
1984 case Instruction::ICmp:
1985 assert(NewOps.
size() == 2 &&
"icmp with #ops != 2");
1986 return Builder.CreateICmp(
cast<ICmpInst>(
I)->getPredicate(), NewOps[0],
1988 case Instruction::FCmp:
1989 assert(NewOps.
size() == 2 &&
"fcmp with #ops != 2");
1990 return Builder.CreateFCmp(
cast<FCmpInst>(
I)->getPredicate(), NewOps[0],
1992 case Instruction::Trunc:
1993 case Instruction::ZExt:
1994 case Instruction::SExt:
1995 case Instruction::FPToUI:
1996 case Instruction::FPToSI:
1997 case Instruction::UIToFP:
1998 case Instruction::SIToFP:
1999 case Instruction::FPTrunc:
2000 case Instruction::FPExt: {
2004 I->getType()->getScalarType(),
2006 assert(NewOps.
size() == 1 &&
"cast with #ops != 1");
2010 case Instruction::GetElementPtr: {
2011 Value *Ptr = NewOps[0];
2025 assert(V->getType()->isVectorTy() &&
"can't reorder non-vector elements");
2042 switch (
I->getOpcode()) {
2043 case Instruction::Add:
2044 case Instruction::FAdd:
2045 case Instruction::Sub:
2046 case Instruction::FSub:
2047 case Instruction::Mul:
2048 case Instruction::FMul:
2049 case Instruction::UDiv:
2050 case Instruction::SDiv:
2051 case Instruction::FDiv:
2052 case Instruction::URem:
2053 case Instruction::SRem:
2054 case Instruction::FRem:
2055 case Instruction::Shl:
2056 case Instruction::LShr:
2057 case Instruction::AShr:
2058 case Instruction::And:
2059 case Instruction::Or:
2060 case Instruction::Xor:
2061 case Instruction::ICmp:
2062 case Instruction::FCmp:
2063 case Instruction::Trunc:
2064 case Instruction::ZExt:
2065 case Instruction::SExt:
2066 case Instruction::FPToUI:
2067 case Instruction::FPToSI:
2068 case Instruction::UIToFP:
2069 case Instruction::SIToFP:
2070 case Instruction::FPTrunc:
2071 case Instruction::FPExt:
2072 case Instruction::Select:
2073 case Instruction::GetElementPtr: {
2078 for (
int i = 0, e =
I->getNumOperands(); i != e; ++i) {
2083 if (
I->getOperand(i)->getType()->isVectorTy())
2086 V =
I->getOperand(i);
2088 NeedsRebuild |= (V !=
I->getOperand(i));
2094 case Instruction::InsertElement: {
2102 for (
int e = Mask.size(); Index != e; ++Index) {
2103 if (Mask[Index] == Element) {
2116 Builder.SetInsertPoint(
I);
2117 return Builder.CreateInsertElement(V,
I->getOperand(1), Index);
2133 unsigned MaskElems = Mask.size();
2134 unsigned BegIdx = Mask.front();
2135 unsigned EndIdx = Mask.back();
2136 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
2138 for (
unsigned I = 0;
I != MaskElems; ++
I)
2139 if (
static_cast<unsigned>(Mask[
I]) != BegIdx +
I)
2164 case Instruction::Shl: {
2169 Instruction::Shl, ConstantInt::get(Ty, 1),
C,
DL);
2170 assert(ShlOne &&
"Constant folding of immediate constants failed");
2171 return {Instruction::Mul, BO0, ShlOne};
2175 case Instruction::Or: {
2178 return {Instruction::Add, BO0, BO1};
2181 case Instruction::Sub:
2196 assert(Shuf.
isSelect() &&
"Must have select-equivalent shuffle");
2201 unsigned NumElts = Mask.size();
2205 if (ShufOp && ShufOp->isSelect() &&
2206 (ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
2212 if (!ShufOp || !ShufOp->isSelect() ||
2213 (ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
2216 Value *
X = ShufOp->getOperand(0), *
Y = ShufOp->getOperand(1);
2218 ShufOp->getShuffleMask(Mask1);
2219 assert(Mask1.
size() == NumElts &&
"Vector size changed with select shuffle");
2232 for (
unsigned i = 0; i != NumElts; ++i)
2233 NewMask[i] = Mask[i] < (
signed)NumElts ? Mask[i] : Mask1[i];
2238 "Unexpected shuffle mask");
2244 assert(Shuf.
isSelect() &&
"Must have select-equivalent shuffle");
2267 Value *
X = Op0IsBinop ? Op1 : Op0;
2288 bool MightCreatePoisonOrUB =
2291 if (MightCreatePoisonOrUB)
2326 Value *NewIns = Builder.CreateInsertElement(PoisonVec,
X, (
uint64_t)0);
2332 unsigned NumMaskElts =
2335 for (
unsigned i = 0; i != NumMaskElts; ++i)
2337 NewMask[i] = Mask[i];
2374 Constant *C0 =
nullptr, *C1 =
nullptr;
2375 bool ConstantsAreOp1;
2378 ConstantsAreOp1 =
false;
2383 ConstantsAreOp1 =
true;
2390 bool DropNSW =
false;
2391 if (ConstantsAreOp1 && Opc0 != Opc1) {
2395 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2399 Opc0 = AltB0.Opcode;
2403 Opc1 = AltB1.Opcode;
2408 if (Opc0 != Opc1 || !C0 || !C1)
2421 bool MightCreatePoisonOrUB =
2424 if (MightCreatePoisonOrUB)
2447 if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2457 V =
Builder.CreateShuffleVector(
X,
Y, Mask);
2460 Value *NewBO = ConstantsAreOp1 ?
Builder.CreateBinOp(BOpc, V, NewC) :
2461 Builder.CreateBinOp(BOpc, NewC, V);
2469 NewI->copyIRFlags(B0);
2470 NewI->andIRFlags(B1);
2472 NewI->setHasNoSignedWrap(
false);
2474 NewI->dropPoisonGeneratingFlags();
2493 Type *SrcType =
X->getType();
2494 if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2501 "Expected a shuffle that decreases length");
2508 for (
unsigned i = 0, e = Mask.size(); i != e; ++i) {
2511 uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2512 assert(LSBIndex <= INT32_MAX &&
"Overflowed 32-bits");
2513 if (Mask[i] != (
int)LSBIndex)
2539 unsigned NarrowNumElts =
2564 bool IsFNeg = S0->getOpcode() == Instruction::FNeg;
2570 S0->getOpcode() !=
S1->getOpcode() ||
2571 (!S0->hasOneUse() && !
S1->hasOneUse()))
2578 NewF = UnaryOperator::CreateFNeg(NewShuf);
2599 switch (CastOpcode) {
2600 case Instruction::SExt:
2601 case Instruction::ZExt:
2602 case Instruction::FPToSI:
2603 case Instruction::FPToUI:
2604 case Instruction::SIToFP:
2605 case Instruction::UIToFP:
2616 if (ShufTy->getElementCount().getKnownMinValue() >
2617 ShufOpTy->getElementCount().getKnownMinValue())
2624 auto *NewIns = Builder.CreateShuffleVector(Cast0->getOperand(0),
2632 if (!Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
2633 Cast0->getSrcTy() != Cast1->getSrcTy())
2638 "Expected fixed vector operands for casts and binary shuffle");
2639 if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
2643 if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
2647 Value *
X = Cast0->getOperand(0);
2648 Value *
Y = Cast1->getOperand(0);
2663 X->getType()->getPrimitiveSizeInBits() ==
2691 assert(NumElts < Mask.size() &&
2692 "Identity with extract must have less elements than its inputs");
2694 for (
unsigned i = 0; i != NumElts; ++i) {
2696 int MaskElt = Mask[i];
2697 NewMask[i] = ExtractMaskElt ==
PoisonMaskElem ? ExtractMaskElt : MaskElt;
2710 int NumElts = Mask.size();
2736 if (NumElts != InpNumElts)
2740 auto isShufflingScalarIntoOp1 = [&](
Value *&Scalar,
ConstantInt *&IndexC) {
2748 int NewInsIndex = -1;
2749 for (
int i = 0; i != NumElts; ++i) {
2755 if (Mask[i] == NumElts + i)
2759 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2766 assert(NewInsIndex != -1 &&
"Did not fold shuffle with unused operand?");
2769 IndexC = ConstantInt::get(IndexC->getIntegerType(), NewInsIndex);
2778 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2786 if (isShufflingScalarIntoOp1(Scalar, IndexC))
2798 if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2799 !Shuffle1 || !Shuffle1->isIdentityWithPadding())
2807 Value *
X = Shuffle0->getOperand(0);
2808 Value *
Y = Shuffle1->getOperand(0);
2809 if (
X->getType() !=
Y->getType() ||
2818 "Unexpected operand for identity shuffle");
2826 assert(WideElts > NarrowElts &&
"Unexpected types for identity with padding");
2830 for (
int i = 0, e = Mask.size(); i != e; ++i) {
2836 if (Mask[i] < WideElts) {
2837 if (Shuffle0->getMaskValue(Mask[i]) == -1)
2840 if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2847 if (Mask[i] < WideElts) {
2848 assert(Mask[i] < NarrowElts &&
"Unexpected shuffle mask");
2849 NewMask[i] = Mask[i];
2851 assert(Mask[i] < (WideElts + NarrowElts) &&
"Unexpected shuffle mask");
2852 NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2874 if (
X->getType() !=
Y->getType())
2883 NewBOI->copyIRFlags(BinOp);
2919 X->getType()->isVectorTy() &&
X->getType() ==
Y->getType() &&
2920 X->getType()->getScalarSizeInBits() ==
2922 (LHS->hasOneUse() || RHS->hasOneUse())) {
2937 X->getType()->isVectorTy() && VWidth == LHSWidth) {
2940 unsigned XNumElts = XType->getNumElements();
2946 ScaledMask, XType, ShufQuery))
2954 "Shuffle with 2 undef ops not simplified?");
2982 APInt PoisonElts(VWidth, 0);
3004 if (
SI->getCondition()->getType()->isIntegerTy() &&
3051 bool MadeChange =
false;
3054 unsigned MaskElems = Mask.size();
3056 unsigned VecBitWidth =
DL.getTypeSizeInBits(SrcTy);
3057 unsigned SrcElemBitWidth =
DL.getTypeSizeInBits(SrcTy->getElementType());
3058 assert(SrcElemBitWidth &&
"vector elements must have a bitwidth");
3059 unsigned SrcNumElems = SrcTy->getNumElements();
3065 if (BC->use_empty())
3068 if (BC->hasOneUse()) {
3070 if (BC2 && isEliminableCastPair(BC, BC2))
3076 unsigned BegIdx = Mask.front();
3077 Type *TgtTy = BC->getDestTy();
3078 unsigned TgtElemBitWidth =
DL.getTypeSizeInBits(TgtTy);
3079 if (!TgtElemBitWidth)
3081 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
3082 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
3083 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
3084 if (!VecBitWidthsEqual)
3089 if (!BegIsAligned) {
3093 for (
unsigned I = 0, E = MaskElems, Idx = BegIdx;
I != E; ++Idx, ++
I)
3094 ShuffleMask[
I] = Idx;
3095 V =
Builder.CreateShuffleVector(V, ShuffleMask,
3099 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
3100 assert(SrcElemsPerTgtElem);
3101 BegIdx /= SrcElemsPerTgtElem;
3102 auto [It, Inserted] = NewBCs.
try_emplace(CastSrcTy);
3104 It->second =
Builder.CreateBitCast(V, CastSrcTy, SVI.
getName() +
".bc");
3105 auto *Ext =
Builder.CreateExtractElement(It->second, BegIdx,
3162 LHSShuffle =
nullptr;
3165 RHSShuffle =
nullptr;
3166 if (!LHSShuffle && !RHSShuffle)
3167 return MadeChange ? &SVI :
nullptr;
3169 Value* LHSOp0 =
nullptr;
3170 Value* LHSOp1 =
nullptr;
3171 Value* RHSOp0 =
nullptr;
3172 unsigned LHSOp0Width = 0;
3173 unsigned RHSOp0Width = 0;
3183 Value* newLHS = LHS;
3184 Value* newRHS = RHS;
3192 else if (LHSOp0Width == LHSWidth) {
3197 if (RHSShuffle && RHSOp0Width == LHSWidth) {
3201 if (LHSOp0 == RHSOp0) {
3206 if (newLHS == LHS && newRHS == RHS)
3207 return MadeChange ? &SVI :
nullptr;
3213 if (RHSShuffle && newRHS != RHS)
3216 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
3222 for (
unsigned i = 0; i < VWidth; ++i) {
3227 }
else if (Mask[i] < (
int)LHSWidth) {
3232 if (newLHS != LHS) {
3233 eltMask = LHSMask[Mask[i]];
3249 else if (newRHS != RHS) {
3250 eltMask = RHSMask[Mask[i]-LHSWidth];
3253 if (eltMask >= (
int)RHSOp0Width) {
3255 "should have been check above");
3259 eltMask = Mask[i]-LHSWidth;
3267 if (eltMask >= 0 && newRHS !=
nullptr && newLHS != newRHS)
3268 eltMask += newLHSWidth;
3273 if (SplatElt >= 0 && SplatElt != eltMask)
3283 if (
isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
3289 return MadeChange ? &SVI :
nullptr;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
This file provides internal interfaces used to implement the InstCombine.
static Instruction * foldConstantInsEltIntoShuffle(InsertElementInst &InsElt)
insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex --> shufflevector X,...
static Value * evaluateInDifferentElementOrder(Value *V, ArrayRef< int > Mask, IRBuilderBase &Builder)
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, SmallVectorImpl< int > &Mask)
If V is a shuffle of values that ONLY returns elements from either LHS or RHS, return the shuffle mas...
static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl< int > &Mask, Value *PermittedRHS, InstCombinerImpl &IC, bool &Rerun)
static APInt findDemandedEltsByAllUsers(Value *V)
Find union of elements of V demanded by all its users.
static Instruction * foldTruncInsEltPair(InsertElementInst &InsElt, bool IsBigEndian, InstCombiner::BuilderTy &Builder)
If we are inserting 2 halves of a value into adjacent elements of a vector, try to convert to a singl...
static Instruction * foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf, const SimplifyQuery &SQ)
static Instruction * foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf)
static Instruction * foldIdentityExtractShuffle(ShuffleVectorInst &Shuf)
Try to fold an extract subvector operation.
static bool findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr, APInt &UnionUsedElts)
Find elements of V demanded by UserInstr.
static Instruction * foldInsEltIntoSplat(InsertElementInst &InsElt)
Try to fold an insert element into an existing splat shuffle by changing the shuffle's mask to includ...
std::pair< Value *, Value * > ShuffleOps
We are building a shuffle to create V, which is a sequence of insertelement, extractelement pairs.
static Instruction * foldShuffleWithInsert(ShuffleVectorInst &Shuf, InstCombinerImpl &IC)
Try to replace a shuffle with an insertelement or try to replace a shuffle operand with the operand o...
static Instruction * canonicalizeInsertSplat(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder)
If we have an insert of a scalar to a non-zero element of an undefined vector and then shuffle that v...
static Instruction * foldTruncShuffle(ShuffleVectorInst &Shuf, bool IsBigEndian)
Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
static bool replaceExtractElements(InsertElementInst *InsElt, ExtractElementInst *ExtElt, InstCombinerImpl &IC)
If we have insertion into a vector that is wider than the vector that we are extracting from,...
static bool cheapToScalarize(Value *V, Value *EI)
Return true if the value is cheaper to scalarize than it is to leave as a vector operation.
static Value * buildNew(Instruction *I, ArrayRef< Value * > NewOps, IRBuilderBase &Builder)
Rebuild a new instruction just like 'I' but with the new operands given.
static bool canEvaluateShuffled(Value *V, ArrayRef< int > Mask, unsigned Depth=5)
Return true if we can evaluate the specified expression tree if the vector elements were shuffled in ...
static Instruction * foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf)
A select shuffle of a select shuffle with a shared operand can be reduced to a single select shuffle.
static Instruction * hoistInsEltConst(InsertElementInst &InsElt2, InstCombiner::BuilderTy &Builder)
If we have an insertelement instruction feeding into another insertelement and the 2nd is inserting a...
static Instruction * foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder)
Canonicalize FP negate/abs after shuffle.
static Instruction * foldCastShuffle(ShuffleVectorInst &Shuf, InstCombiner::BuilderTy &Builder)
Canonicalize casts after shuffle.
static Instruction * narrowInsElt(InsertElementInst &InsElt, InstCombiner::BuilderTy &Builder)
If both the base vector and the inserted element are extended from the same type, do the insert eleme...
static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf)
static Instruction * foldInsSequenceIntoSplat(InsertElementInst &InsElt)
Turn a chain of inserts that splats a value into an insert + shuffle: insertelt(insertelt(insertelt(i...
static Instruction * foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt)
Try to fold an extract+insert element into an existing identity shuffle by changing the shuffle's mas...
static ConstantInt * getPreferredVectorIndex(ConstantInt *IndexC)
Given a constant index for a extractelement or insertelement instruction, return it with the canonica...
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, ArrayRef< int > Mask)
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL)
Binops may be transformed into binops with different opcodes and operands.
This file provides the interface for the instcombine pass implementation.
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SDValue narrowVectorSelect(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, const X86Subtarget &Subtarget)
If both arms of a vector select are concatenated vectors, split the select, and concatenate the resul...
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
This class represents a no-op cast from one type to another.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
static LLVM_ABI CmpInst * CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Instruction *FlagsSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate, the two operands and the instructio...
OtherOps getOpcode() const
Get the opcode casted to the right type.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
This is the shared class of boolean and integer constants.
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
A parsed version of the target data layout string in and methods for querying it.
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
Common base class shared among various IRBuilders.
This instruction inserts a single (scalar) element into a VectorType value.
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
VectorType * getType() const
Overload to return most specific vector type.
This instruction inserts a struct field of array element value into an aggregate value.
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * foldSelectShuffle(ShuffleVectorInst &Shuf)
Try to fold shuffles that are the equivalent of a vector select.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitInsertValueInst(InsertValueInst &IV)
Try to find redundant insertvalue instructions, like the following ones: %0 = insertvalue { i8,...
Instruction * visitInsertElementInst(InsertElementInst &IE)
Instruction * visitExtractElementInst(ExtractElementInst &EI)
Instruction * simplifyBinOpSplats(ShuffleVectorInst &SVI)
Instruction * foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI)
Look for chain of insertvalue's that fully define an aggregate, and trace back the values inserted,...
Instruction * visitShuffleVectorInst(ShuffleVectorInst &SVI)
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
const SimplifyQuery & getSimplifyQuery() const
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
A wrapper class for inspecting calls to intrinsic functions.
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
bool changesLength() const
Return true if this shuffle returns a vector with a different number of elements than its source vect...
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
VectorType * getType() const
Overload to return most specific vector type.
bool increasesLength() const
Return true if this shuffle returns a vector with a greater number of elements than its source vector...
LLVM_ABI bool isIdentityWithExtract() const
Return true if this shuffle extracts the first N elements of exactly one source vector.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
bool isSelect() const
Return true if this shuffle chooses elements from its source vectors without lane crossings and all o...
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
LLVM_ABI void commute()
Swap the operands and adjust the mask to preserve the semantics of the instruction.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
bool all() const
Returns true if all bits are set.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getStructNumElements() const
LLVM_ABI uint64_t getArrayNumElements() const
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
UnaryOps getOpcode() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static LLVM_ABI bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Type * getElementType() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOpc_match< LHS, RHS, false > m_BinOp(unsigned Opcode, const LHS &L, const RHS &R)
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
auto m_Undef()
Match an arbitrary undef constant.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI llvm::SmallVector< int, 16 > createUnaryMask(ArrayRef< int > Mask, unsigned NumElts)
Given a shuffle mask for a binary shuffle, create the equivalent shuffle mask assuming both operands ...
LLVM_ABI Value * simplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef< int > Mask, Type *RetTy, const SimplifyQuery &Q)
Given operands for a ShuffleVectorInst, fold the result or return null.
auto dyn_cast_or_null(const Y &Val)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Value * simplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an InsertValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
constexpr int PoisonMaskElem
LLVM_ABI Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI Value * simplifyInsertElementInst(Value *Vec, Value *Elt, Value *Idx, const SimplifyQuery &Q)
Given operands for an InsertElement, fold the result or return null.
constexpr unsigned BitWidth
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI Value * simplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q)
Given operands for an ExtractElementInst, fold the result or return null.
LLVM_ABI bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Attempt to narrow/widen the Mask shuffle mask to the NumDstElts target width.
LLVM_ABI int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
These are the ingredients in an alternate form binary operator as described below.
BinopElts(BinaryOperator::BinaryOps Opc=(BinaryOperator::BinaryOps) 0, Value *V0=nullptr, Value *V1=nullptr)
BinaryOperator::BinaryOps Opcode
A MapVector that performs no allocations if smaller than a certain size.